Lattice Holographic Cosmology

Kostas Skenderis

Numerical approaches to holography, quantum gravity and cosmology Edinburgh, 24 May 2018

• • • • • • • • • • • •

Introduction

Gauge/gravity duality Holographic cosmology New holographic models Fit to data Lattice Holographic Cosmology Conclusions

Outline

1 Introduction

- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
- 5 Fit to data
 Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

Introduction

- The physics of the very Early Universe is an example where we expect both General Relativity and Quantum Mechanics to be important.
- > Cosmology provides a unique observational window to this era.
- One of the deepest insights about quantum gravity that emerged in recent times is that it is expected to be holographic.
- In this talk I will review a holographic approach to the physics of the very Early Universe, discuss its predictions and compare them against observations.

Introduction

Gauge/gravity duality Holographic cosmology New holographic models Fit to data Lattice Holographic Cosmology Conclusions

Timeline of the Universe

Why holographic cosmology?

Holographic cosmology is a new framework for cosmology.

- It can accommodate both conventional inflation (strong coupled dual QFT) and qualitatively new models for the very early Universe (weakly coupled QFT).
- The latest theoretical ideas about the nature of quantum gravity may be tested against observation data.
- > The new models are falsifiable with current data.
- > It gives new insight into conventional inflation.

Holographic cosmology in a nutshell

- Holography in general maps gravitational dynamics of (d + 1) dimensional theory to observables of a d-dimensional QFT with no gravity.
- In the context of early-times cosmology, it maps
- cosmological observable such as the power spectra and non-gaussianities
- to correlation functions of the energy momentum tensor of the dual QFT.

• • • • • • • • • • • •

References

- A holographic framework for cosmology was put forward in works with Paul McFadden and Adam Bzowski (2009 - 2013).
- Related work:

[Hull (1998)] ... (E-branes) [Witten (2001)] [Strominger (2001)] ... (dS/CFT correspondence) [Maldacena (2002)] ... (wavefunction of the universe) [Hartle, Hawking, Hertog (2012)] ... (quantum cosmology)

[Trivedi et al][Garriga et al] [Coriano et al] [Maldacena, Pimentel] [Arkani-Hamed, Maldacena]

References

In this talk I will give an overview of the earlier work and discuss more recent and on-going work:

- N. Afshordi, C. Coriano, L. Delle Rose, E. Gould, KS, From Planck data to Planck era: Observational tests of Holographic Cosmology, Phys. Rev. Lett. 118 (2017), 041301, arXiv:1607.04878 [astro-ph.CO].
- Elizabeth Gould, Niayesh Afshordi, KS, Constraining holographic cosmology with Planck data, Phys. Rev. D95 (2017) no.12, 123505, arXiv:1703.05385 [astro-ph.CO].
- G. Cossu, L. Del Debbio, E. Gould, A. Jüttner, M. Hanada, M. Mostert, A. Portelli, KS, P. Vranas, Lattice Holographic Cosmology, in progress.

• • • • • • • • • • • • •

Outline

- 1 Introduction
- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
- 5 Fit to data
 Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

э

Outline

1 Introduction

- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
- 5 Fit to data
 Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

Gauge/gravity duality: a primer

A conjectured equivalence:

Gravity in (d+1) dimensions \Leftrightarrow QFT in *d* dimensions

- In this talk we will focus exclusive on d = 3: a 4-dimensional universe and its dual 3d QFT.
- The idea of "holography" has its origins in black holes physics and concrete realisations appeared in string theory.
- No familiarity with black holes and string theory is needed to understand the duality.

QFT in a nutshell

- > All information about a QFT is encoded in correlators functions.
- Textbooks usually discuss correlation functions of elementary fields.
- We will instead consider correlation functions of gauge invariant composite operators.
- For example, such operators are the energy-momentum tensor $T_{\mu\nu}$, or scalar operators such as $\text{Tr}F_{\mu\nu}F^{\mu\nu}$, $(F^{\mu\nu}$ is the field strength of Yang-Mills field), $\bar{\psi}\psi$, etc.

Gauge/gravity duality in a nutshell

Gauge/gravity duality provides a way to

- obtain QFT correlation functions of gauge invariant operator by doing a gravitational computation, or conversely
- obtain the behaviour of a gravitational system using correlation functions of gauge invariant operators.

Weak/strong duality

An important feature of the duality is that it is a weak/strong duality.

weakly coupled gravity \Leftrightarrow strongly coupled QFT

One can obtain QFT correlation functions of gauge invariant operators at strong coupling by solving Einstein equations.

Strongly coupled gravity \Leftrightarrow weakly coupled QFT

The extra dimension represents the energy scale at which we probe the theory.

Radial evolution is an RG flow.

Outline

- 1 Introduction
- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
- 5 Fit to data Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

イロト イ団ト イヨト イヨ

Holographic Universe

In holographic cosmology:

Cosmological evolution = inverse RG flow

The dual QFT should have:

- a strongly coupled UV fixed point corresponding to the current dark energy era.
- In the IR the theory should either flow to:
 - an IR fixed point (corresponding to de Sitter inflation), or
 - a phase governed by a super-renormalizable theory

(corresponding to power-law inflation).

How do we make predictions?

- We need to provide formulae that relate cosmological observables with QFT correlation functions.
- The Cosmic Microwave Background (CMB) carries information about the very early Universe.
- Two of the main observables, currently measured by satellites (such as Planck) and other missions, are the power spectra and non-Gaussianities and there are explicit holographic formulae for them.
- > Here I will focus on the power spectra.

4 **A b** 4 **b**

Holographic formulae for power spectra [McFadden, KS]

> The 2-point function of the energy momentum tensor T_{ij} in momentum space has the form

$$\langle T_{ij}(q)T_{kl}(-q)\rangle = A(q^2)\Pi_{ijkl} + B(q^2)\pi_{ij}\pi_{kl},$$

where $\Pi_{ijkl} = \frac{1}{2}(\pi_{ik}\pi_{lj} + \pi_{il}\pi_{kj} - \pi_{ij}\pi_{kl}), \quad \pi_{ij} = \delta_{ij} - q_i q_j / q^2.$

The power spectra are given by

$$\Delta_{\mathcal{R}}^2(q) = -\frac{q^3}{16\pi^2} \frac{1}{\text{Im } B}, \quad \Delta_T^2(q) = -\frac{2q^3}{\pi^2} \frac{1}{\text{Im } A},$$

where the imaginary part is taken after the analytic continuation,

$$q \rightarrow -iq$$
, $N \rightarrow -iN$

Non-gausianities are related with higher-point functions of T_{ij}.

Choose a QFT.

2 Compute correlation functions of the energy momentum tensor.

3 Insert in holographic formula to obtain the holographic prediction.

4 Compare with cosmological observables.

• • • • • • • • • • • •

Outline

- 1 Introduction
- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
 - Fit to data
 Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

Dual QFT

The model is defined by providing the dual QFT, which we take to be

$$S = \frac{1}{g_{YM}^2} \int d^3 x \mathrm{tr} \left[\frac{1}{2} F_{ij} F^{ij} + \frac{1}{2} (D\phi^J)^2 + \bar{\psi}^K \not\!\!D \psi^K + \lambda_{J_1 J_2 J_3 J_4} \phi^{J_1} \phi^{J_2} \phi^{J_3} \phi^{J_4} + \mu_{JL_1 L_2} \phi^J \psi^{L_1} \psi^{L_2} \right].$$

All fields are massless and in the adjoint of SU(N), $\lambda_{J_1J_2J_3J_4}$, $\mu_{JL_1L_2}$ are dimensionless couplings while g_{YM}^2 has mass dimension 1.

< ロ > < 同 > < 回 > < 回 >

Energy-momentum tensor

For this class of theories, the 2-point function of the trace of T at large N takes the form,

$$\langle T(q)T(-q)\rangle = N^2 q^3 f(g_{\text{eff}}^2),$$

where $g_{\text{eff}}^2 = g_{\text{YM}}^2 N/q$ is the effective dimensionless 't Hooft coupling and $f(g_{\text{eff}}^2)$ is a general function of g_{eff}^2 .

In perturbation theory and at 2-loops,

 $f(g_{\rm eff}^2) = f_0(1 - f_1 g_{\rm eff}^2 \log g_{\rm eff}^2 + f_2 g_{\rm eff}^2 + O[g_{\rm eff}^4]).$

where f_0, f_1, f_2 are constants that depend on the field content etc.

< ロ > < 同 > < 回 > < 回 >

Holographic power spectrum

> To compute the holographic scalar power spectrum we need to analytically continue $\langle T(q)T(-q)\rangle$:

$$\Delta_{\mathcal{R}}^{2}(q) = -\frac{q^{3}}{4\pi^{2}} \frac{1}{\mathrm{Im}\langle T(q)T(-q)\rangle} = \frac{1}{4\pi^{2}N^{2}} \frac{1}{f(g_{\mathrm{eff}}^{2})}$$

Thus, for this class of theories and in the perturbative regime there is a universal prediction:

$$\Delta_{\mathcal{R}}^{2}(q) = \left(\frac{1}{4\pi^{2}N^{2}f_{0}}\right) \frac{1}{1 - f_{1}g_{\text{eff}}^{2}\log g_{\text{eff}}^{2} + f_{2}g_{\text{eff}}^{2}}$$

This may be rewritten as

$$\Delta^2_{\mathcal{R}}(q) = \Delta_0 rac{1}{1+(gq_*/q)\ln|q/eta gq_*|},$$

with $gq^* = f_1 g_{YM}^2 N$, $\beta = f_3 / |f_1|$, $f_3 = \exp(-f_2 / f_F)$, $q_* = 0.05 \text{Mpc}^{-1}$.

Kostas Skenderis

Holographic Cosmology

Outline

1 Introduction

- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models

5 Fit to data

- Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

イロト イ団ト イヨト イヨ

Model selection

Main questions

Which of the two forms of power spectrum fits the data best:

$$\Delta_{\mathcal{R}}^2(q) = \Delta_0 \frac{1}{1 + (gq_*/q) \ln |q/\beta gq_*|},$$

or

$$\Delta_{\mathcal{R}}^2(q) = \Delta_0 q^{n_s - 1}.$$

2 Given the observational values of

$$\Delta_0, g, \ln \beta$$

what can we say about the dual QFT? Is the data constraining enough to rule out/in theories?

Model selection

Planck 2015 vs Λ CDM vs holographic model (TT)

Model selection

Planck 2015 vs Λ CDM vs holographic model (TT)

Model selection

Results

- > The fit to data implies that $g_{eff}^2 = g_{YM}^2 N/q$ is very small for all scales seen in CMB, except at very low multipoles, justifying *a posteriori* the use of perturbation theory.
- For *l* < 30 the model becomes non-perturbative and one cannot trust the perturbative prediction.</p>
- > Goodness of fit (l > 30)

	HC	ΛCDM
χ^2	824.0	824.5

The difference in χ^2 indicate that the models are less than 1σ apart.

Outline

1 Introduction

- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
- 5 Fit to dataModel selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

Model selection

Model selection

Selecting the holographic model

We now want to use the observations to select the holographic model. We need to satisfy:

- 1 Observational constraints
- 2 Theoretical constraints

• • • • • • • • • • • •

Model selection

Observational constraints

1 The ratio of scalars-to-tensors should be small:

r < 0.123

2 The amplitude should come out to be

 $\Delta_0 = 2.044 \times 10^{-9}$

3 The model should reproduce the value of $\log \beta$,

 $\log\beta=1.014$

Model selection

Theoretical constraints

- Large N limit should be valid, i.e. N² should bigger than any other parameter of the model.
- 2 The model should be perturbative at all scales probed by Planck

Effective coupling constant must be small

 $g_{\rm eff}^2 = (1/f_1)(gq_*/q) \ll 1$

 \Rightarrow If g_{eff}^2 is not small for all relevant momenta, one should use non-perturbative methods.

• • • • • • • • • • • •

A model that is ruled out

> A gauge field coupled to fermions only has

 $\log\beta \geq 6.09$

> This class of models is ruled out by the data.

Model selection

A model that is ruled in

- A gauge field coupled to N_{ϕ} non-minimal scalars with ϕ^4 self-interaction.
- Non-minimal means that the energy momentum tensor contains an improvement term:

$$T_{ij} = T_{ij}(A) + \operatorname{Tr}\left(\partial_i \phi \partial_j \phi - \delta_{ij}(\frac{1}{2}(\partial \phi)^2 + \frac{1}{4!}\phi^4) + \xi(\delta_{ij}\Box - \partial_i \partial_j)\phi^2\right)$$

 $\xi=1/8$ yields conformal scalars.

< □ > < □ > < □ > < □ > < </p>

Model selection

A model that is ruled in

All observational constraints are satisfied by the following values:

 $\xi = 0.133, \quad N = 2995, \quad N_{\phi} = 23255$

Theoretical constaints:

1 Large *N* validity:

 $N^2\sim 8 imes 10^6>N_\phi\sim 2 imes 10^4$

2 Perturbation theory:

Effective coupling constant,

 $3.3 \times 10^{-4} < g_{eff}^2(q) < 0.41$

for all momenta q seen by Planck.

2-loop approximation breaks down for

l < 35

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

- 1 Introduction
- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
- Fit to data
 Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

Holographic Lattice Cosmology

- Perturbative QFT yields new interesting models for the very Early Universe.
- Comparing with data suggests that we may need to go beyond leading order/need non-perturbative information.
- QFT at intermediate coupling may provide yet more interesting models.
- Use Lattice to compute the relevant QFT observables.

Toy Model

> A non-minimally coupled massless scalar field in the adjoint of SU(N) with ϕ^4 self-interaction

$$S = rac{1}{\lambda} \int d^3x \mathrm{Tr}\left(rac{1}{2} (\partial_\mu \phi)^2 + rac{1}{4!} \phi^4
ight),$$

and energy momentum tensor

$$T_{ij} = \frac{1}{\lambda} \operatorname{Tr} \left(\partial_i \phi \partial_j \phi - \delta_{ij} (\frac{1}{2} (\partial \phi)^2 + \frac{1}{4!} \phi^4) + \xi (\delta_{ij} \Box - \partial_i \partial_j) \phi^2 \right)$$

The perturbative answer to 2-loops is [Coriano, Delle Rose, KS (to appear)]

$$f_0 = \frac{(1-8\xi)^2}{256}, \qquad f_1 = 0, \qquad f_2 = -\frac{1}{24}$$

Is this just a toy model?

- If this model fits the data, it would be the most economic description.
- → λ can be scaled away, so the model contains two parameters: the rank of the gauge group *N* and the non-minimality parameter ξ .
- N is related with the smallness of the amplitude of the primordial perturbations.
- ••• ξ is related with the tensor-to-scalar ratio.

< < >> < <</p>

Fit to Planck

æ

Fit to Planck

Kostas Skenderis

Is this model perturbative?

> Fit-to-data gives |g| = 0.0156, which implies that perturbation theory break down at

 $g_{eff}^2 \ge 1 \qquad \Rightarrow \qquad l < 260$

• We cannot trust the prediction of perturbation theory below l = 260.

< ロ > < 同 > < 回 > < 回 >

Fit to Planck (I>260)

Kostas Skenderis Holographic Cosmology

Fit to Planck

Kostas Skenderis

Goodness of fit (l > 260)

	HC	ΛCDM	Toy Model
χ^2	824.0	824.5	823.5

All three models are within 1σ .

イロト イポト イヨト イヨ

Lattice Holographic Cosmology

- > Compute the QFT correlators on the lattice.
- > This would allow us to model the low-*l* region ...
- ... and also investigate the implications of the singularity resolution.

- Discretize the continuum model.
- Find the massless point.
- > Find the energy-momentum tensor.
- Compute its 2-point function.
- Compare with Planck data.

• • • • • • • • • • • •

Massless point

- > We need to simulate a massless theory.
- > This requires introducing a bare mass δ_m^2 and fine tune its value so that the theory becomes massless in the continuum limit.
- > In perturbation theory δ_m^2 can be computed order by order:

$$\delta_m^2 = -\lambda \frac{Z_0}{a} \left(2N - \frac{3}{N} \right) + \lambda^2 \left(N^2 - 6 + \frac{18}{N^2} \right) D + \mathcal{O}(\lambda^3)$$

where $Z_0 = 0.252728(6)$ and *D* is a 2-loop integral.

Massless point: perturbation theory

- The 2-loop integral however is IR divergent.
- It was argued in [Jackiw,Templeton (1981)][Appelquist, Pisarski(1981)] that these type of theories are non-perturbatively IR finite: the dimensionful coupling constant effectively acts as an IR regulator.
- > As we will see, our results led support to this general claim.
- In our case we are interested in the non-perturbative evaluation of the 2-point function, so we need to know how to find the massless point non-perturbatively.

< < >> < <</p>

Massless point: non-perturbative

- > If the mass in the continuum limit is positive then $\langle M^n \rangle = 0$ for any *n*, where $M = \sum_{\vec{n}} \phi_{\vec{n}}$.
- ➤ If the mass in the continuum limit is negative we are in the spontaneously broken phase, $\langle \operatorname{Tr} M^n \rangle \neq 0$.
- > To find the massless point one may compute the Binder Cumulant $\langle (TrM^2) \rangle^2 / \langle TrM^4 \rangle$ for different lattice sizes and find the intersection point.

• • • • • • • • • • • •

Binder Cumulant SU(2) [PRELIMINARY]

Binder Cumulant SU(3) [PRELIMINARY]

Binder Cumulant SU(4) [PRELIMINARY]

Energy momentum tensor

- Since the lattice breaks Poincaré invariance, the energy momentum tensor is not automatically conserved and may mix with other operators.
- In our case, the energy momentum tensor can mix with 5 operators.
- The correct operator is found by imposing the conservation Ward identity:

$$\langle \partial^{\mu} T_{\mu\nu}(x) \phi(x_1) \cdots \phi(x_k) \rangle = \sum_{i=1}^k \delta(x - x_i) \cdot \frac{\partial}{\partial x_i^{\nu}} \langle \phi(x_1) \cdots \phi(x_k) \rangle,$$

Still in progress

4 A N

- > Compute $\langle TT \rangle$ for different values of N to extract the large N behavior.
- > Consider $g_{eff}^2 = \lambda N/q \ll 1$ and check with perturbative results.
- > Consider $g_{eff}^2 \sim 1$ and compare with Planck data.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preliminary results

Kostas Skenderis Holographic Cosmology

Outline

- 1 Introduction
- 2 Gauge/gravity duality
- 3 Holographic cosmology
- 4 New holographic models
- 5 Fit to data
 Model selection
- 6 Lattice Holographic Cosmology
- 7 Conclusions

Conclusions

- Holography offers a unified framework for discussing the very Early Universe:
- Strongly couple QFT: conventional inflation.
- Perturbative QFT: new non-geometric models.

• • • • • • • • • • • •

Conclusions

- > Perturbative holographic models provide an excellent fit to Planck data and are competitive to Λ CDM.
- > The data rules out mostly fermionic theories.
- The data selects YM theory coupled to non-minimal scalars with quartic potential as the dual QFT.

< 🗇 🕨 < 🖃 >

Outlook

- At very low q we need to go beyond leading order/need non-perturbative information.
- > Use Lattice to compute the relevant QFT observables.
- > ... on-going ... for a toy model without the YM field.
- If successful, this "toy model" would provide an incredibly simple model for the very early Universe.

• • • • • • • • • • • •