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Astronphysical
Numerical GR in 4D

* Understanding the strong field regime of GR

* [heoretical waveform models are routinely used for
LIGO detections

* Challenges:
- Simulating theories beyond GR

- Neutron stars



Astronphysical
Numerical GR in 4D

 [wO main approaches:
1. Generalised harmonic coordinates [Pretorius]

2 _ BSS N fOrm U |atiOﬂ [Baumgarte&Shapiro;Shibata&Nakamura;

Baker et al.; Campanelli et al.]

 Numerical methods
- Pseudospectral/finite differences

- Finite grid hierarchies/Adaptive mesh refinement
(AMR)



Beyond Astronphysical
Numerical GR




Beyond Astronphysical
Numerical GR

* Higher dimensional asymptotically flat/Kaluza Klein
Spaces

— understand fundamental aspects of gravity

* Asymptotically anti-de Sitter (AdS) spaces

— holography

* Asymptotically de Sitter (dS) spaces

— cosmology



Outline of the talk

e CCZ4 evolution

e (Generalised harmonic evolution

e Conclusions and outlook



Disclaimer:

* The characteristic formulation has been very
successful in (Poincare) ADS

See P. Chesler and L. Yaffe JHEP 1407 (2014) 086
larXiv: 1309.1439]



CCZ4 evolution



Time evolution iIn GR

e Use d+1 split:

ds® = —a? dt? + ~;;(dz’ + 3" dt)(dz? + B dt)

1
* Evolve 7ij and K;; = —§£n%;j

» Specify evolution equations for « and f3*

n®
I vi; : Induced metric on X
t = const. | |
) / / n = — (9, — 5'9;) normal vector to X
Q

1 .
K;; = —3 Ln7i; : extrinsic curvature

* The ADM equations are only weakly hyperbolic!



B S S N [Baumgarte, Shapiro, Shibata, Nakamura]

o Strongly hyperbolic variant of ADM

Separate out conformal factor and trace
(Vij> Kij) = (X, Vigr Aijy K)
—1/d ~ 1 TF
X =7 / Yij = XYVi; Aij = XKij

Evolve contracted connection separately

(X, Fij, Aij, K, T")  T" = ﬁjkfﬁk

(9,5X —
OtYij

875147;3' —
0y KK
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C C Z ‘ [Gundlach et al.; Hilditch et al.; Alic et al.]

* |In BSSN the Hamiltonian constraint does NOT propagate

» The CCZ4 system gives to all the constraints a finite
speed of propagation and damps them

Rop +VoZpy + Vi Zy — k1 |ng Zp +1p Zo — (1 + K2) gapn°Z:| = 0

/‘ ~11

constraints propagate

—11.5 F
constraints are

exponentially damped

log [|H(#) /o

—12 F

BSSN ——
CCZ4 ——
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Puncture gauge

» Absorb some coordinate singularities in y =y~ /¢

* Avoid physical singularities

21 1




Why simulations the astrophysical
setting are harder?

e Separation of scales

e Extended, dynamic singularity

* Far from conformally ftlat

 No star-shaped AH

* \ery expensive
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Adaptive mesh refinement
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Adaptive mesh refinement
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Why simulations the astrophysical
setting are harder?

New gauge,

e Separation of scales _ _
Adaptive mesh refinement

* Extended, dynamic singularity New gauge,
» Far from conformally flat Shock capturing

 No star-shaped AH

* \ery expensive



Shock capturing

e Features cannot be resolved

 Automatically triggered artificial viscosity




Why simulations the astrophysical
setting are harder?

New gauge,

e Separation of scales _ _
Adaptive mesh refinement

» Extended, dynamic singularity New gauge,

Shock capturing

o Far from conformally flat

Parametric description
of the AH

 No star-shaped AH

* \ery expensive



AH in numerical GR

* Apparent horizons

The traditional approach in numerical relativity is to assume that
the AH satisfies:

This assumption fails in the during the non-linear stages of the
evolution of certain instabilities

= R(0) fails to be single-valued!



AH in numerical GR

* Apparent horizons

- Qur solution: consider the AH as a parametric surface

(o(u), y(u), 2(u) H

- Equations to solve:
O = (7" — 57 ") (=kgp — Kap) =0
AHU — H(U)

= manifestly elliptic



Why simulations the astrophysical
setting are harder?

New gauge,

e Separation of scales _ _
Adaptive mesh refinement

» Extended, dynamic singularity New gauge,

Shock capturing

e Far from conformally flat

Parametric description
of the AH

 No star-shaped AH

e \ery expensive » Supercomputers
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Some results: black rings







Rather thin rings

 Competition of GL and new “elastic” mode.

 Endpoint: Myers-Perry black hole







Very thin rings:

Black strings _
Spherical

black holes



Some results: black holes
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10,000 thinner than the original black hole!!!



Generalised harmonic
evolution



Setup

e Evolution equations: generalised harmonic

1
_ L apB _ ,oB
O — 2 g g,ul/,ozﬁ g ’(lugl/)aaﬁ

- H(NW) T HOé Fa,uv o Faﬁ,u FBO{V
—k1(2n,Ch) — (1 + K2) g N Cy)

2 A |
D_lguV_Sﬂ-(T,ul/ D_lTag,ul/>

Hu :fu(g)

with ¢, = H,, — Uz, =0



Boundary conditions

 Decompose the metric into a pure AdS piece and a
deviation:

Juv — gﬁfls + hlul/

* Poincare patch of AdS:

1
ds® = — (—dt® + dz* + di?)
<

 Boundary conditions at z=0:
ho. = 2777 fo.
hei =27 fa
hij = 2772 fi

SOZZngo



Gauge choice

 Expand the metric in a power series near z=0:
hyw =z Rl + 22 W2 + ...

 Expand the field equations near z=0:

~o

P =222 + HM) + .
R = 272(4nl) + 300 —ax,nt) —2 HWY + ..
hgjl) =222 — WY 4 ...

~

~

 EXpand constraint equations near z=0:

CO = (—4h) — D —aD + gDy 4+ =0



Comment: global AdS

* Consider asymptotically global AdSs spacetimes (with
SO(3)) symmetry in Cartesian coordinates

ds® = gy dt® + guw dr” + gyy dy* + goo Ay + 2(ga dt dx + gy dt dy + gay dzz dy)

 AdSs in Cartesian coordinates: = = pcosy 1y = psiny

1
ds® = T —f(p)dt® + 4(da” + dy® + y*dy]  Flp) = (1 — p?)? + 4p°

* Treat the sphere at infinity as a "Lego” sphere



Examp\e: collapse into planar black hole




t=0.00

[ ]
1. 77e-04 1.78e+00



Examp\e: Finite black hole collisions in Poincare AdS
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Examp\e: non-spherical collapse in global AdS




t=0.02343750




Conclusions and outlook



 Numerical simulations in higher dimensions/AdS pose new
challenges:

- Multiple scales
- Boundary conditions

- Singularities

 One can reuse and expand the techniques/infrastructures
developed In the traditional astrophysical setup

» |Lots of open problems: black hole instabilities, collisions,
turbulence...



Thank you for your attention!



