# **Electron Screening**

# **Electron Screening in a Nutshell**

- **phenomenon**: electrons in stellar plasma or atomic environment lower the Coulomb barrier between nuclei and enhance fusion cross sections (at low energies)
- **impact**: critical as it alters reaction rates; affects astrophysical models, stellar evolution, nucleosynthesis and lab experiments
- status: despite theoretical developments over past 30 years, discrepancies remain between predicted and experimental screening potentials ("electron screening puzzle")
- note: laboratory screening different from screening in stars; accurate bare cross section data critical

### Nuclear Reactions in Stars (and in the Lab)



SCREENING POTENTIAL U<sub>e</sub>: typically, small amount (~ 10-100 eV)

 $\Rightarrow$  corrections typically negligible

 $\Rightarrow$  except for ultra-low energies



### Enhancement Factor and Screening Potential U<sub>e</sub>



**Remarks:** 

accurate bare cross section is needed:

- to determine U<sub>e</sub>
- to correct for screening effects in plasmas (may be different from lab)

 $\sigma_{pl}(E) = \sigma_b(E) f_{pl}(E)$ 

experimental  $U_e$  values in excess of theoretical limit!  $\rightarrow$  Electron Screening Puzzle

## How to determine $U_e$ ?

Experimentally:

- extrapolation from high-energy cross section data to obtain bare cross section
- measurement of cross sections at lowest accessible energy
- U<sub>e</sub> obtained from relative enhancement

### Theoretically:

- Adiabatic Limit: assumes effectively static electrons (largest screening estimates)
- Dynamic Models: considers time-dependent interactions

#### discrepancies between theory and experiments remain

### Theoretical Approach: The Adiabatic Limit

| Z. Phys. A - Atomic Nuclei 327, 461-468 (1987)                                        |                                     | Zeitschrift für Physik A | ATOMIC DATA AND NUCLEAR DATA TABLES 18, 243-291 (1976)<br>NEUTRAL-ATOM ELECTRON BINDING ENERGIES FROM RELAXED-ORBITAL<br>RELATIVISTIC HARTREE-FOCK-SLATER CALCULATIONS |              |              |                        |
|---------------------------------------------------------------------------------------|-------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------------|
|                                                                                       |                                     | Springer-Verlag 1987     |                                                                                                                                                                        |              |              |                        |
| Effects of Electron Screening                                                         |                                     |                          | $2 \leq Z \leq 106^*$                                                                                                                                                  |              |              |                        |
| on Low-Energy Fusion Cross Se                                                         | ections                             |                          |                                                                                                                                                                        |              | KEH-NING I   | HUANG                  |
| H.J. Assenbaum and K. Lau<br>Institut für Theoretische Ph                             | nganke<br>hysik, Universität Münste | er,                      | Z                                                                                                                                                                      |              | CONFIGN      | E (TOT)                |
| Federal Republic of Germa                                                             | any                                 |                          | 23                                                                                                                                                                     | HELI         | 152<br>251   | -2.86197<br>-7.42896   |
| C. Rolfs<br>Institut für Kernphysik, Universität Münster, Federal Republic of Germany |                                     |                          | 4                                                                                                                                                                      | 8 E<br>8     | 25 2<br>2P 1 | -14.56910<br>-24.52970 |
|                                                                                       |                                     |                          | 67                                                                                                                                                                     | C<br>N       | 2P 2<br>2P 3 | -37.64532<br>-54.30335 |
|                                                                                       | <b>D</b>                            | 8<br>9                   | 0<br>F                                                                                                                                                                 | 2P 4<br>2P 5 | -74.80112    |                        |
| Adiabatic Limit: $U_e = Z_1 Z_2 e$                                                    |                                     | R <sub>atom</sub>        | 10                                                                                                                                                                     | NE           | 2P 6         | -128.65249             |
| $F - F \perp II$                                                                      |                                     |                          | 12                                                                                                                                                                     | MG           | 352<br>3P1   | -199.88575             |
| $L_{\rm eff} = L + O_{\rm e}$                                                         |                                     |                          | 14                                                                                                                                                                     | SI           | 3P2          | -289.37845             |
| $E_{\text{eff}} = E + E_{\text{el}}(A+B)$                                             | $-E_{\rm el}(A)-B$                  | $E_{\rm el}(B)$          | 16                                                                                                                                                                     | s<br>c       | 3P4          | -398.49065             |
| 1                                                                                     | ▲                                   | R                        | 18                                                                                                                                                                     | Ă            | 3P 6         | -528.53143             |
| total electron binding energy                                                         | projectile                          | \<br>target              | bindin                                                                                                                                                                 | ig er        | nergy value  | s are tabulated        |
| of combined atom (ejectile)                                                           | projootito                          | cargor .                 |                                                                                                                                                                        |              |              |                        |

 $\rightarrow$  U $_{\rm e}$  can be easily calculated

### A Key Example: The <sup>3</sup>He(d,p)<sup>4</sup>He Reaction

Electron screening effect in the reactions  ${}^{3}\text{He}(d,p){}^{4}\text{He}$  and  $d({}^{3}\text{He},p){}^{4}\text{He}{}^{\star}$ 

M. Aliotta <sup>a,1</sup>, F. Raiola <sup>a</sup>, G. Gyürky <sup>b</sup>, A. Formicola <sup>a</sup>, R. Bonetti <sup>c</sup>, C. Broggini <sup>d</sup>, L. Campajola <sup>e</sup>, P. Corvisiero <sup>f</sup>, H. Costantini <sup>f</sup>,
A. D'Onofrio <sup>g</sup>, Z. Fülöp <sup>b</sup>, G. Gervino <sup>h</sup>, L. Gialanella <sup>e</sup>, A. Guglielmetti <sup>c</sup>,
C. Gustavino <sup>i</sup>, G. Imbriani <sup>e,j</sup>, M. Junker <sup>i</sup>, P.G. Moroni <sup>f</sup>, A. Ordine <sup>e</sup>,
P. Prati <sup>f</sup>, V. Roca <sup>e</sup>, D. Rogalla <sup>a</sup>, C. Rolfs <sup>a</sup>, M. Romano <sup>e</sup>, F. Schümann <sup>a</sup>,
E. Somorjai <sup>b</sup>, O. Straniero <sup>k</sup>, F. Strieder <sup>a</sup>, F. Terrasi <sup>g</sup>, H.P. Trautvetter <sup>a</sup>,
S. Zavatarelli <sup>f</sup>



Short note

#### Energy loss of deuterons in <sup>3</sup>He gas: a threshold effect

A. Formicola<sup>1</sup>, M. Aliotta<sup>1,a</sup>, G. Gyürky<sup>2</sup>, F. Raiola<sup>1</sup>, R. Bonetti<sup>3</sup>, C. Broggini<sup>4</sup>, L. Campajola<sup>5</sup>, P. Corvisiero<sup>6</sup>, H. Costantini<sup>6</sup>, A. D'Onofrio<sup>7</sup>, Z. Fülöp<sup>2</sup>, G. Gervino<sup>8</sup>, L. Gialanella<sup>5</sup>, A. Guglielmetti<sup>3</sup>, C. Gustavino<sup>9</sup>, G. Imbriani<sup>5,10</sup>, M. Junker<sup>9</sup>, A. Ordine<sup>5</sup>, P. Prati<sup>6</sup>, V. Roca<sup>5</sup>, D. Rogalla<sup>1</sup>, C. Rolfs<sup>1,b</sup>, M. Romano<sup>5</sup>, F. Schümann<sup>1</sup>, E. Somorjai<sup>2</sup>, O. Straniero<sup>11</sup>, F. Strieder<sup>1</sup>, F. Terrasi<sup>7</sup>, H.P. Trautvetter<sup>1</sup>, and S. Zavatarelli<sup>6</sup>



### Remarks

#### inverting role of target and projectile typically leads to different screening effects



## The D(d,p)t Reaction

#### in $D_2$ gas

 $U_e = 15 \pm 5 \text{ eV}$  in fair agreement with adiabatic limit ( $U_e = 20-30 \text{ eV}$ ) 85 Þ d (d,p) t 80 Greife et al. ZPhys. A351 (1995) 107 75 ELECTRON SCREENING 70 (Ue= 25 eV) S (keV-b) 65 BARE NUCLIDES 60 FAR GEOMETRY Ŧ 55 δ = CLOSE GEOMETRY 50 111 11111 10 100 1000 1 E<sub>cm</sub> (keV)

#### in metallic hosts



### D(d,p)t Reaction in Metals, Insulators, and Semiconductors



Key Results:

- elements in same group show similar U<sub>e</sub> values
  - large effect ~ 300 eV (ca. 10x higher than in  $D_2$  gas)
  - small effect ~ 30 eV (as in D<sub>2</sub> gas)
- exceptions: group 13 (B = metalloid) and group 14 (C, Si, Ge = semiconductors)

possible explanation based on Debye model applied to electrons in metals

### Debye Model for Quasi-Free Electrons in Metals

using Debye's plasma theory (as for electron screening in stars):

*quasi-free* electrons in metals cluster around deuterons at a distance R<sub>D</sub> (Debye radius):

$$R_{\rm D} = \sqrt{\frac{\varepsilon_{\rm 0} kT}{e^2 n_{\rm eff} \rho_{\rm a}}} = 69 \sqrt{\frac{T}{n_{\rm eff} \rho_{\rm a}}} \quad [m]$$

 $n_{eff}$  = number of quasi-free electrons/atom (typically 1 for most metals)  $\rho_a$  = atomic density (typically 6x10<sup>28</sup> m<sup>-3</sup>)

at room temperature (T ~ 300 K):  $R_D \sim 0.1 R_a \rightarrow extra increase of U_e$  (Debye enhancement)

 $R_D \sim 1/10 R_a \implies U_{e,D} \cong Z_1 Z_2 e^2/R_D \quad (U_{e,D} \sim 300 \text{ eV for d+d in metals})$ 

see: Bonomo et al NPA 719 (2003) 37c and Cruz et al. Phys Lett B 624 (2005) 181 for more details

### Experimental Verification for $^{6,7}$ Li(p, $\alpha$ ) $^{3,4}$ He



additional (Debye) enhancement observed in Li metal and Li alloy (PdLi) isotopic independence of electron screening also verified

## **Other Experimental Efforts**

#### **Trojan Horse Method (indirect method)**

suitable 3-body reaction as a proxy for 2-body reaction of astrophysical interest



#### **Inertial Confined Fusion (National Ignition Facility)**

attempt at measuring plasma screening in nuclear reactions at NIF and OMEGA



reaction occurring in nuclear field of target nucleus

- $\rightarrow$  free from electron screening effect
- $\rightarrow$  bare cross section

temperature and density conditions achieved, but screening effect still too weak to be measured huge technical challenges remain

### **Other Experimental Efforts (Results)**



Barbui et al PRL 111 (2013) 082502

## **Other Experimental Efforts**



### **CRYRING** facility at GSI

#### experiments with

- crossed beams for bare cross sections at stellar energies
- jet target for screened cross sections measurements



### **Electron Screening Puzzle**

#### For many reactions, experimental U<sub>e</sub> values are exceed theoretical (adiabatic) limits



|      | Reaction                                             | U <sup>adlim</sup><br>(eV) | U <sup>exp</sup><br>(eV) | Note                      | Ref.       |
|------|------------------------------------------------------|----------------------------|--------------------------|---------------------------|------------|
| [1]  | $^{2}$ H(d,t) <sup>1</sup> H                         | 14                         | 19.1±3.4                 |                           | [16,17]    |
| [2]  | $^{3}$ He(d, p) $^{4}$ He                            | 65                         | $109 \pm 9$              | D <sub>2</sub> gas target | [18]       |
| [3]  | $^{3}$ He(d, p) <sup>4</sup> He                      | 120                        | 219±7                    |                           | [18]       |
| [4]  | <sup>3</sup> He( <sup>3</sup> He,2p) <sup>4</sup> He | 240                        | $305 \pm 90$             | compilation               | [2]        |
| [5]  | <sup>6</sup> Li( $d, \alpha$ ) <sup>4</sup> He       | 175                        | 330±120                  | H gas target              | [19]       |
| [6]  | $^{6}$ Li $(d, \alpha)^{4}$ He                       | 175                        | $330 \pm 49$             |                           | [19,20]    |
| [7]  | ${}^{6}\text{Li}(p,\alpha)^{3}\text{He}$             | 175                        | 440±150                  | H gas target              | [19]       |
| [8]  | ${}^{6}\text{Li}(p,\alpha)^{3}\text{He}$             | 175                        | $355 \pm 67$             |                           | [19,21,22] |
| [9]  | $^{7}$ Li $(p, \alpha)^{4}$ He                       | 175                        | $300 \pm 160$            | H gas target              | [19]       |
| [10] | <sup>7</sup> Li $(p, \alpha)^4$ He                   | 175                        | 363±52                   | 0 0                       | [19,21,23] |
| [11] | <sup>9</sup> Be $(p, \alpha_0)^6$ Li                 | 240                        | 788±70                   |                           | [24,25]    |
| [12] | ${}^{10}\mathrm{B}(p,\alpha_0)^7$                    | 340                        | 376±75                   |                           | [26,27]    |
| [13] | $^{11}\mathrm{B}(p,\alpha_0)^8\mathrm{Be}$           | 340                        | 447±67                   |                           | [26,28]    |

see also: Vesić, Particles 7 (2024) 834 for an extensive review

### Possible Solutions for Electron Screening Puzzle?

#### stopping power values

hard to measure at ultra low energies --> extrapolations from high energy data often used; are these reliable?

#### atomic effects in beam-target interactions

'channelling' target type (solid, gas, atomic, molecular) atomic physics models

#### assumed nuclear reaction models

dynamic effects? nuclear structure?

### Can Nuclear Clustering provide Additional 'Screening'?







### Relevance to this ERC

#### Idea:

investigate screening in reactions with highly clustered nuclei, but involving different isotopes

| Examples: | <sup>6</sup> Li + $lpha$   | <sup>6</sup> Li + d | $^{10}$ B + $lpha$  | <sup>10</sup> B + d |
|-----------|----------------------------|---------------------|---------------------|---------------------|
|           | <sup>7</sup> Li + $\alpha$ | <sup>7</sup> Li + d | <sup>11</sup> Β + α | <sup>11</sup> B + d |

if enhancement is purely atomic, no difference should be observed (isotopic independence)

if different enhancements observed  $\rightarrow$  hint for nuclear clustering effects?

low-energy experiments are tough; theoretical developments possible?

### Summary

Electron screening effect very important at low energies

screening in stellar plasma different from screening in the lab

major experimental (and theoretical) work but discrepancies remain

nuclear clustering effects still largely unexplored  $\rightarrow$  possible theoretical breakthrough?

#### ERC-NUCLEAR Kick-off Event - 15 May 2025



