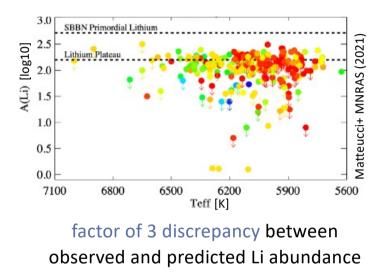
The Project in a Nutshell

NUclear CLustering Effects in Astrophysical Reactions

NUCLEAR

European Research Council

UK Research and Innovation Nucleosynthesis in First Stars and Other Puzzles


\$

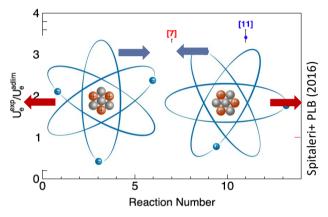
Long-Standing Questions in Nuclear Astrophysics

Q1. Cosmological Lithium Problem

Standard Model of Particle Physics

+ Cosmology

Q2. Nucleosynthesis in First Stars



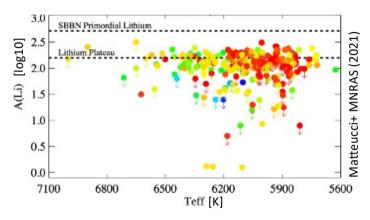
made of pristine H and He very massive \rightarrow need CNO nuclei

Chemical Evolution of Early Universe + Astronomical Observations (JWST)

Q3. Electron Screening Puzzle

discrepancy between experiment and theory remains unexplained

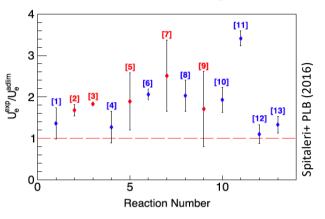
Reactions in Plasmas Fusion-driven Energy Generation


M Aliotta

Long-Standing Questions in Nuclear Astrophysics

THE UNIVERSITY of EDINBURGH

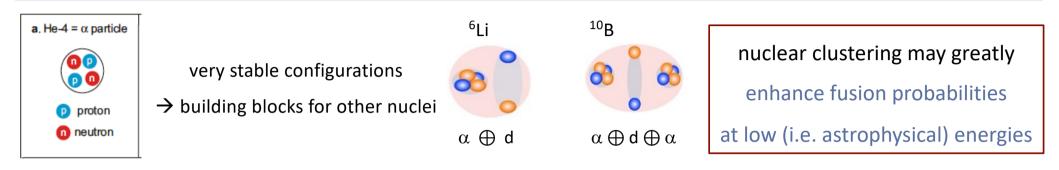
Q1. Cosmological Lithium Problem

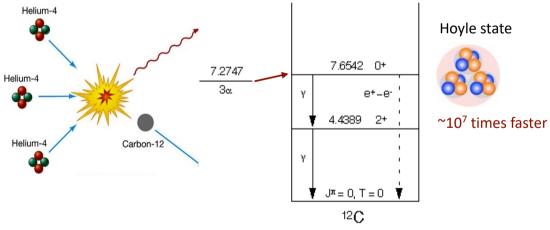

factor of 3 discrepancy between observed and predicted Li abundance

Q2. Nucleosynthesis in First Stars

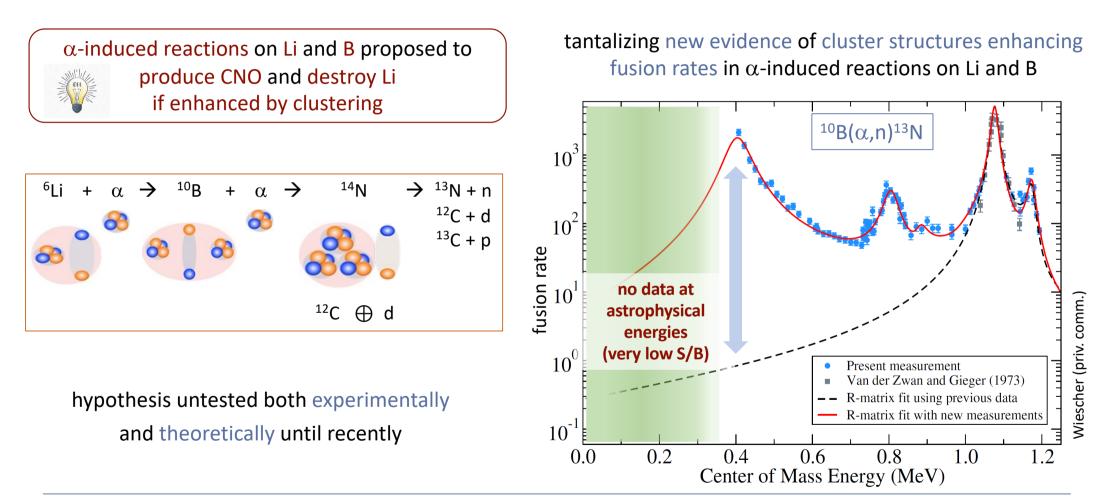
made of pristine H and He very massive \rightarrow need CNO nuclei

Q3. Electron Screening Puzzle


discrepancy between experiment and theory remains unexplained

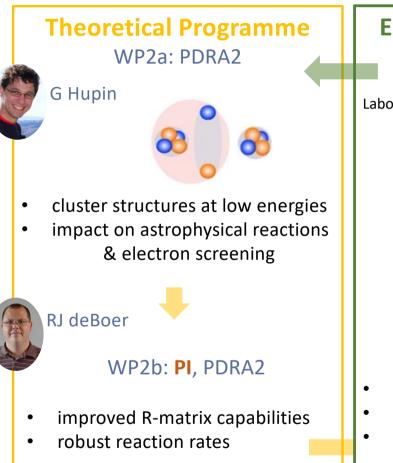

key to unlock all three puzzles

Nuclear Clustering



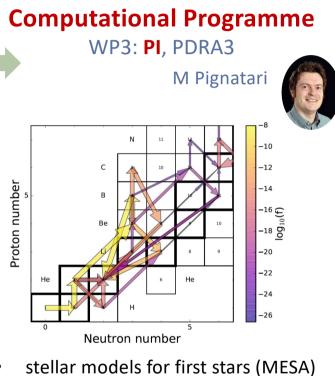
lower Coulomb barrier \rightarrow enhanced fusion

Idea and Current Status



M Aliotta

NUCLEAR


Work Programme and Outcomes

<section-header><text><text><image>

- α +Li and α +B reactions (Q1-Q3)
- ultra-low background @LUNA
- lowest-energy data (world best)

- nucleosynthesis networks (NuGRID)
- impact on Q1 and Q2

M Aliotta

THE UNIVERSITY of EDINBURGH

Experimental Program: α -induced reactions on Li and B isotopes

optimize information transfer across boundaries

for accelerated progress with widest impact

Theoretical Program

Computational Program

M Aliotta

NUCLEAR

Timeline

		NUCLEAR: NUclear CLustering Effects in Astrophysical Reactions									
		PI: Maria	aluisa Aliotta								
Task	Assigned to	Year 1		Year 2		Year 3		Year 4		Year 5	
WP1:	Experimental program	S1	S2	S3	S4	S5	S6	S7 S8		S9	S10
T1a	PhD1, PDRA1, PI				M1a						
T1b	PhD2, PDRA1, PI							M1b			
WP2: Theoretical program											
T2a.1	PDRA2, GH				M2a.1						
T2a.2	PDRA2, GH					M2a.2					
T2b.1	PDRA2, JdB										
T2b.2	PDRA2, JdB									M2b	
T2b.3	PDRA2, JdB, PI										M2b
WP3: 0	WP3: Computational program										
T3.1	PDRA1, PDRA3, PI					M3.1					
T3.2	PDRA3, MP							M3.2			
T3.3	PDRA3, MP										M3.3
Direction and Oversight											
	PI										

Milestones

M1a: low-energy cross sections data for 10B+a reactions

M1b: low-energy cross sections data for 6,7Li+a radiative captures

M2a.1: theoretical evaluation of reaction cross sections with N isotopes as compound nuclei

M2a.2: complete theoretical evaluation of radiative capture cross sections

M2b: evaluation of uncertainty in R-matrix fits and extrapolation with inclusion of improved potential models and electron screening

M3.1: initial stellar reaction rates evaluations from available and new experimental data (from WP1) as they become available

M3.2: nucleosynthesis calculations in first-generation stars (zero metallicity) with input from from T3.1

M3.3: complete nucleosynthesis simulations for largest progenitor stellar masses

Grant Start Date: 1 December 2024

Michael Wiescher (Deus ex Machina)

Marialuisa Aliotta

PRINCIPAL INVESTIGATOR

News Project People Outputs Collaborations Contact Home

https://www.erc-nuclear.uk

Meet the Team

Guillaume Hupin TEAM MEMBER

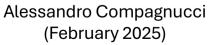
Richard James deBoer TEAM MEMBER

Marco Pignatari TEAM MEMBER

Other Team Members

PhD Students

Jamie Jones, PhD (September 2024)



(December 2024)

Lavinia Dalla Vedova (from September 2025)

Post-Docs

Kevin Becker (from July 2025)

LUNA collaborators Zoltan Elekes Piero Corvisiero Jakub Skowronski Axel Boeltzig Gianluca Imbriani Tom Davinson Ragan Sidhu Carlo Bruno Lucia Barbieri Duncan Robb Joao Cruz Gyuri Gyürky Sandra Zavatarelli, ...

Notre Dame team

Khachatur Manukyan local students & PhD...

ERC-NUCLEAR Kick-off Event - 15 May 2025

09:30	09:45	welcome and introductions	Marialuisa (MLA)
09:45	10:00	ERC Overview	MLA
10:00	10:40	Scientific Goals	Michael + MLA
10:40	11:00	discussion	
11:00	11:30	coffee break	
		Experimental Programme	
11:30	12:00	10B(a,p) and 10B(a,d)	Jamie
12:00	12:30	10B(a,n)	Rhys
12:30	13:00	6,7Li(a,g)	Alessandro
13:00	14:00	Lunch & Photo	
		Computational Programme	
14:00	14:40	First Stars: Stellar Models and Nucleosynthesis	Marco
		Theoretical Programme	
14:50	15:30	Reactions with clusters	Guillaume
15:30	16:00	Coffee Break	
16:00	16:40	R-matrix developments	James
16:40	17:00	Closing Remarks and Next Steps	
19:30		Dinner at Nok's Kitchen by the Castle	