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Introduction

â The physics of the very Early Universe is an example where we
expect both General Relativity and Quantum Mechanics to be
important.

â Cosmology provides a unique observational window to this era.

â One of the deepest insights about quantum gravity that emerged
in recent times is that it is expected to be holographic.

â In this talk I will review a holographic approach to the physics of
the very Early Universe, discuss its predictions and compare
them against observations.
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Timeline of the Universe

Credit: NASA / WMAP Science Team
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Why holographic cosmology?

Holographic cosmology is a new framework for cosmology.

â It can accommodate both conventional inflation (strong coupled
dual QFT) and qualitatively new models for the very early
Universe (weakly coupled QFT).

â The latest theoretical ideas about the nature of quantum gravity
may be tested against observation data.

â The new models are falsifiable with current data.
â It gives new insight into conventional inflation.
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Holographic cosmology in a nutshell

â Holography in general maps gravitational dynamics of (d + 1)
dimensional theory to observables of a d-dimensional QFT with
no gravity.

â In the context of early-times cosmology, it maps
â cosmological observable such as the power spectra and

non-gaussianities
â to correlation functions of the energy momentum tensor of the

dual QFT.
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Gauge/gravity duality: a primer

A conjectured equivalence:

Gravity in (d+1) dimensions ⇔ QFT in d dimensions

â In this talk we will focus exclusive on d = 3:
a 4-dimensional universe and its dual 3d QFT.

â The idea of "holography" has its origins in black holes physics
and concrete realisations appeared in string theory.

â No familiarity with black holes and string theory is needed to
understand the duality.
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QFT in a nutshell

â All information about a QFT is encoded in correlators functions.
â Textbooks usually discuss correlation functions of elementary

fields.
â We will instead consider correlation functions of gauge invariant

composite operators.
à For example, such operators are the energy-momentum tensor

Tµν , or scalar operators such as TrFµνFµν , (Fµν is the field
strength of Yang-Mills field), ψ̄ψ, etc.
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Gauge/gravity duality in a nutshell

Gauge/gravity duality provides a way to

â obtain QFT correlation functions of gauge invariant operator by
doing a gravitational computation, or conversely

â obtain the behaviour of a gravitational system using correlation
functions of gauge invariant operators.
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Weak/strong duality

â An important feature of the duality is that it is a weak/strong
duality.

weakly coupled gravity ⇔ strongly coupled QFT

à One can obtain QFT correlation functions of gauge invariant
operators at strong coupling by solving Einstein equations.

Strongly coupled gravity ⇔ weakly coupled QFT

â The extra dimension represents the energy scale at which we
probe the theory.

Radial evolution is an RG flow.
Kostas Skenderis Holographic Cosmology
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Holographic Universe

â In holographic cosmology:

Cosmological evolution = inverse RG flow

The dual QFT should have:
à a strongly coupled UV fixed point

corresponding to the current dark
energy era.

à In the IR the theory should either
flow to:

â an IR fixed point
(corresponding to de Sitter inflation), or

â a phase governed by a
super-renormalizable theory
(corresponding to power-law inflation).
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How do we make predictions?

â We need to provide formulae that relate cosmological
observables with QFT correlation functions.

â The Cosmic Microwave Background (CMB) carries information
about the very early Universe.

â Two of the main observables, currently measured by satellites
(such as Planck) and other missions, are the power spectra and
non-Gaussianities and there are explicit holographic formulae for
them.

â Here I will focus on the power spectra.
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Holographic formulae for power spectra [McFadden, KS]

â The 2-point function of the energy momentum tensor Tij in
momentum space has the form

〈Tij(q)Tkl(−q)〉 = A(q2)Πijkl + B(q2)πijπkl,

where Πijkl = 1
2 (πikπlj + πilπkj − πijπkl), πij = δij − qiqj/q2.

â The power spectra are given by

∆2
R(q) = − q3

16π2

1
Im B

, ∆2
T(q) = −2q3

π2

1
Im A

,

where the imaginary part is taken after the analytic continuation,

q→ −iq, N → −iN

â Non-gausianities are related with higher-point functions of Tij.
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Summary

1 Choose a QFT.

2 Compute correlation functions of the energy momentum tensor.

3 Insert in holographic formula to obtain the holographic prediction.

4 Compare with cosmological observables.
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Dual QFT

â The model is defined by providing the dual QFT, which we take to
be

S =
1

g2
YM

∫
d3xtr

[1
2

FijFij +
1
2

(DφJ)2 + ψ̄K /DψK

+ λJ1J2J3J4φ
J1φJ2φJ3φJ4 + µJL1L2φ

JψL1ψL2

]
.

All fields are massless and in the adjoint of SU(N), λJ1J2J3J4 , µJL1L2

are dimensionless couplings while g2
YM has mass dimension 1.
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Energy-momentum tensor

â For this class of theories, the 2-point function of the trace of T at
large N takes the form,

〈T(q)T(−q)〉 = N2q3f (g2
eff),

where g2
eff = g2

YMN/q is the effective dimensionless ’t Hooft
coupling and f (g2

eff) is a general function of g2
eff.

â In perturbation theory and at 2-loops,

f (g2
eff) = f0(1− f1g2

eff log g2
eff + f2g2

eff + O[g4
eff]).

where f0, f1, f2 are constants that depend on the field content etc.
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Holographic power spectrum

â To compute the holographic scalar power spectrum we need to
analytically continue 〈T(q)T(−q)〉:

∆2
R(q) = − q3

4π2

1
Im〈T(q)T(−q)〉

=
1

4π2N2

1
f (g2

eff)

â Thus, for this class of theories and in the perturbative regime
there is a universal prediction:

∆2
R(q) =

(
1

4π2N2f0

)
1

1− f1g2
eff log g2

eff + f2g2
eff

This may be rewritten as

∆2
R(q) = ∆0

1
1 + (gq∗/q) ln |q/βgq∗|

,

with gq∗ = f1g2
YMN, β = f3/|f1|, f3 = exp (−f2/f1), q∗ = 0.05Mpc−1.
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Model selection

Main questions

1 Which of the two forms of power spectrum fits the data best:

∆2
R(q) = ∆0

1
1 + (gq∗/q) ln |q/βgq∗|

,

or
∆2
R(q) = ∆0qns−1.

2 Given the observational values of

∆0, g, lnβ

what can we say about the dual QFT?
Is the data constraining enough to rule out/in theories?

Kostas Skenderis Holographic Cosmology
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Model selection

Planck 2015 vs ΛCDM vs holographic model (TT)

500 1000 1500 2000 2500

1000

2000

3000

4000

5000

6000

l

0 10 20 30 40

500

1000

1500

2000

2500

3000

l

l(
l+

1)
C

l /
2π

 [µ
K

2 ]

l(
l+

1)
C

l /
2π

 [µ
K

2 ]

Planck

Holographic
Cosmology

ΛCDM

Kostas Skenderis Holographic Cosmology



Introduction
Gauge/gravity duality

Holographic cosmology
New holographic models

Fit to data
Lattice Holographic Cosmology

Conclusions

Model selection

Planck 2015 vs ΛCDM vs holographic model (TT)
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Model selection

Results

â The fit to data implies that g2
eff = g2

YMN/q is very small for all
scales seen in CMB, except at very low multipoles, justifying a
posteriori the use of perturbation theory.

â For l < 30 the model becomes non-perturbative and one cannot
trust the perturbative prediction.

â Goodness of fit (l > 30)

HC ΛCDM
χ2 824.0 824.5

The difference in χ2 indicate that the models are less than 1σ
apart.

Kostas Skenderis Holographic Cosmology
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Model selection

Selecting the holographic model

We now want to use the observations to select the holographic
model. We need to satisfy:

1 Observational constraints

2 Theoretical constraints

Kostas Skenderis Holographic Cosmology



Introduction
Gauge/gravity duality

Holographic cosmology
New holographic models

Fit to data
Lattice Holographic Cosmology

Conclusions

Model selection

Observational constraints

1 The ratio of scalars-to-tensors should be small:

r < 0.123

2 The amplitude should come out to be

∆0 = 2.044× 10−9

3 The model should reproduce the value of logβ,

logβ = 1.014

Kostas Skenderis Holographic Cosmology
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Model selection

Theoretical constraints

1 Large N limit should be valid, i.e. N2 should bigger than any other
parameter of the model.

2 The model should be perturbative at all scales probed by Planck
Effective coupling constant must be small

g2
eff = (1/f1)(gq∗/q) � 1

⇒ If g2
eff is not small for all relevant momenta, one should use

non-perturbative methods.

Kostas Skenderis Holographic Cosmology
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Model selection

A model that is ruled out

â A gauge field coupled to fermions only has

logβ ≥ 6.09

â This class of models is ruled out by the data.

Kostas Skenderis Holographic Cosmology
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Model selection

A model that is ruled in

A gauge field coupled to Nφ non-minimal scalars with φ4

self-interaction.
Non-minimal means that the energy momentum tensor contains
an improvement term:

Tij = Tij(A) + Tr
(
∂iφ∂jφ− δij(

1
2

(∂φ)2 +
1
4!
φ4) + ξ(δij�− ∂i∂j)φ

2
)

ξ = 1/8 yields conformal scalars.

Kostas Skenderis Holographic Cosmology
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Model selection

A model that is ruled in

All observational constraints are satisfied by the following values:

ξ = 0.133, N = 2995, Nφ = 23255

Theoretical constaints:
1 Large N validity:

N2 ∼ 8 × 106 > Nφ ∼ 2 × 104

2 Perturbation theory:
Effective coupling constant,

3.3 × 10−4 < g2
eff (q) < 0.41

for all momenta q seen by Planck.
2-loop approximation breaks down for

l < 35

Kostas Skenderis Holographic Cosmology
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Holographic Lattice Cosmology

â Perturbative QFT yields new interesting models for the very Early
Universe.

â Comparing with data suggests that we may need to go beyond
leading order/need non-perturbative information.

â QFT at intermediate coupling may provide yet more interesting
models.

à Use Lattice to compute the relevant QFT observables.

Kostas Skenderis Holographic Cosmology
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Toy Model

â A non-minimally coupled massless scalar field in the adjoint of
SU(N) with φ4 self-interaction

S =
1
λ

∫
d3xTr

(
1
2

(∂µφ)2 +
1
4!
φ4
)
,

and energy momentum tensor

Tij =
1
λ

Tr
(
∂iφ∂jφ− δij(

1
2

(∂φ)2 +
1
4!
φ4) + ξ(δij�− ∂i∂j)φ

2
)

â The perturbative answer to 2-loops is [Coriano, Delle Rose, KS (to
appear)]

f0 =
(1− 8ξ)2

256
, f1 = 0, f2 = − 1

24
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Is this just a toy model?

â If this model fits the data, it would be the most economic
description.

à λ can be scaled away, so the model contains two parameters:
the rank of the gauge group N and the non-minimality parameter
ξ.

à N is related with the smallness of the amplitude of the primordial
perturbations.

à ξ is related with the tensor-to-scalar ratio.
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Fit to Planck
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Fit to Planck
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Is this model perturbative?

â Fit-to-data gives |g| = 0.0156, which implies that perturbation
theory break down at

g2
eff ≥ 1 ⇒ l < 260

à We cannot trust the prediction of perturbation theory below
l = 260.
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Fit to Planck (l>260)
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Fit to Planck
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Goodness of fit (l > 260)

HC ΛCDM Toy Model
χ2 824.0 824.5 823.5

à All three models are within 1σ.
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Lattice Holographic Cosmology

â Compute the QFT correlators on the lattice.
â This would allow us to model the low-l region ...

â ... and also investigate the implications of the singularity
resolution.
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Plan

â Discretize the continuum model.

â Find the massless point.

â Find the energy-momentum tensor.

â Compute its 2-point function.

â Compare with Planck data.
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Massless point

â We need to simulate a massless theory.
â This requires introducing a bare mass δ2

m and fine tune its value
so that the theory becomes massless in the continuum limit.

â In perturbation theory δ2
m can be computed order by order:

δ2
m = −λZ0

a

(
2N − 3

N

)
+ λ2

(
N2 − 6 +

18
N2

)
D +O(λ3)

where Z0 = 0.252728(6) and D is a 2-loop integral.
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Massless point: perturbation theory

â The 2-loop integral however is IR divergent.
â It was argued in [Jackiw,Templeton (1981)][Appelquist, Pisarski(1981)]

that these type of theories are non-perturbatively IR finite:
the dimensionful coupling constant effectively acts as an IR
regulator.

â As we will see, our results led support to this general claim.

â In our case we are interested in the non-perturbative evaluation
of the 2-point function, so we need to know how to find the
massless point non-perturbatively.
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Massless point: non-perturbative

â If the mass in the continuum limit is positive then 〈Mn〉 = 0 for
any n, where M =

∑
~n φ~n.

â If the mass in the continuum limit is negative we are in the
spontaneously broken phase, 〈Tr Mn〉 6= 0.

â To find the massless point one may compute the Binder
Cumulant 〈(TrM2)〉2/〈TrM4〉 for different lattice sizes and find the
intersection point.
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Binder Cumulant SU(2) [PRELIMINARY]

0.067 0.066 0.065 0.064 0.063 0.062 0.061 0.060
m2

1.2
1.4
1.6
1.8
2.0

〈 m2
〉 2 〈 m4
〉

0.0630 0.0625 0.0620 0.0615 0.0610 0.0605
m2

1.45

1.55

1.65

〈 m2
〉 2 〈 m4
〉

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
1/L

0.063
0.062
0.061
0.060
0.059

m
c m∞

c |lin. =-0.06244(13)
m∞
c |quad.=-0.06230(23)

2-loop PT
1-loop PT

(8,16)(16,32)(32,64)(64,128)

SU(2)
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Binder Cumulant SU(3) [PRELIMINARY]

0.085 0.084 0.083 0.082
m2

1.5
1.6
1.7
1.8
1.9
2.0
2.1

〈 m2
〉 2 〈 m4
〉

0.0845 0.0840 0.0835 0.0830
m2

1.80

1.85

1.90

1.95

2.00

〈 m2
〉 2 〈 m4
〉

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
1/L

0.084

0.083

0.082

m
c m∞

c |quad.=-0.08346(22)
2-loop PT
1-loop PT

(8,16)(16,32)(32,64)(64,128)

SU(3)
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Binder Cumulant SU(4) [PRELIMINARY]

0.094 0.093 0.092 0.091 0.090 0.089
m2

2.0

2.5

3.0

3.5

4.0

〈 m2
〉 2 〈 m4
〉

0.0904 0.0902 0.0900 0.0898 0.0896 0.0894 0.0892
m2

2.5

2.7

2.9

〈 m2
〉 2 〈 m4
〉

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
1/L

0.092

0.090

0.088

0.086

m
c m∞

c |lin. =-0.090378(22)
m∞
c |quad.=-0.090351(60)

2-loop PT
1-loop PT

(8,16)(16,32)(32,64)(64,128)

SU(4)
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Energy momentum tensor

â Since the lattice breaks Poincaré invariance, the energy
momentum tensor is not automatically conserved and may mix
with other operators.

â In our case, the energy momentum tensor can mix with 5
operators.

â The correct operator is found by imposing the conservation Ward
identity:

〈∂µTµν(x)φ(x1) · · ·φ(xk)〉 =

k∑
i=1

δ(x− xi) ·
∂

∂xνi
〈φ(x1) · · ·φ(xk)〉 ,

â Still in progress ....
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2-point functions

â Compute 〈TT〉 for different values of N to extract the large N
behavior.

â Consider g2
eff = λN/q� 1 and check with perturbative results.

â Consider g2
eff ∼ 1 and compare with Planck data.
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Preliminary results

â Compute C2 = 〈Trφ2(p)Trφ2(−p)〉:

0

0.005

0.01

0.015

0.02

0 0.5 1 1.5 2 2.5 3 3.5 4

a
C

2

1/geff.

1-loop
2-loop

2-loop, massless limit
2-loop, massless & large-N limits

data L = 64
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Conclusions

â Holography offers a unified framework for discussing the very
Early Universe:

à Strongly couple QFT: conventional inflation.

à Perturbative QFT: new non-geometric models.
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Conclusions

â Perturbative holographic models provide an excellent fit to
Planck data and are competitive to ΛCDM.

â The data rules out mostly fermionic theories.

â The data selects YM theory coupled to non-minimal scalars with
quartic potential as the dual QFT.
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Outlook

â At very low q we need to go beyond leading order/need
non-perturbative information.

â Use Lattice to compute the relevant QFT observables.
â ... on-going ... for a toy model without the YM field.

â If successful, this “toy model” would provide an incredibly simple
model for the very early Universe.
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