^{6,7}Li(α , γ)^{10,11}B reaction

Current status overview

ERC-NUCLEAR Kick-off Event

https://www.erc-nuclear.uk

Astrophysical Motivation

requirement: strong enhancement of (α, γ) reaction rates

nucleosynthesis in first-generation stars:

⁶Li(α , γ)¹⁰B reaction

- Q-value: 4.461 MeV
- Narrow resonance corresponding to the $E_x = 4.773$ MeV state ($J^{\pi}=3^+$, $E_{\alpha}=520$ keV), dominant component in the range $0.05 \le T \le 0.3$ GK
- Two narrow resonances at Ex = 5.109 and 5.162 MeV ($\Gamma \le 1$ keV, E_{α} = 1.078, 1.168 MeV)
- A broad resonance ($\Gamma \approx 100 \text{ keV}$) corresponding to the E_x = 5.170 MeV (J^{π}=1⁺), the tail is relevant for T $\leq 0.1 \text{ GK}$
- Unknown direct capture component

Gula et al. PRC 106, 065801 (2022)

⁶Li(α , γ)¹⁰B: State of the Art

Gula et al. (2022):

- Study performed @ the 5U Pelletron of University of Notre Dame, E_{α} = 460 1400 keV
- ⁶LiF enriched targets degrade after ≈ 60 mC
- Excitation function with CeBr detector and tail of broad resonance with HPGE detector
- angular distributions for E_{α} =1.07 and 1.17 MeV resonances

⁷Li(α , γ)¹¹B reaction

- Q-value: 8.664 MeV
- Low energy resonances at E_{α} = 460, 814 and 953 keV fairly well known, broad overlapping resonances at higher energies
- Recently measured at Notre Dame between 1.6 and 2.8 MeV (Gilardy 2018, PhD thesis, unpublished)

6,7 Li(α , γ)^{10,11}B measurement at Bellotti Ion Beam Facility

6,7 Li(α,γ)^{10,11}B Reaction at the Bellotti Ion beam facility

TERMINAL VOLTAGE: 0.3 – 3.5 MV Beam energy reproducibility: 0.01% TV or 50V Beam energy stability: 0.001% TV / h Beam current stability: < 5% / h

H⁺ beam: 500 - 1000 μA

He⁺ beam: 300 - 500 μA

C⁺ beam: 100 - 150 μA

C⁺⁺ beam: 50 pµA

Targets

- LiF evaporated
- Metallic Lithium (LiOH)
- Implantated Lithium? (Surrey IBC, Lisbon IST)

• 100 µA beam current • 40 μg/cm² target thickness

$E_{ m lab}$	$E_{\rm cm}$	beam	cross section	rate	net rate	time
[keV]	[keV]		[b]	[counts/day]	[counts/day]	[days]
650	390	He ⁺⁺	$9.23 imes 10^{-10}$	24.97	11.97	34
700	420	He ⁺⁺	$1.71 imes10^{-9}$	46.33	33.83	12
750	450	He ⁺⁺	$3.13 imes10^{-9}$	84.68	72.68	6
800	480	He ⁺⁺	$5.63 imes10^{-9}$	152.48	140.89	3
Total time						2 months

- 100 µA beam current
- 40 μg/cm² target thickness

channel	$E_{\rm lab}$	$E_{\rm cm}$	beam	cross section	rate	net rate	time
(α, γ_0)	[keV]	[keV]		[b]	[counts/day]	[counts/day]	[days]
	300	191	He^+	3.30×10^{-10}	15.3	15.3	26
	330	211	He^+	$1.99 imes10^{-9}$	92.2	92.2	4
	350	223	He^+	$5.89 imes10^{-9}$	273.32	273.32	1.5
	380	243	He^+	$9.25 imes 10^{-8}$	4291.53	4291.53	2.2h
	400	255	He^+	$8.42 imes 10^{-6}$	$3.91 imes 10^5$	$3.91 imes 10^5$	1.5m
Total time					~ 1 month		
(α, γ_3)	330	211	He ⁺	1.99×10^{-10}	9	9	11
	400	255	He^+	$1.99 imes10^{-10}$	9	9	11
	Total time						\sim 22 days

2

10

Outlook

- The measurement of the 6,7 Li $(\alpha,\gamma)^{10,11}$ B in the framework of the NUCLEAR project offers a compelling opportunity to study α clustering effects near threshold in the context of nucleosynthesis in first-generation stars.
- Planned to start data taking in mid 2027
- One PhD student (Lavinia Dalla Vedova) on the project starting in September
- Development and characterization needed for the targets, to be done in 2026