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Astronphysical  
Numerical GR in 4D
• Understanding the strong field regime of GR

• Theoretical waveform models are routinely used for 
LIGO detections

• Challenges: 

- Simulating theories beyond GR 

- Neutron stars



• Two main approaches: 

1. Generalised harmonic coordinates 

2. BSSN formulation [Baumgarte&Shapiro;Shibata&Nakamura; 
Baker et al.; Campanelli et al.]

[Pretorius]

• Numerical methods 

- Pseudospectral/finite differences 

- Finite grid hierarchies/Adaptive mesh refinement 
(AMR)

Astronphysical  
Numerical GR in 4D



Beyond Astronphysical  
Numerical GR 



Beyond Astronphysical  
Numerical GR
• Higher dimensional asymptotically flat/Kaluza Klein 

spaces 

→ understand fundamental aspects of gravity

• Asymptotically anti-de Sitter (AdS) spaces 

→ holography

• Asymptotically de Sitter (dS) spaces 

→ cosmology



Outline of the talk

• CCZ4 evolution

• Generalised harmonic evolution

• Conclusions and outlook



Disclaimer:

• The characteristic formulation has been very 
successful in (Poincare) AdS

See P. Chesler and L. Yaffe JHEP 1407 (2014) 086  
[arXiv: 1309.1439]



CCZ4 evolution



Time evolution in GR 
• Use d+1 split:

ds2 = �↵2 dt2 + �ij(dx
i + �i dt)(dxj + �j dt)
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• The ADM equations are only weakly hyperbolic!

• Evolve       and �ij Kij = �1

2
Ln�ij

• Specify evolution equations for     and ↵ �i



• Strongly hyperbolic variant of ADM 

- Separate out conformal factor and trace 

- Evolve contracted connection separately

BSSN [Baumgarte, Shapiro, Shibata, Nakamura]
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CCZ4
• In BSSN the Hamiltonian constraint does NOT propagate

[Gundlach et al.; Hilditch et al.; Alic et al.]

• The CCZ4 system gives to all the constraints a finite 
speed of propagation and damps them

Rab +raZb +rbZa � 1 [na Zb + nb Za � (1 + 2) gab n
cZc] = 0

constraints propagate
constraints are  

exponentially damped
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Puncture gauge
• Absorb some coordinate singularities in 
• Avoid physical singularities
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Why simulations the astrophysical  
setting are harder?
• Separation of scales

• Extended, dynamic singularity
• Far from conformally flat

• No star-shaped AH

• Very expensive

R

rS2



• Separation of scales

• Extended, dynamic singularity
• Far from conformally flat

• No star-shaped AH

• Very expensive

New gauge,
Adaptive mesh refinement

Why simulations the astrophysical  
setting are harder?



Adaptive mesh refinement



Adaptive mesh refinement



• Separation of scales

• Extended, dynamic singularity
• Far from conformally flat

• No star-shaped AH

• Very expensive

New gauge,
Adaptive mesh refinement

New gauge,
Shock capturing

Why simulations the astrophysical  
setting are harder?



Shock capturing
• Features cannot be resolved
• Automatically triggered artificial viscosity



• Separation of scales

• Extended, dynamic singularity
• Far from conformally flat

• No star-shaped AH

• Very expensive

New gauge,
Adaptive mesh refinement

New gauge,
Shock capturing

Parametric description
of the AH

Why simulations the astrophysical  
setting are harder?



AH in numerical GR
• Apparent horizons

- The traditional approach in numerical relativity is to assume that 
the AH satisfies:

r = R(✓)
✓

- This assumption fails in the during the non-linear stages of the 
evolution of certain instabilities

➡         fails to be single-valued!R(✓)



• Apparent horizons

- Our solution: consider the AH as a parametric surface

- Equations to solve:

⇥ = (�ab � sa sb)(�kab �Kab) = 0

⇒ manifestly elliptic

(x(u), y(u), z(u))
u

�Hu = H(u)

AH in numerical GR



• Separation of scales

• Extended, dynamic singularity
• Far from conformally flat

• No star-shaped AH

• Very expensive

New gauge,
Adaptive mesh refinement

New gauge,
Shock capturing

Supercomputers

Parametric description
of the AH

Why simulations the astrophysical  
setting are harder?
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Some results: black rings





• Competition of GL and new “elastic” mode. 

• Endpoint: Myers-Perry black hole

Rather thin rings





Very thin rings: 

Black strings
Spherical 

black holes



Some results: black holes





10,000 thinner than the original black hole!!!



Generalised harmonic 
evolution



Setup
• Evolution equations: generalised harmonic
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Boundary conditions
• Decompose the metric into a pure AdS piece and a 

deviation:
gµ⌫ = gAdS

µ⌫ + hµ⌫

• Poincare patch of AdS:

ds2 =
1

z2
(�dt2 + dz2 + d~x2)

• Boundary conditions at z=0:
hzz = zD�2 fzz

hzi = zD�1 fzi

hij = zD�2 fij

' = zD f'



Gauge choice
• Expand the metric in a power series near z=0:

hµ⌫ = z h(1)
µ⌫ + z2 h(2)

µ⌫ + . . .

• Expand the field equations near z=0:
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• Expand constraint equations near z=0:
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• AdS5 in Cartesian coordinates:

ds2 =
1

(1� ⇢2)2
[�f(⇢)dt2 + 4(dx2 + dy2 + y2d⌦2

(2)] f(⇢) = (1� ⇢2)2 + 4⇢2
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2
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• Consider asymptotically global AdS5 spacetimes (with 
SO(3)) symmetry in Cartesian coordinates

Comment: global AdS

• Treat the sphere at infinity as a “Lego” sphere



Example: collapse into planar black hole





Example: Finite black hole collisions in Poincare AdS





Example: non-spherical collapse in global AdS





Conclusions and outlook



• Numerical simulations in higher dimensions/AdS pose new 
challenges: 

- Multiple scales 

- Boundary conditions 

- Singularities

• One can reuse and expand the techniques/infrastructures 
developed in the traditional astrophysical setup

• Lots of open problems: black hole instabilities, collisions, 
turbulence…



Thank you for your attention!


