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Lattice QCD

Ken Wilson’s 1974 paper  
                “Confinement of Quarks” 

started Lattice QCD



Wilson Renormalization Group

LQCD/LQFT calculations would be meaningless without understanding 
universality of critical behavior. 
   

Wilson and Kogut’s review is still a treasure trove



Start with the action               ; 

2 steps of Wilson Renormalization Group

S(φ ,g0)
Step 1: Introduce “blocked fields”

position space: 1 momentum space: 1

fΦ(x)= f
s
∑ (s)φ(x + s) Φ(p)= f (p)φ(p)~e−p2/tφ(p)

The goal is, as described by Wilson-Kogut in Ch. 11, is to remove high 
momentum modes

1  Keep the normalization the blocked
fields the same as the original



2 steps of Wilson Renormalization Group

Step 2: rescale Λcutoff → Λcutoff /b

Φb(xb)=Φ(bx) Φb(pb)=Φ(p/b)

Z = D∫ φe−S(φ ,g0 ) = D∫ φDΦb δ∏ (Φb −Φ)e
−S(φ ,g0 ) = D∫ Φbe

−S(Φb ,g′ )

Integrate out the original fields. The partition function is unchanged

but the action changes 
S(φ ,g0)→ S(φ ,g′)

The lattice correlation length ξ → ξ /b  
- the the RG flow either runs to the ξ=0 trivial FP or  
- stays on the critical ξ=∞ surface where it can run to a FP



The topology of the action space

critical surface with 3 Fps

W-K, Ch 12



The topology of the action space

critical surface with 3 Fps

W-K, Ch 12

Are there FPs of the RG transformation? 
How many?

What is universal? 



The exponent η

A linear RG transformation does not have a FP unless the fields are 
normalized with the exponent η (wave function renormalization)

Φb(xb)=Φ(bx)b−η/2

position space: momentum space
Φ(x)= f

s
∑ (s)φ(x + s) Φ(p)= f (p)φ(p)~e−p2/tφ(p)

1  Keep the normalization the blocked
fields the same as the original

φ(x)φ(x + s)∝ s−(d−2+η )
Correlation function on the critical surface ( ξ = ∞)

Φb(
x
b
)Φb(

x
b
+ s
b
)∝ s−(d−2+η )b(d−2+η

Satisfied only if 
Φb(pb)=Φ(p/b)b

−dφ+η/2

Without the η terms there is no FP!



Linear RG: 

Φb(xb)=Φ(bx)b−η/2

position space: momentum space
Φb(pb)=Φ(p/b)b

−dφ+η/2



Linear RG: 

Φb(xb)=Φ(bx)b−η/2

position space: momentum space

Goal: find the FP action and 
study its properties analytically

-W-K discusses this in Ch. 11
-Polchinski’s exact RG is similar

  (but no rescaling)1
-Functional or exact RG studies 

Φb(pb)=Φ(p/b)b
−dφ+η/2

1 The sources in the functional integral are 

restricted to p/b, providing effective rescaling



Linear RG: 

Φb(xb)=Φ(bx)b−η/2

position space: momentum space

Goal: find the FP action and 
study its properties analytically

-W-K discusses this in Ch. 11
-Polchinski’s exact RG is similar

  (but no rescaling)1
-Functional or exact RG studies 

Goal: verify the existence of the
 FP and study critical exponent
 numerically
- R. Swendsen’s MCRG

PhysRevLett.42.859,1979

Φb(pb)=Φ(p/b)b
−dφ+η/2

1 The sources in the functional integral are 

restricted to p/b, providing effective rescaling



Monte Carlo Renormalization Group

Action Configuration ensemble
MC 

block RG 

S(φ ,g0) {φ}

{Φb}
MC 

RG transformed expectation values can be calculated without explicit 
knowledge of the blocked action

PhysRevLett.42.859,1979

S(φ ,g′)

〈O(φ)〉S ′ = 〈O(Φb(φ))〉S



Monte Carlo Renormalization Group

Swendsen calculated the linearized RG matrix from simple expectation 
values

The method did not become popular: 
- systematical errors are hard to control 
- at every RG step L → L / 2 : dof drop rapidly 

only a few discrete RG steps are possible

PhysRevLett.42.859,1979

Kα : coupling
Sα :  operator
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Gradient flow : a new approach

GF is a continuous smoothing that removes short distance fluctuations 
For scalar model : 

free flow : 

That looks just like Ch. 11 of Wilson-Kogut!  

Φ(p)= N e−p
2/tφ(p)

Luscher  Comm.Math Phys 293, 899 (2010)

∂tφt = −(∂φ S(φt ))φt , φt=0 =φ

From now on ’t’ stands for gradient flow time; 
space-time is denoted by x0
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Gradient flow : a new approach

GF is a continuous smoothing that removes short distance fluctuations 
For scalar model : 

free flow : 

That looks just like Ch. 11 of Wilson-Kogut!  

Gauge flow: 
Fermions evolve on the gauge background: 

The flow action does not have to match the model 

Φ(p)= N e−p
2/tφ(p)

Luscher  Comm.Math Phys 293, 899 (2010)

∂tVt = −(∂SW[Vt ])Vt , V0 =U
∂t χt = Δ[Vt ]χt , χ0 =ψ

Luscher JHEP 04 123 (2013) 

∂tφt = −(∂φ S(φt ))φt , φt=0 =φ



Gradient flow : a new approach

GF is a continuous smoothing that removes short distance fluctuations 
For scalar model : 

free flow : 

That looks just like Ch. 11 of Wilson-Kogut!  

Gauge flow: 
Fermions evolve on the gauge background: 

The flow action does not have to match the model 

Φ(p)= N e−p
2/tφ(p)

Luscher  Comm.Math Phys 293, 899 (2010)

∂tVt = −(∂SW[Vt ])Vt , V0 =U
∂t χt = Δ[Vt ]χt , χ0 =ψ

Luscher JHEP 04 123 (2013) 

∂tφt = −(∂φ S(φt ))φt , φt=0 =φ

Is GF  an RG transformation?



GF vs RG

GF misses two important attributes of an RG transformation: 
– there is no rescaling Λcut  → Λcut /b 
– linear transformation does not include the  term 

Both issues can be solved 

b−η/2

Polchinski Nucl. Phys. B231, 1984

Polchinski’s formulation in momentum 
space  never had rescaling



GF vs RG

GF misses two important attributes of an RG transformation: 
– there is no rescaling Λcut  → Λcut /b 
– linear transformation does not include the  term 

Both issues can be solved 

b−η/2

Polchinski Nucl. Phys. B231, 1984

Polchinski’s formulation in momentum 
space  never had rescaling

Could GF be used as an RG transformation?



GF vs RG
Original Φ fields Flowed Φt fields

- Rescale with b : x → x/b 
                we have not even introduced b ! 
   b is  independent of flow time but natural b2 ~ t 
- Correct normalization: 
Do we need to ‘decimate’ or drop the unwanted the degrees of  
freedom? 

GF

Φb = b
−η/2φt



GF vs RG
Original Φ fields Flowed Φt fields

Long distance correlators do not need decimation: 

At the level of expectation values this is a proper RG transformation 
Gain: t and b are continuous  and there is no loss of dof 
Natural choice is b2 ~ t ; different choices will lead to different Fps but 
same IR physics - except pathological cases 

〈O(0,Φb)O(x /b,Φb)〉 = 〈O(0,φt )O(x ,φt )〉b
−nOη

GF
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Why long distance correlator?

A correlator of an operator decays exponentially at large distances 

Under an RG transformation of scale change b: 

where  
Only the amplitudes change! 

The form of the correlator is valid for any b - integer or not -  
when the excited states have dies out 

C(x0;gi ;a)= 〈O(0)O(x0)〉gi → Ae−MOx0 , x0→∞

Cb(x0 /b; ′gi )= b
2ΔOC(x0;gi )→ A′e−(bMO )(x0/b)

ΔO = dO +γ O



GF vs RG
Original Φ fields Flowed Φt fields

GF

At the level of expectation values GF is a proper RG transformation 
for long distance quantities 

It won’t work for Swendsen’s method, that requires short distance  
operators



GF vs RG
Original Φ fields Flowed Φt fields

GF

At the level of expectation values GF is a proper RG transformation 
for long distance quantities 

It won’t work for Swendsen’s method, that requires short distance  
operators



Application - I : anomalous dimensions 

A correlator of an operator decays exponentially at large distances 

Under an RG transformation with scale change b: 

The ratio is independent of x0 and predicts the scaling dimension 

and predicts the scaling dimension 
  

Cb(x0 /b; ′gi )= b
2ΔOC(x0;gi )→ A′e−(bMO )(x0/b)

RO =
Cb(x0 /b; ′gi ;a)
C(x0;gi ;a)

= A
′

A
= b2ΔO

ΔO = dO +γ O

C(x0;gi )= 〈O(0)O(x0)〉gi → Ae−MOx0 , x0→∞

How about relevant operators? They better be zero, otherwise the RG 
flow runs away from the FP — anomalous dimensions become non-

universal



Application - I : anomalous dimensions 

ΔO = dO +γ O

How about relevant operators?  
They better be zero, otherwise the RG flow runs away from the FP  
— anomalous dimensions become non-universal

RO =
Cb(x0 /b; ′gi ;a)
C(x0;gi ;a)

= A
′

A
= b2ΔO



Application - I : anomalous dimensions 

Flowed correlators contain the η exponent 

The η exponent is determined by requiring there is a FP: 
If an operator has no anomalous dimension, its correlator ratio is 

This could be 
- non - composite operator : 
-  symmetry-protected operator: axial charge                      or 

conserved vector   
 

Rt = b
dO+nOη/2

ROt =
Ct(x0)
C(x0)

= bηnO
Cb(x0 /b; ′gi ;a)
C(x0;gi ;a)

= b2ΔO+ηnO = t ΔO+nOη/2

O =φ(x)
A0 =ψγ 5γ 0ψ



Numerical example:

SU(3) gauge with 12 fundamental fermions 

The model is controversial but there is growing evidence that it is 
conformal 

Dietrich, Sannino
Schwinger-Dyson argumenst 
suggest the conformal window 
opens around Nf=12 
Numerical results put the  
conformal boundary lower

Cheng PhysRevD.90.014509
Cheng JHEP07(2013)061
Lombardo JHEP12(2014)183
AH,D.Schaich JHEP02(2018)132
Fodor PhysRevD.94.091501



SU(3) gauge with Nf=12 fundamental flavors

    RG β function (step scaling function)

AH,D.Schaich JHEP02(2018)132

Staggered Domain wall

AH, C. Rebbi, O. Witzel



SU(3) gauge with Nf=12 fundamental flavors

– mass anomalous dimension 𝛾m =0.23-0.25 from perturbation 
theory, FSS numerical studies, Dirac eigenmodes 

– the gauge coupling walks very slow - substantial scaling violation 
effects are expected 

– baryon and tensor anomalous dimension would be interesting but 
no predictions exists 



 Nf=12 numerical study

We use staggered fermions  

- configurations with m=0.0025 (practically m=0) exist on 
               and                volumes from FSS;  
  gauge coupling β=4.0,5.0,5.5,5.75, 6.0   

- chiral symmetry protects the axial charge:  
  it has no anomalous dimension → its correlator predicts η 

- numerically much easier to calculate a correlator where only the 
source is flowed (Luscher JHEP 04 123 (2013) ) 

- the ratio of ratios predict 

243 ×48 323 ×64

Rt
O(x0)=

〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈A(0)At(x0)〉

)nO/nA = t γ O

A0 =ψγ 0γ 5ψ

γ O

Cheng PhysRevD.90.014509

A. Carosso, AH,E. Neil



 Nf=12 numerical study

Unfortunately we use staggered fermions  

chiral symmetry is different from continuum (might even be in different 
universality class) 

fermion operators couple to their parity partner:             and  
  are in the same channel 

– these states have the same anomalous dimension and (finite 
volume) mass  

– the ratios oscillate  (much harder to determine anomalous 
dimensions) 

axial charge still protected,                     has no anomalous dim.  

Sst =
1
2 χ
n ,µ
∑ (n)(−1)∑ν<µ nν [Un ,µχ(n+ µ)−Un ,−µχ(n− µ)]+m χ(n)

n
∑ χ(n)

ψ Γψ ψ Γγ 0γ 5ψ

A0 =ψγ 0γ 5ψ



Ratio of ratios - pseudo scalar 

Rt
O(x0)=

〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈A(0)A(x0)〉
〈A(0)At(x0)〉

)nO/nA = t γ O
has no x0 dependence asymptotically

Oscillation due to excited  
states and operator overlap 
    —> limits max t 

flow time dependence:  
anomalous dimension

pseudoscalar



Volume corrections - PS

Finite volume corrections are significant;  
- approximate correction based on RG arguments (dependence is t/L2 )

R(g,s2t ,s2L)= R(g,s2t ,sL)+ s−γ O(R(g,t ,sL)−R(g,t ,L))+h.o.

Flow time dependence indicates slowly running gauge coupling



Flow time and bare coupling corrections - PS

The flow has to reach the IRFP to predict the universal exponent 
At finite flow time (away from the IRFP) there are corrections. 
Extrapolation:

As t→∞

error: systematic + statistical 
consistent with other methods

γ O + (aβµ
ω1 +bβµ

ω2 )
β
∑ 2 exponents (leading and nlo) 

amplitudes depend on β

γ m =0.24(3)



Systematical errors - PS

To check systematical erros:
-  Add/remove first/last flow time, 
-  add/remove β, 
- change fit form:

     𝛾m is stable
γ m =0.24(3)As t→∞ γ m =0.24(3)

strong gauge coupling
dependence -
shows slow running



Vector channel

Oscillation pronounced but little  
flow time dependence  

Fit as

vector - tensor

Ate
−m1x0 +Bte−m2x0

Ae−m1x0 +Be−m2x0
=
At
A
1+Bt /Ate

−Δmx0

1+B /Ae−Δmx0

2 anomalous dimensions,  from At/A and Bt/B 
both vanish within errors



Nucleon channel

nucleon - Lambda

Oscillation suppressed, 
little flow time dependence, 
limited x0 range

Anomalous dimension is small 
𝛾N = 0.006(6) 
(perturbative: 𝛾N = 0.09 ) 

Will not work for partial composite models …. 



Things to do:

– Finite volume effects deserve more attention (i.e. larger volumes, 
longer time direction) 

– Staggered fermions are a poor choice here: DW or Wilson are 
more promising 

– Nf=10 flavors could have larger anomalous dimensions (DW or 
Wilson needed!) 

– Anyone with existing conformal configurations: try it! (but need 
massless or nearly massless configs) 

– SYM ? 
– Nf=2 or 4 : reproduce perturbative mass anomalous dimension, try 

nucleon 

– 3D scalar model: might not compete with FSS but can predict 
anomalous dimension of irrelevant operators



Summary

Gradient flow can be used as an RG transformation if 
– linear fields are properly normalized 
– rescaling of dimensional variables are taken care of in  

defining expectation values 
– GF can be flowed with any (reasonable) action 
– b2 ~ t to connect flow time and RG scale - continuous! 

Powerful approach to measure anomalous dimensions;  
Other applications where physics can be extracted from long distance  
correlators?


