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A particle, a string and a membrane
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The action functional

Sparticle = �m

Z

d⌧proper = �m

Z

dt
p

1� v2.

For small (non-relativistic) velocities this gives

Sparticle = �m

Z

dt +

Z

dt
mv2

2
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Movement in a generic background

Nambu-Goto particle action

Sparticle = �m

Z

dt

r

�gµ⌫
dXµ

dt

dX ⌫

dt

(signature {�,+, · · · ,+}). The equations of motion give us the
geodesic equation.

Using the Lagrange multiplier h we have

Polyakov particle action

S =
1

2

Z

dt{h�1gµ⌫
dXµ

dt

dX ⌫

dt
� hm2}

Eliminating h with its saddle point, h =
q

�gµ⌫ẊµẊ ⌫/m, recovers
the Nambu form.

The Non-perturbative Phase Diagram of the BMN Matrix Model



Coupling to an electromagnetic field

Scharged�particle = �m

Z

dt

r

�gµ⌫
dXµ

dt

dX ⌫

dt
� q

Z

dXµ

dt
Aµdt
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We can repeat this exercise for a string

SNG = � 1

2⇡↵0

Z

d�d⌧
p�detG Gµ⌫ = @µX

M@⌫X
NgMN

or the Polyakov form, with the Lagrange multiplier metric hµ⌫ ,

SP = � 1

4⇡↵0

Z

⌃

d�d⌧
p�hhµ⌫Gµ⌫

The string is very special in that it is a conformally invariant action.
Again one can couple the string to e.g. an RR 2-form to get the

SNG � q

Z

@µX
M@⌫X

N✏µ⌫BMN
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Quantisation

We can quantise the particle or string in either a path integral or
Hamiltonian formulation and the results are well appreciated. Both
can be generalised to supersymmetric versions with the string
leading to string theory and conformal field theory.
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Membrane propagating in spacetime
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Membrane Actions

Nambu Goto—the simplest

SNG =
R

M dp+1x
p�detG Gµ⌫ = @µXM@⌫XNgMN

Higher form gauge field on the world volume

Sp�form = �
Z

M
1

(p + 1)!
✏µ1

...µp+1Cµ
1

...µp+1

Cµ
1

...µp+1

= @µ
1

XM
1 . . . @µp+1

XMp+1CM
1

...Mp+1

We can add
• an anti-symmetric part to Gµ⌫ to get a Dirac-Born-Infeld action.
• extrinsic curvature terms.
Supersymmetric SNG exist only in 4, 5, 7 and 11 dim-spacetime.
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From Membranes to Matrices (à la Hoppe)

The Membrane action, Polyakov form

S = �T

2

Z

M
d3�

p�h
⇣

h↵�@↵X
µ@�X

⌫⌘µ⌫ � ⇤
⌘

Choose ⇤ = 1 (rescale X a and T ), and for membrane topology
R⇥ ⌃ use the gauge h

0i = 0 and h
00

= �4

⇢det(hij) .

The action becomes

S =
T⇢

4

Z

dt

Z

⌃

d2�

✓

ẊµẊ ⌫⌘µ⌫ � 4

⇢2
det(hij)

◆

The Non-perturbative Phase Diagram of the BMN Matrix Model



Noting that

det(@iX a@jX bhab) =
1

p!{X a
1 ,X a

2 . . . ,X ap}{X b
1 ,X b

2 . . . ,X bp}ha
1

b
1

ha
2

b
2

. . . hapbp
{X a

1 ,X a
2 . . . ,X ap} := ✏j1,j2,...,jp@j

1

X a
1@j

2

X a
2 . . . @jpX

ap

S =
T⇢

4

Z

dt

Z

⌃

d2�

✓

ẊµẊ ⌫⌘µ⌫ � 4

⇢2
det(hij)

◆

becomes

S =
T⇢

4

Z

dt

Z

⌃

d2�

✓

ẊµẊ ⌫⌘µ⌫ � 4

p!⇢2
{X a

1 ,X a
2 . . . ,X ap}2

◆
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In 2-dim det(hij) can be rewritten using {f , g} = ✏ij@i f @jg as

S =
T⇢

4

Z

dt

Z

⌃

d2�

✓

ẊµẊ ⌫⌘µ⌫ � 4

⇢2
{Xµ,X ⌫}2

◆

and the constraints become

Ẋµ@iXµ = 0 =) {Ẋµ,Xµ} = 0

and ẊµẊµ = � 2

⇢2
{Xµ,X ⌫}{Xµ,X⌫} .

Using lightcone coordinates with X± = (X 0 ± XD�1)/
p
2 with

X+ = ⌧ we can solve the constraint for Ẋ� and Legendre
transform to the Hamiltonian to find

S = �T

Z p�G �! H =

Z

⌃

(
1

⇢T
PaPa +

T

2⇢
{X a,X b}2)

With the remaining constraint {Pa,X a} = 0.
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In this scheme functions are approximated by N ⇥ N matrices,
f ! F, and

R

⌃

f ! TrF. The Hamiltonian becomes

H = �1

2
r2 � 1

4

d
X

i ,j=1

Tr[X i ,X j ]2

and describes a “fuzzy” relativistic membrane in d + 1 dimensions.
Note: Much of the classical topology and geometry are lost in the
quantum theory.
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Once we have the Hamiltonian H we can consider thermal
ensembles of membranes whose partition function is given by

Z = Tr
Phys

(e��H)

where the physical constraint means the states are U(N) invariant.

Gauss law constraint

The projection onto physical states is implementing the Gauss law
constraint.— Use gauge field.
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The simplest example of a quantum mechanical model with Gauss
Law constraint in this class is a family of p gauged Gaussians.
Their Euclidean actions are

N

Z �

0

Tr(
1

2
(D⌧X

i )2 +
1

2
m2(X i )2)

D⌧X i = @⌧X i � i [A,X i ].
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Properties of gauge gaussian models

The eigenvalues of X i have a Wigner semi-circle distribution.

At T = 0, we can gauged A away, while for large T we get a
pure matrix model with A one of the matrices.

The entry of A as an additional matrix in the dynamics signals
a phase transition. In the Gaussian case with p scalars it
occurs at

Tc =
m

ln p

The transition can be observed as centre symmetry breaking
in the Polyakov loop.

Bosonic matrix membranes are approximately gauge gaussian
models V. Filev and D.O’C. [1506.01366 and 1512.02536]. Note
they are the zero volume limit of Yang-Mills compactified on T 3

and on closer inspection they exhibit two phase transitions, very
close in temperature.
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Quantum Gravity

At short distances it is expected [Doplicher, Fredenhagen and
Roberts, 1995] that spatial co-ordinates, X a should not commute
[X a,X b] 6= 0 in analogy with [x , p] = i~ in phase space, but
[X a,X b] = i✓ab breaks rotational invariance.

We only need the coordinates to commute at low energies.
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Hand waving à la Polchinski, 2014 (arXiv:1412.5704):
Take each X a to be an N ⇥ N matrix and try

H
0

= Tr(
1

2

p
X

a=1

Ẋ aẊ a � 1

4

p
X

a,b=1

[X a,X b][X a,X b])

The model describes membranes, Hoppe 1982.

S = �T

Z p�G �! H =

Z

(
1

⇢T
PaPa +

T

2⇢
{X a,X b}2)

With the remaining constraint {Pa,X a} = 0.

At low energy, or the bottom of the potential [X a,X b] = 0.

The Non-perturbative Phase Diagram of the BMN Matrix Model



The BFSS model

S
SMembrane

=
R p�G � R

C + Fermionic terms

The susy version only exists in 4, 5, 7 and 11 spacetime dimensions.

BFFS Model — The supersymmetric membrane à la Hoppe

H = Tr(
1

2

9

X

a=1

PaPa � 1

4

9

X

a,b=1

[X a,X b][X a,X b] +
1

2
⇥T�a[X a,⇥])

The model is claimed to be a non-perturbative 2nd quantised
formulation of M-theory.

A system of N interacting D0 branes.

Note the flat directions.
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Finite Temperature Model

The partition function and Energy of the model at finite
temperature is

Z = Tr
Phys

(e��H) and E =
Tr

Phys
(He��H)
Z

= hHi
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The 16 fermionic matrices ⇥↵ = ⇥↵AtA are quantised as

{⇥↵A,⇥�B} = 2�↵��AB

The ⇥↵A are 28(N
2�1) and the Fermionic Hilbert space is

HF = H
256

⌦ · · ·⌦H
256

with H
256

= 44� 84� 128 suggestive of
the graviton (44), anti-symmetric tensor (84) and gravitino (128)
of 11� d SUGRA.

For an attempt to find the ground state see: J. Hoppe et al
arXiv:0809.5270
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Lagrangian formulation

.
The BFSS matrix model is also the dimensional reduction of ten
dimensional supersymmetric Yang-Mills theory down to one
dimension:

SM =
1

g2

Z

dt Tr

⇢

1

2
(D

0

X i )2 +
1

4
[X i ,X j ]2

� i

2
 TC

10

�0D
0

 +
1

2
 TC

10

�i [X i , ]

�

,

where  is a thirty two component Majorana–Weyl spinor, �µ are
ten dimensional gamma matrices and C

10

is the charge conjugation
matrix satisfying C

10

�µC�1

10

= ��µT .
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�Sµ = � 1

2g2

Z �

0

d⌧Tr
⇣

(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
i✏ijkX

iX jX k +
µ

4
 T�123 

◆
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The gravity dual and its geometry

Gauge/gravity duality predicts that the strong coupling regime of
the theory is described by IIA supergravity, which lifts to
11-dimensional supergravity.

The bosonic action for eleven-dimensional supergravity is given by

S
11D =

1

22
11

Z

[
p�gR � 1

2
F
4

^ ⇤F
4

� 1

6
A
3

^ F
4

^ F
4

]

where 22
11

= 16⇡G 11

N = (2⇡lp)9

2⇡ .
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The relevant solution to eleven dimensional supergravity for the
dual geometry to the BFSS model corresponds to N coincident D0
branes in the IIA theory. It is given by

ds2 = �H�1dt2 + dr2 + r2d⌦2

8

+ H(dx
10

� Cdt)2

with A
3

= 0
The one-form is given by C = H�1 � 1 and H = 1 + ↵

0

N
r7

where
↵
0

= (2⇡)214⇡gs l7s .
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Including temperature

The idea is to include a black hole in the gravitational system.

The Hawking termperature provides the temperature of the system.

Hawking radiation

We expect di�culties at low temperatures, as the system should
Hawking radiate. It is argued that this is related to the flat
directions and the propensity of the system to leak into these
regions.
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The black hole geometry

ds2
11

= �H�1Fdt2 + F�1dr2 + r2d⌦2

8

+ H(dx
10

� Cdt)2

Set U = r/↵0 and we are interested in ↵0 ! 1
H(U) = 240⇡5�

U7

and the black hole time dilation factor

F (U) = 1� U7

0

U7

with U
0

= 240⇡5↵05�. The temperature

T

�1/3
=

1

4⇡�1/3
H�1/2F 0(U

0

) =
7

24151/2⇡7/2
(
U
0

�1/3
)
5/2

.

From black hole entropy we obtain the prediction for the Energy

S =
A

4GN
⇠

✓

T

�1/3

◆

9/2

=) E

�N2

⇠
✓

T

�1/3

◆

14/5
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Checks of the predictions

We found excellent agreement with this prediction V. Filev and
D.O’C. [1506.01366 and 1512.02536].
The best current results (Berkowitz et al 2016) consistent with
gauge gravity give

1

N2

E

�1/3
= 7.41

⇣

T
�1/3

⌘

14

5 � (10.0± 0.4)
⇣

T
�1/3

⌘

23

5

+ (5.8± 0.5)T
29

5 + . . .

�5.77T
2

5

+(3.5±2.0)T
11

5

N2

+ . . .
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Probing the dual geometry.

We need a suitable probe to test the dual geometry further.

Using D
4

branes as probes (these adds new fundamental matter).

See: M. Berkooz and M. R. Douglas, “Five-branes in M(atrix)
theory,” [hep-th/9610236].
In IIA string theory this describes a D0� D4 system.
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D4-brames as probes

We use D
4

branes. These adds new fundamental matter fields to
the Hamiltonian.

M. Berkooz and M. R. Douglas, “Five-branes in M(atrix) theory,”
[hep-th/9610236].
In IIA string theory this describes a D0� D4 system.

The more general framework involves Dp � D(p + 4) systems.
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Add new bosonic degrees of freedom �↵ as two complex N ⇥ Nf

matrices

SE
�

=
1

g2

�
Z

0

d⌧ tr
⇣

D⌧ �̄
⇢D⌧�⇢ � �̄↵(�A) �

↵ JAab [X
a,X b]��

+�̄⇢(X i )2�⇢ � 1

2
�̄↵���̄

��↵ + �̄↵�↵�̄
���

◆

.

JA and KA are the SO(3) generators

JAab =
1

2
(LA 4

)ab +
1

4
"ABC (LBC )ab , KA

ab = �1

2
(LA 4

)ab +
1

4
"ABC (LBC )ab

equivalent to the

SO(4) generators (Lab)cd = i(�ad�bc � �ac�bd)
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S� =
1

g2

Z

tr
⇣

i�†D
0

�+ �̄�aX a�

+
p
2 i "↵� �̄�↵�� �

p
2 i "↵� �̄

↵�̄��
⌘

.

where �↵ = P ◆
↵ ◆.

The full model is

SBD = SBFSS + S
�

+ S� .

The lattice discretisation is again delicate but works!
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The Bosonic model (and ADHM Data)

S
bos

= N

Z �

0

d⌧

"

Tr

✓

1

2
D⌧X

aD⌧X
a +

1

2
D⌧ X̄

⇢⇢̇D⌧X⇢⇢̇

�1

4
[X a,X b]2 +

1

2
[X a, X̄ ⇢⇢̇][X a,X⇢⇢̇]

◆

+ tr
�

D⌧ �̄
⇢D⌧�⇢ + �̄

⇢(X a �ma)2�⇢
�

+
1

2
Tr

3

X

A=1

DADA

#

.

where X a = 0 with

DA = �A �
⇢

✓

1

2
[X̄ ⇢⇢̇,X�⇢̇]� ���̄

⇢

◆

= 0

specify ADHM data for Yang-Mills instantons on R4.
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1/D expansion of the bosonic model.

Partition Function

Z =

Z

[dX ][dA]e�N
R �
0

dt Tr( 1

2

(DtX i
)

2)�N
4

�abcd
R �
0

dt X i
aX

i
b X

j
cX

j
d .

The commutator square term can be written as:

Tr[X i ,X j ]2 = Tr
⇣

[ta, tc ][tb, td ]
⌘

X i
aX

i
b X

j
cX

j
d = �abcdX i

aX
i
b X

j
cX

j
d ,

(1)
where ta are SU(N) generators.

Z =

Z

[dX ][dA][dk]e
�N

2

R �
0

dt {Tr(DtX i
)

2

+kabX i
aX

i
b}+N

4

µabcd

�R

0

dt kabkcd

.

(2)
The saddle point approximation for kab gives kab = p2/3�ab. A
detailed 1/D analysis of the membrane model shows there are in
fact two phase transitions.
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For many purposes the e↵ective dynamics of the Bosonic
membrane is given by the action

Gauged Gaussian model

Se↵ ⇡ N

1
Z

�1
dt Tr

✓

1

2
(DtX

i )2 � 1

2
m2(X i )2

◆

.

Perturbing around the gauged gaussian model with

m2 ' p2/3

the bosonic membrane model can be largely solved analytically.
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Results for the flavoured bosonic model

With Nf << N the fundamental fields act as probes on the adjoint
background. The SO(9) symmetry has been broken to
SO(5)⇥ SO(4). In the low temperature phase the system is well
described by a gaussian model with three masses
mt

A = 1.964± 0.003, ml
A = 2.001± 0.003 and

mf = 1.463± 0.001, the adjoint longitudinal and transverse masses
and the mass of the fundamental fields respectively.
Yuhma Asano, Veselin G. Filev, Samuel Kováčik and D. O’C.
arXiv 1605.05597
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Two new observables

r2 =
1

�Nf

Z �

0

d⌧ tr �̄⇢�⇢

and the condensate defined as

ca(m) =
@

@ma

✓

� 1

N�
logZ

◆
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Nf = 1 and N = 10:

0 1 2 3 4 5
0.0

0.5

1.0

1.5

T

!r2 " bo
s

0 1 2 3 4 5
0

5

10

15

20

25

30

T

!!c"!m
# 0

With X a ! X a �ma and for ma = 0 we can look at the
condensate susceptibility:

✓

@c

@m

◆

0

=
2

�

Z �

0

d⌧ tr �̄⇢�⇢ � N

5�

✓

Z �

0

d⌧ tr 2�̄⇢X a�⇢

◆

2

.
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The D4-brane as a probe of the geometry.

The dual adds Nf D4 probe branes. In the probe approximation
Nf ⌧ Nc , their dynamics is governed by the Dirac-Born-Infeld
action:

SDBI = � Nf

(2⇡)4 ↵05/2 gs

Z

d4⇠ e��

q

�det||G↵� + (2⇡↵0)F↵� || ,

where G↵� is the induced metric and F↵� is the U(1) gauge field of
the D4-brane. For us F↵� = 0.

d⌦2

8

= d✓2 + cos2 ✓ d⌦2

3

+ sin2 ✓ d⌦2

4

and taking a D4-brane embedding extended along: t, u, ⌦
3

with a
non-trivial profile ✓(u).
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Embeddings

2 4 6 8 10u
é cosHqL

0.5

1.0

1.5

ué sinHqL

ũ sin ✓ = m +
c̃

ũ2
+ . . . .
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The condensate and the dual prediction

0.5 1.0 1.5 2.0 m
é

0.05
0.10
0.15
0.20
0.25
0.30

-2 cé
T = 0.8 l1ê3

V. Filev and D. O’C. arXiv 1512.02536.

The data overlaps surprisingly well with the gravity prediction in
the region where the D4 brane ends in the black hole.
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Membranes on other backgrounds

There are many options for background geometries:

PP-Wave backgrounds

Two options that lead to massive deformations of the BFSS model

N=1*

Breaks susy down to 4 remaining.

BMN model

Preserves all 16 susys and has
SU(4|2) symmetry.
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The BMN or PWMM

The supermembrane on the maximally supersymmetric plane wave
spacetime

ds2 = �2dx+dx�+dxadxa+dx idx i�dx+dx+((
µ

6
)2(x i )2+(

µ

3
)2(xa)2)

with
dC = µdx1 ^ dx2 ^ dX 3 ^ dx+

so that F
123+

= µ. This leads to the additional contribution to the
Hamiltonian

�Hµ =
N

2
Tr

⇣

(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
i✏ijkX

iX jX k +
µ

4
⇥T�123⇥

◆
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The BMN model

The BMN action

SBMN =
1

2g2

Z

dt Tr
n

(D
0

X i )2 � (
µ

6
)2(X a)2 � (

µ

3
)2(X i )2

�i TC
10

�0D
0

 � µ

4
 T�123 

+
1

4
[X i ,X j ]2 � 2µ

3
i✏ijkX

iX jX k � 1

2
 TC

10

�i [X i , ]

�

,
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Large mass expansion

For large µ the model becomes the supersymmetric Gaussian model

Finite temperature Euclidean Action

SBMN =
1

2g2

Z �

0

d⌧ Tr
n

(D⌧X
i )2 + (

µ

6
)2(X a)2 + (

µ

3
)2(X i )2

 TD⌧ +
µ

4
 T�123 

o

This model has a phase transition at Tc = µ
12 ln 3
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Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semeno↵ and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

⇢

1 +
26 ⇥ 5

34
�

µ3

� (
23⇥ 19927

22 ⇥ 37
+

1765769 ln 3

24 ⇥ 38
)
�2

µ6

+ · · ·
�
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Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semeno↵ and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

⇢

1 +
26 ⇥ 5
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�
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� (
23⇥ 19927

22 ⇥ 37
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)
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�
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Gravity prediction at small µ

Costa, Greenspan, Penedones and Santos, [arXiv:1411.5541]

lim
�
µ2

!1
TSUGRA
c

µ
= 0.105905(57) .

The prediction is for low temperatures and small µ the transition
temperature approaches zero linearly in µ.

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

T

Small -gravity-prediction-phase diagram

2 4 6 8 10

0.2

0.4

0.6

0.8

T

Small and large -prediction-phase diagram

The Non-perturbative Phase Diagram of the BMN Matrix Model



Padé approximant prediction of Tc
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12 ln 3

⇢
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)
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Now we can take the small µ limit

lim
�
µ2

!1
TPadé
c

µ
' 1

12 ln 3
(1� r2

1

r
2

) = 0.0925579

lim
�
µ2

!1
TSUGRA
c

µ
= 0.105905(57) .
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A non-perturbative phase diagram from the Polyalov
Loop.
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4-parameter Lattice discretisation

The bosonic lattice Laplacian

�Bose = �+ rba
2�2 , where � =

2� eaD⌧ � e�aD⌧

a2
.

Lattice Dirac operator

DLat = Ka116 � i
µ

4
�567 + ⌃123Kw , where ⌃123 = i�123 .

Ka = (1�r)
eaD⌧ � e�aD⌧

2a
+r

e2aD⌧ � e�2aD⌧

4a
lattice derivative

Kw = r
1f a�+ r

2f a
3�2 the Wilson term
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Lattice Dispersion relations
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Observables
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Small µ
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Non-monotonic Polyakov loop
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Where do we go from here

Study the bosonic BMN model—its phase diagram,
theoretical predictions.

Implications of SU(4|2) symmetry.

M2-branes.

Probe BMN with D4-branes—already coded.

N = 1⇤ model — at coding stage.

N = 2 models.

Black dual geometries?

M5-brane matrix models?
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