$^{10}B(a,p)^{13}C \text{ and } ^{10}B(a,d)^{12}C$

Jamie Jones

Measure cross-sections for ¹⁰B(a,p_x) and ¹⁰B(a,d) at energies of astrophysical interest (E_{cm} < 285 keV)

$^{10}B(a,d)^{12}C$

-

-

-

-

14N

$^{10}B(a,p_0)^{13}C$

- Re-evaluation of old data: **Zhang** et al. (2018)
- All E_{cm} > 700 keV
- No excited states
- No deuteron channel

Zhang, L. Y., He, J. J., Wanajo, S., Dell'Aquila, D., Kubono, S., & Zhao, G. (2018). New Thermonuclear 10B(α,p)13C Rate and Its Astrophysical Implication in the vp-process. *The Astrophysical Journal*, *868*(1), 24. https://doi.org/10.3847/1538-4357/aae479

$$^{10}B(a,p_{1,2,3})^{13}C$$

R-Matrix

Liu, Q., Febbraro, M., deBoer, R. J., Aguilar, S., Boeltzig, A., Chen, Y., Couder, M., Görres, J., Lamere, E., Lyons, S., Macon, K. T., Manukyan, K., Morales, L., (2020). Low-energy crosssection measurement of the B10(α ,n)N13 reaction and its *Physical Review. C*, 101(2).

Gula, A., deBoer, R. J., Aguilar, S., Arroyo, J., Boomershine, C., Frentz, B., Görres, J., Henderson, S., Kelmar, R., McGuinness, S., Manukyan, K. V., Moylan, S., Robertson, D., Seymour, C., Shahina, N., Stech, E., Tan, W., Wilkinson, J., & Wiescher, M. (2023). B10 +α reactions at low

Studies of Charged Particle Channels

LUNA 400 kV

- E_{beam}: 50 400 keV
- Current: 100 200 uA
- Precision: 0.3 keV
- Stability: 5 eV/hr
- Proton and Alpha beam

ELDAR (Carlo Bruno's ERC)

- Detection Angles:
 - -100°, 105°, 122°, 135°, 151°
- 15% geometric efficiency
- 24 Si detectors (18x18mm² each)
- 3 MSPADs (4 ch each) at 100°
- 72 channels (p+n,n+n)

NUCLEAR

- New, small chamber
- 135°
- ~9% geometric efficiency
- 4 18x18mm² Pin Diodes
- Room for a Gamma/Neutron Detector
- We have multiple target chambers

ELDAR (Carlo Bruno's ERC)

Advantages

- Angular distribution
- Larger efficiency (~6pp)

Disadvantages

- Many Mylar foils to mount
- Not quick to solve issues

NUCLEAR

Advantages

- Measure both charged and neutral channels simultaneously
- Simpler set-up

Disadvantages

- lower geometric efficiency
- No angular distribution

Challenges....

"Typically, targets survived between **1–2 C** of charge deposition from the helium beam before being gradually degraded by **10–30%**."

- Gula et al

*Note: E*_{beam} = 300 - 1400 keV

Evaporated Target

Number of targets

- 100 200 uA beam current
- 1 2C reached in a few hours
- 25 100 +

Targets

- Evaporated

- Notre Dame, ATOMKI
- Implanted
 - UK NIBC (Surrey, ¹⁰B¹⁹F₃),
 Dresden
- Coated (Sputtered)
 - Magtec (¹⁰B₄¹²C)

Notre Dame tests

- Alpha beam deterioration
 - _>
 - 10-30% drop in yield over 1-2 C
 - Confirms Gula's results
- Nominal thicknesses not reliable (10% difference)
- 20-30% difference also observed in deterioration

....But

- E_{beam} >> 400 keV
- Limited runs at 400 keV
- Intensity: 25 100 uA
 - Typical 70 uA
- More data needed!

LUNA May beamtime

- 26th May 8th June
- Using NUCLEAR chamber
- Durability tests @ E_a= 400 keV
- Hopefully Measure target thicknesses
- Possibly Start data taking

Thank you

