$^{10}B(\alpha,n)^{13}N$ Measurement plan

Astrophysical interest

- The 3α process is believed to be the primary link between p-p chain and the CNO cycle
- Alternative reactions such as ¹⁰B(α,n)¹³N and ¹⁰B(α,d)¹²C may bridge p-p chain to CNO cycle without the 3α process
- Further experimental measurements are needed on these reactions to understand potential paths

$^{10}B(\alpha,n)^{13}N$

- Q-Value = 1058.7 keV
- ¹³N \rightarrow ¹³C + β ⁺ + ...
- β^+ + $e^- \rightarrow \gamma_{(511 \text{ keV})} + \gamma_{(511 \text{ keV})}$

Liu, Q.(2020). Low-energy cross-section measurement of the 10B(α,n)13N reaction and its impact on neutron production in first-generation stars. *Physical Review C*, 101(2), 025808. <u>https://doi.org/10.1103/PhysRevC.101.025808</u>

Previous Studies

- Measurements performed at
 Notre Dame
- Published 2020
- $E_{\alpha} = 575 2500 \text{ keV}$
- Neutron detection with EJ301D deuterated liquid scintillator at E_{lab} = 0°
- First observation of high energy tail of low energy resonance

Liu, Q.(2020). Low-energy cross-section measurement of the 10B(a,n)13N reaction and its impact on neutron production in first-generation stars. *Physical Review C*, 101(2), 025808. <u>https://doi.org/10.1103/PhysRevC.101.025808</u>

Observing the low energy cross section

200 – 400 keV (R-Matrix)

Goals @ LUNA

- Measure cross sections at $E_{\alpha} < 400 \text{ keV}$
- Down to as low as feasible

Collaboration LUNA – Notre Dame

Reactions of interest for measurement

- The reaction of ¹⁰B(α,n)¹³N is measured by direct neutron detection.
- ¹³N decays via beta-plus decay (β^+) with $t_{1/2} \approx 10$ min, leading to annihilation with an electron and producing two 511 keV gamma rays in opposite directions.
- Thus, two measurement methods are used: direct neutron detection and coincidence detection of the 511 keV gamma rays.

Neutron and annihilation yield

- Low cross-section of the ${}^{10}B(\alpha,n){}^{13}N$ reaction
- Low yield from ${}^{10}B(\alpha,n){}^{13}N$
- Low yield from ¹³N => ¹³C + β^+

$\gamma - \gamma$ Coincidence with the BGO

BGO

- $\approx 4\pi$ coverage
- 6 segmented crystals
- Coincidence efficiency ≈ 30%

Activation Measurement – Rate Estimates (BGO)

Beam Energy (keV)	Cycles	Coinc. / cycle	Targets	Days	Measurement uncertainty (%)
400	9	44.3	5	1.5	11
380	18	15.8	10	3	21
360	30	5.4	16	5	47

assumptions:

- Charge accumulated per target: 1 C
- Irradiation cycles per day: 6 (3 day + 3 night)
- Integrated charge per cycle: 0.5 C
- Total number of targets: 31

BGO Detector: Expected Rates for 511keV Coincidence @ E_{α} = 400 keV

after 1 cycle (1h beam on, 1h beam off)

after 9 cycles (1h beam on, 1h beam off)

Neutron Channel with Neutron Detectors

EJ301D: deuterated liquid scintillators for neutron detection with energy discrimination capabilities

BUT: authorization required

new chamber & detectors to be installed at the end of the second beamline with BGO detector fully retracted

Expected Beam Time Required for neutron detection

E_{α} (keV)	Beam on (h)	Total Counts	Days	Error
400	18	101	3	10%
380	24	48	4	14%
360	42	29	7	19%
340	42	9	7	33%
320	84	6	14	42%
300	168	3	28	58%

Current: 150.00 uA Target thickness: 20.00 ug/cm^2 Targtes needed: 105 Targtes needed for 340-400 energies: 63 Down to 340 keV: 21 days Down to 320 keV: 28 days

Challenges

- Due to the low cross section, the background dominates
- This is especially clear for the BGO measurement
- Background not known for the Direct measurement
- BGO can still be performed.
- Neutron background level needs to be determined in neutron energy region of interest.

Closing Remarks

- It is possible to gain results for α energies starting from 400 keV down to 360 keV using the BGO and down to 340-320 keV using direct measurement.
- BGO measurement requires multiple runs to reduce the statistical uncertainty due to the background rate.
- Direct detection requires multiple runs to gain enough stats
- Direct detection is assuming no neutron background at $E_n \approx 1400 \sim 1300 \ {\rm keV}$

Charged-particle + Gamma-ray Detection Setup

design: courtesy Peter Black