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The QG problem

Manifest difficulties:

• Standard perturbation theory fails divergences arise at short
scale

• Gravitational quantum effects unreachable on lab:

EPl =
√

~c
G c2 ' 1019GeV (big bang or black holes)

Two lines of direction in QG approaches

• non-conservative: introduce new short-scale physics

• conservative: do not give up on the Einstein theory

Causal Dynamical Triangulations (CDT): conservative
approach of non-perturbative renormalization of the Einstein
gravity via Monte-Carlo simulations.
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CDT overview
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Lattice regularization
A regularization makes the renormalization procedure well posed.

• discretize spacetime introducing a minimal
lattice spacing ‘a’

• localize dynamical variables on lattice sites

• study how quantities diverge for a→ 0

• Cartesian grids approximate Minkowski space

• Regge triangulations approximate generic
manifolds

a
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Causality condition

A Lorentzian (causal) structure on T can be enforced by using a
foliation of spatial slices of constant proper time

• Vertices “live” in slices.

• d-simplexes fill spacetime between
slices.

• Links can be spacelike with ∆s2 = a2,
or timelike with ∆s2 = −αa2.

• Only a finite number of simplex types.

• The α parameter is used later to
perform a Wick-rotation from
Lorentzian to Euclidean
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Regge formalism: action discretization

Also the EH action must be discretized accordingly (gµν → T ):

SEH [gµν ] =
1

16πG

[∫
ddx

√
|g |R︸ ︷︷ ︸

Total curvature

−2Λ

∫
ddx

√
|g |︸ ︷︷ ︸

Total volume

]

⇓ discretization ⇓

SRegge [T ] =
1

16πG

[ ∑
σ(d−2)∈T

2εσ(d−2)Vσ(d−2) − 2Λ
∑
σ(d)∈T

Vσ(d)

]
,

where Vσ(k) is the k-volume of the simplex σ(k).

Wick-rotation iSLor (α)→ −SEuc(−α)

=⇒ Monte-Carlo sampling P[T ] ≡ 1
Z exp (−SEuc [T ])
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Wick rotated action in 4D

At the end of the day [Ambjörn et al., arXiv:1203.3591]:

SCDT = −k0N0 + k4N4 + ∆(N4 + N
(4,1)
4 − 6N0)

• New parameters: (k0, k4,∆), related respectively to G , Λ and
α.

• New variables: N0, N4 and N
(4,1)
4 , counting the total numbers

of vertices, pentachorons and type-(4, 1)/(1, 4) pentachorons
respectively (T dependence omitted).

It is convenient to “fix” the total spacetime volume N4 = V by
fine-tuning k4 =⇒ actually free parameters (k0,∆,V ).

Simulations at different volumes V allow finite-size scaling analysis.
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Monte-Carlo: sum over causal geometries

Configuration space in CDT: triangulations with causal structure

Lorentzian (causal) structure
on T enforced by means of a
foliation of spatial slices of
constant proper time.

Path-integral over causal geometries/triangulations T using
Monte-Carlo sampling by performing local updates. E.g., in 2D:

flipping timelike link creating/removing vertex
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Ultimate goal
Find a second order critical point in the phase diagram
=⇒ renormalize the theory.

Continuum limit
The system must forget the lattice
discreteness: second-order critical
point with divergent correlation
length ξ̂ ≡ ξ/a→∞

Asymptotic freedom (e.g. QCD):

~gc ≡ lim
a→0

~g(a) = ~0

Asymptotic safety (maybe QG):

~gc ≡ lim
a→0

~g(a) 6= ~0
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Phase diagram of CDT in 4D
k4 “tuned” to fix V =⇒ remaining free parameters: (k0,∆)

phase spatial volume per slice

A:

B:

CdS/Cb:

−−−−−−−→
T

possible 2nd order lines have been found [1108.3932,1704.04373]
Cb and CdS differ by the geometry of slices (discussed later)
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CdS : “de Sitter” phase

• Time-extended distribution of the triangulation/Universe (blob)

• Average of blob profiles over configurations has the same
distribution of the de Sitter cosmological model: the best
description of the physical Universe dominated by dark energy!

• Fluctuations of spatial volume interpreted as quantum effects

Lorentzian: − x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = R2

⇓ analytic continuation ⇓
Euclidean: + x2

0 + x2
1 + x2

2 + x2
3 + x2

4 = R2

De Sitter spatial volume distribution

V
(dS)
s (t) = Vtot

2
3
4

1

s̃(Vtot)
1
4

cos3

(
t

s̃(Vtot)
1
4

)
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Problem: lack of observables
A proper investigation of the continuum limit should require a
possibly complete set of geometric observables.

Observables currently employed in CDT

• Spatial volume per slice: Vs(t)
(number of spatial tetrahedra at the slice labeled by t)

• Order parameters for transitions:
• conj(k0) = N0/N4 for the A|CdS transition

• conj(∆) = (N
(4,1)
4 − 6N0)/N4 for the B|Cb transition

• OP2 for the Cb|CdS transition
[Ambjorn et al. arXiv:1704.04373]

• Fractal dimensions: (actually give some info at different scales)

• spectral dimension
• Hausdorff dimension

No observable characterizing geometries at all lattice scales!!
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spectral methods
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Proposed solution: spectral analysis

Spectral analysis

analysis of eigenvalues and eigenvector of
the Laplace-Beltrami operator: −∇2

Familiar examples:

• Fourier analysis in [0,T ] or RN :

eigenvalues: λk = k2

eigenvectors: sines and cosines

• On the unit sphere S2:

eigenvalues: λl = l(l + 1)
degeneracy: µl = 2l + 1

eigenvectors: spherical harmonics Yl ,m
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Hearing the shape of a manifold

• Spectral analysis on smooth manifolds (M, gµν):

−∇2f ≡ − 1√
|g |
∂µ(
√
|g |gµν∂ν f ) = λf , with boundary conditions

Can one hear the shape of a drum?
Almost: beside spectra you need also eigenvectors.

Example:
disk drum
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Spectral graph analysis

Graph: tuple G = (V ,E ) where

V set of vertices v

E set of edges, unordered pairs of adjacent vertices
e = (v1, v2)

Laplace matrix acting on functions
of vertices ~f = (f (v)) ∈ R|V |:

L = D − A

• Dv ,v =“order of the vertex v
(number of departing edges)”

• Av1,v2 = 1 if (v1, v2) ∈ E , zero otherwise
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Spectral graph analysis of CDT slices

Observation
Spatial slices in CDT are made by identical (d − 1)-simplexes
=⇒ a d-regular undirected graph is associated to any spatial slice.

• Spatial tetrahedra become vertices
of associated graph

• Adjacency relations between
tetrahedra become edges

• Laplace matrix: L = D − A,
where D = d1 is the degree matrix
and A is the adjacency matrix.

• Eigenvalue problem L~f = λ~f solved
by numerical routines

2D slice and its dual graph
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Physical interpretation of LB eigenvalues and eigenvectors

Heat/diffusion equation on a manifold (or graph) M:

∂tu(x ; t)−∆u(x ; t) = 0 .

General solution in a basis
{
en
}

of LB eigenvectors (λn ≤ λn+1):

u(x ; t) =

|σM |−1∑
n=0

e−λnt ũn(0)en(x) .

consequences:

• λn is the diffusion rate for the (eigen)mode en(x)

• smallest eigenvalues ↔ slowest diffusion directions.

• a large spectral gap λ1 implies a fast overall diffusion,
geometrically meaning a highly connected graph.
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Interpretation of the spectral gap

spectral gap and eigenvector (Fiedler vector)

First (non-zero) eigenvalue λ1 and its associated eigenvector e1.
The spectral gap, λ1 measures the connectivity of the graph: the
larger, the more connections between vertices.

Applications of the Fiedler vector e1:

• Min-cut: minimal set of edges
disconnecting the graph if cut

• Fiedler ordering on regular graphs (like
CDT slices): core of the Google Search
engine, and paramount reason for the
Google’s rise to success.

• many others...

0.34

−0.20

−0.39

−0.38

0.18

−0.34

0.32

0.42 −0.22

0.26

min-cut
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Weyl’s law and effective dimension

For a manifold M with LB spectrum σM define:
n(λ) ≡

∑
λ∈σM

θ(λ− λ) = “number of eigenvalues below λ”.

Weyl’s law

Well known asymptotic result from spectral geometry:

n(λ) ∼ ωd

(2π)d
Vλd/2 ,

being ωd the volume of a unit d-ball and V the manifold volume.

Motivated by Weyl’s law we define the effective dimension:

dEFF (λ) ≡ 2
d log(n/V )

d log λ
.
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A toy model: toroidal lattice

Consider a 3-d periodic lattice with sizes Lx × Ly × Lz .

eigenvalues:

λ′~m = 4π2

(
m2

x

L2
x

+
m2

y

L2
y

+
m2

z

L2
z

)
,

with mi ∈ (−Li/2, Li/2 ] ∩ Z .

1e-05 1e-04 1e-03 1e-02 1e-01 1e+00
n / V

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

λ
n

L
x
 = 50   L

y
 = 50   L

z
 = 50

L
x
 = 15   L

y
 = 15   L

z
 = 600

L
x
 =   3   L

y
 = 75   L

z
 = 600

• Three regimes observed for Lx � Ly � Lz with dEFF = 1, 2, 3.

• Position of knees related to the scale of dimensional transition.
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numerical results



introduction CDT overview spectral methods numerical results conclusions

Numerical simulations of 4D CDT
Simulations performed for total spatial volumes N3s = 20k , 40k

0 1 2 3 4 5
k
0

-0.2

0

0.2

0.4

0.6

∆
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Spectral gap in different phases
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CdS phase (first 100 eigenvalues)
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B phase (first 100 eigenvalues)

• no spectral gap in CdS phase.

• non-zero spectral gap for slices in B phase (high connectivity).

• some volume dependence is present (except for λ1 in B phase)
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Collapse of scaling curves
The volume dependence can be reabsorbed by mapping λn vs n/V
=⇒ curves collapse into a volume independent function.
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Weyl scalings for few slice in CdS phase and different volumes
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Scalings for different phases
By averaging over many slices (Cb discussed later):

1e-04 1e-03 1e-02 1e-01 1e+00

n/V
S

1e-03

1e-02

1e-01

1e+00

1e+01
λ

n

C
dS

A

B

small λ (large scale) behaviour:
• vanishing spectral gap and finite slope for CdS and A phases
• non-zero spectral gap and vanishing slope for B phase
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Effective dimension for different phases
From the previous curves and the definition of effective
dimension: dEFF ≡ 2d log(n/V )

d log λ .
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n/V
S
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d

E
F

F
 (

n
/V

S
)

C
dS

A
B

• dEFF →∞ at large scales for B phase
• dEFF < 3 for CdS (and A) phase! =⇒ fractional dimension
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The bifurcation phase Cb

Similarities with CdS :

• configurations with time extended blob
(but narrower w.r.t. CdS ones with the same k0)

• similar spatial volume per slice Vs(t)

Main distinguishing feature (as known from previous literature):

• two classes of spatial slices, alternated in slice time, one of
which possesses vertices with very high coordination number.

=⇒ Order parameter of Cb-CdS transition defined in literature as
relative difference between maximal coordination numbers of
vertices in adjacent slices.
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Alternating spectra in Cb configurations
Comparisons between CdS and Cb low lying spectra:
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λ
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λ
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λ
1

selected eigenvalues averaged over
many configurations

The low lying spectra capture well the alternating behaviour of
slice geometries in Cb configurations, and show it is a difference
in large scale properties of slices.
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Bifurcated scaling and class separation in Cb phase

Not a single scaling curve for Cb configurations
=⇒ a separation into two classes of slices is required:
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scatter plot λ vs n/V
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averaged values for different classes

We called the classes B-type and dS-type (for obvious reasons).
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Spectral gap through phases
Spectral gap histogram for simulations with k0 = 2.2 and different
∆:

We are currently investigating the continuum limit around CdS -Cb.
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Full spectral density: B phase
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) 
/ 

V
S

• nothing particularly interesting: almost uniform above the
spectral gap

• shares similar features to random regular graphs (dEFF →∞),
but actually differ in spectrum.
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Full spectral density: CdS phase
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S

• Peaks at integer values λ = 4, 5, 6 have high multiplicity and
correspond to extremely localized eigenvectors.
(UV artefacts =⇒ uninteresting)

• no theory on how to interpret peaks in the background...
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conclusions
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Summary

• CDT as a nonperturbative approach to renormalize gravity via
Monte Carlo simulations

• promising results: seemingly 2nd order lines, “de Sitter” phase

• problem: continuum limit and lack of observables

• proposed spectral methods in order to obtain a hierarchy of
geometric observables

• analysis of spectra of spatial slices:

• spectral gap characterizes connectivity in different phases
• Weyl’s scaling allow to define a running effective dimensionality
• full spectral densities show non-trivial and interesting features
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Further work

• generalize to full spacetime configurations (FEM methods
required)

• apply to EDT configurations (“straightforward”)

• analyze all the features of eigenvectors (possessing the
remaining information about the geometry), i.e. Anderson
localization, Morse analysis, etc...

• investigate continuum limit (currently work in progress)



Backup slides



Renyi entropy as a measure of localization
Renyi entropy : Sα(k) = 1

1−α log
(∑

x(ek(x))2α
)

.

• α→ 1: Shannon entropy

• α = 2: Inverse Partecipation Ratio (IPR)

PR for CdS and B slice eigenvectors IPR and Shannon entropy for B slice
eigenvectors



Laplacian embedding

Laplacian embedding: embedding of graph in k-dimensional
(Euclidean) space, solution to the optimization problem:

min
~f 1,...,~f k

{ ∑
(v ,w)∈E

k∑
s=1

[f s(v)− f s(w)]2 | ~f s · ~f p = δs,p, ~f
s ·~1 = 0 ∀s, p = 1, . . . , k

}
,

where for each vertex v ∈ V the value f s(v) is its s-th coordinate
in the embedding.

The solution {f s(v)}ks=1 is exactly the (orthonormal) set of the
first k eigenvectors of the Laplace matrix {es(v)}ks=1!



Laplacian embedding: example torus T 2 = S1 × S1

For each graph-vertex v ∈ V plot the tuple of coordinates:

2D: (e1(v), e2(v)) ∈ R2

3D: (e1(v), e2(v), e3(v)) ∈ R3

(a) 2D embedding (b) 3D projected embedding



Laplacian embedding of spatial slices in CdS phase

tr -1 0 1

2D

3D

The first three eigenstates are not enough to probe the geometry
of substructures



3D Laplacian embedding of T 3 torus

T 3 ∼= T 2 × S1 ∼= S1 × S1 × S1



Result: spectral clustering of CdS spatial slices

Spectral clustering: recursive application of min-cut procedure

Qualitative picture (2D)

Observation: fractality

Self-similar filamentous structures in CdS phase (S3 topology)



Spectral dimension DS

Computed from the return probability for random-walks on

manifold or graph: Pr (τ) ∝ τ−
DS
2 =⇒ DS(τ) ≡ −2d log Pr (τ)

d log τ .

• Usual integer value on regular spaces: e.g. DS(τ) = d on Rd

• τ -independent fractional value on true fractals

• τ -dependent fractional value in general (some scale involved)

Equivalent definition of return probability: Pr = 1
|V |
∑

k e
−λnt

=⇒ Nice interpretation of return probability in terms of diffusion
processes (random-walks): smaller eigenvalues ↔ slower modes.
The smallest non-zero eigenvalue λ1 represents the algebraic
connectivity of the graph.



The spectral dimension on CdS slices

Compare Pr obtained by explicit diffusion processes or by the LB
eigenspectrum

0 50 100 150 200 250 300 350 400
τ

0

0.5

1

1.5

2

D
S
(τ

)

Diffusion
LB spectrum (full)

LB spectrum (lower 5%)

fractional value DS(τ) ' 1.5 =⇒ fractal distribution of space.
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