

Guillaume Hupin, CNRS IJClab

Collaborators

O. Yaghi (PhD, just defended) A. Dehghani (PhD)

5/15/2025

Reactions with clusters

4

0

2

6

8

10

Goal: Solving the Schrodinger equation (SE) for an A-body system:

$$H|\psi^{J^{\pi}T}\rangle = E|\psi^{J^{\pi}T}\rangle$$

- Nucleons are considered as point-like particles.
- The SE is solved by considering two and many-body interactions between nucleons

5/15/2025

(i) Research directions

Complexity of scattering problem

 \neq *n*, *p* particles interacting with strong force ($M_h \gg M_{n,p}$)

Nuclear theory is data driven.

The lack of accuracy of *ab* initio structure methods impedes the development of reactions modeling.

Credits H. Lenske

Configuration interaction methods suited for $A \gg 1$

active domain

- Variational;
- Orthonormal basis;
- Controllable parameters (N_{max}, E1_{max} etc...);
- UV/IR convergence.

Superposition of Slater determinants:

$$\Psi_{\substack{\text{NCSM}\\\text{IM-SH}\\\text{MpMh}}}^{A} = \sum_{\alpha} c_{\alpha} \Phi_{\alpha}^{\varphi}(\vec{r}_{1}, \dots, \vec{r}_{A}) = A_{0} \left| \Phi_{0p0h}^{0} \right\rangle + \sum_{\alpha'} A_{\alpha'} \left| \Phi_{1p1h}^{\alpha'} \right\rangle + \cdots$$

Optimization of mixing coefficients, one-body Hilbert space:

$$\mathcal{SE}[\Psi]_{\{A_{\alpha}^{*}\}} = 0 \Longrightarrow \sum_{\beta} A_{\beta} \langle \Phi_{\alpha} | \widehat{H} | \Phi_{\beta} \rangle = EA_{\alpha}$$
$$\mathcal{SE}[\Psi]_{\{\varphi_{\alpha}^{*}\}} = \langle \Psi | [\widehat{H}, \widehat{T}] | \Psi \rangle = 0 \Leftrightarrow [\widehat{h}(\rho), \widehat{\rho}] = \widehat{G}(\sigma)$$

Generalized Brillouin (GB) equation

(ii) Research directions

 \neq *n*, *p* particles interacting with strong force ($M_h \gg M_{n,p}$)

Suclear theory is data driven.

Few-body techniques scale very bad with the number of constituents in the continuum.

Credits H. Lenske

One way to solve the many-body problem

Can address bound and low-lying resonances (short range correlations)

Advantage of HO CI methods:

- 1. Center of mass is factorized.
- 2. Mathematically possible to derived s.p. to Jacobi coordinates transformation.
- 3. Fourier transform is trivial: NCSM, RGM with HO CI is equivalent in momentum or position space.

• One way to solve the many-body problem when two scales appear

Decomposition on a Lagrange mesh.

NCSMC can be cast as Bloch-Schrödinger equation:

$$(C - EI)\vec{X} = Q(B)$$

And solved using R-matrix, which in the eigen basis of C - EI reads:

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E}$$

Simple for binary reacting system, more involved for neutral ternary system and extremely challenging for charged breakup.

Configuration Interaction (CI):

• Eigen-value problem \rightarrow Matrix diagonalization: $\hat{H}\phi_n = \varepsilon_n \phi_n$

No Core Shell Model (NCSM):

- HO wavefunctions;
- Single particle basis;
- Jacobi basis.

NCSM with continuum (NCSMC):

• For computing reactions and exotic nuclei.

Limitations:

- Resonance properties cannot be accessed directly.
- Reaction channels must be introduced manually.

Example: Structure of ⁶Li continuum

Correct asymptotic conditions

Allowing d+a clustering in the g.s. gives access to ANC.

	NCSMC	Experiment ¹
$C_0 \left[\mathrm{fm}^{-1/2} \right]$	2.695	2.91 (9)
$C_2[\mathrm{fm}^{-1/2}]$	-0.074	-0,077 (18)
C_{2}/C_{0}	-0.027	0.025 (6)

¹L. D. Blokhintsev *et al.* PRC**48** (1993).

*there is a more recent paper with 3N force.

i

- NN-N4LO + 3N-N2LO **cannot reproduce** the p-wave splitting.
- Tighter posterior distribution if the properties of the ⁵He are included in the fit of 3N LEC.

ERC NUCLEAR - KickOff

M. Drosg and N. Otuka, INDC(AUS)-0019 (2015).

- The S-factor is globally well reproduced.
- The accurate **reproduction** (of the order of keV) of the **resonance position**/width is **essential**.
- Shape of the angular distribution **agrees** with recent **evaluation**.

	5 He(${}^{4}S_{3/2}$)	E_r (keV)	Γ_r (keV)
	Cluster basis (D g.s. only)	105	1100
	Cluster basis	120	570
	NCSMC (D g.s. only)	65	160
	NCSMC	55	110
	NCSMC-pheno	50	98
	<i>R</i> -matrix	48	74
G.M. H	Hale, <i>et al.</i> PRL 59 (1987).		

 Importance of structure of neighboring resonances is magnified in transfer reactions.

- The S-factor is globally well reproduced.
- However, there are **discrepancies** between data sets around the peak of the S-factor.
- Influence of p- and d-waves in agreement with data.

Deviations from a pure s-wave of the analyzing tensors are globally reproduced in shape but their amplitude is not.

 $N_{
m max}$ =10 model space i.e. $r \approx 7$ fm HO spatial box

Parametric details of ¹¹Be $(1/2^+)$, ANCs, ERE $(a_{\ell}, ...)$ as output for free.

A number of resonances are unresolved in data/evaluation.

P. Gysbers *et al.* PRC **110** (2024)

- Motivated by ATOMKI experiments Firak, Krasznahorkay et al., EPJ Web of Conf. 232, 04005 (2020)
- NCSMC with charge exchange channel included

Zahnow et al. Z.Phys.A 351 229-236 (1995)

Isospin missing between the 1⁺ is not well predicted.

5/15/2025

ERC NUCLEAR - KickOff

 $N_{\rm max}$ =12 model space i.e. $r \approx 8$ fm HO spatial box

Long-distance components are mandatory to model ⁶He.

⁶He 2n Halo nuclei

⁶He g.s. energy, proton and matter radii 2.6 2.6 2.4 2.4 rms Radius (fm) 2.2 2.2 ⁶He 2.0 2.01.8 1.8 .5 1.011 🗩 0.5 Exp Th. NCSMC -10.0 ▲ NCSM -0.5 EIHH S_{2n} -1.0 8 1.8 2.0 10 6 8 $\Lambda_{\text{low}k} (\text{fm}^{-1})$ $N_{
m max}$

Reanalysis of data shows that • our ab initio calculation is more accurate than expected. $E - E_{th}(\alpha+n+n) (MeV)$ 6

5

3E

2 E

-1E

-2

⁵Li

³He ⁴He

6Li

⁵He

Where is waldo?

2.0

 $\lambda_{SRG} \ (fm^{-1})$

7Li

⁶He

8Li

⁷He

⁹Li

⁸He

7H

⁶He

Expt.

¹⁰Li

⁹He ¹⁰He

11Li

- Still significant room for improvements. •
- Ab initio outputs from 2n-systems not yet used in • reactions model.

 $\alpha + n + n$

1.5

Asymptotically vanishing equivalent problem

"A" definition of a resonance is that it corresponds to a pole in the S-matrix at the complex energy associated with the resonance location.

bound states $H(\theta)$ resonant state (revealed) Kruppa *et al.* PRC**89** (2014)

$$\widehat{H}(\theta) = e^{-2i\theta}\widehat{T} + \widehat{V}(re^{i\theta})$$
$$\widehat{H}(r) = \widehat{U}(\theta)\widehat{H}(r)\widehat{U}^{\mathsf{T}}(\theta)$$

Resonances are characterized by complex poles of the S-matrix.

The scattering solutions linked to a resonance typically diverge.

However, complex scaling (CS) transforms these solutions into square-integrable forms, making them accessible via bound-state methods such as the NCSM.

$$\phi_{sc}(r \to \infty) = A(k)e^{-ikr} + B(k)e^{+ikr}$$
$$\simeq e^{-ikr} + F(k)e^{+ikr}$$

At
$$E = \varepsilon_n - i \frac{\Gamma_n}{2}$$

$$\phi_n^{\text{res}}(r \to \infty) = B(k_n) e^{+i|k_n|e^{-ie_\alpha r}}$$
$$= B(k_n) e^{ia_n r} e^{+b_n r} \to \infty$$

We want to develop a unique tool applicable to both nuclear structure and reactions, to enhance our understanding of the strong force at low energy.

Structure

② Extraction of resonance properties for fine tuning interactions and applications to astrophysics.

Reactions

- Enabling us to study nuclear
 breakup reactions including Final
 State Interaction (FSI)
- © Calculation of complex charged (and multi-neutron) nuclear decay.

CS Hamiltonian eigenvalues using EM N3LO interaction

 $\hbar\omega = 20.00 \text{ MeV}$

- A CS Hamiltonian derived from modern EFT can be obtained up to more than 0.57 rad—previously~ 0.3;
- The g.s. remains fixed and the discretized continuum rotates by 2θ;
- Large basis is required (known but not publicized).

Hidden truth

A=2 Hamiltonian matrix elements with complex values*

* The absolute value of the elements are shown

Maximum model space achievable $N_{\rm max} \sim 200$ (100 nodes a box in excess of 20 fm)

- The contour deformation from complex scaling induces a large off-diagonal couplings;
- The latter is a no-go theorem for many-body practitioner as it implies slow UV convergence.

Similarity Renormalization Group (SRG) technique and non-Hermitian matrices

 $0.8 \stackrel{(N^{k_r})}{(N^{k_r})} \frac{0.0}{M} \mathcal{I}$

6.0

 $\begin{array}{c} 6.6 \\ 4.5 \\ 3.0 \\ \hline \end{array}$ $\begin{array}{c} 1.5 \\ 1.5 \\ k \\ [\text{fm}^{-1}] \end{array}$

0.8

0.4

0.0

-0.4

In configuration interaction methods we need to soften interaction to address the hard core. We use the Similarity-Renormalization-Group (SRG) method

0.0

0.0

α g.s. convergence with CS+SRG NN Hamiltonian (θ = 0.3 rad)

Maximum model space achievable $N_{\rm max} \sim 20$ (10 nodes a box in excess of 8 fm)

- Large λ makes the CS-Hamiltonian to converge monotonously;
- Smaller λ is better for convergence;
- Induced A = 3 interaction is important.

α g.s. convergence with CS+SRG NN+3N Hamiltonian (θ = 0.3 rad)

A = 3 evolution is made in the maximum model space achievable $N_{\rm max} \sim 60$

- Induced A = 4 interaction is not significant;
- The flow parameter is limited to at best 1.8 fm⁻¹ due to the A=3 CI space needed for the evolution.

Advanced SRG research permits to reach a rotation of 0.38 rad, which corresponds to resonances of 43.5°

- The resonance is properly describes with a spectra rotation by 34.4°;
- This result totally fails to agree with experiment (± known).

30

30

α spectrum with CS+SRG NN+3N Hamiltonian

Further progress is needed with SRG to tackle non-Hermitician matrices

- The positive energy spectrum is challenging to disentangle;
- Convergence analysis with $h\Omega$ and Θ can help to identify resonances.

Problem:

- the threshold lives in a different mass partition;
- Converged values requires twice the dimension: $A = 1 + 3 \rightarrow N_{max} = 2X$ when $A = 4 \rightarrow N_{max} = X$

Preliminary, in the sense that insufficient rotation required convergence analysis (only lower bound of can be extracted);

Proof of principle that the CS-Hamiltonian is accurate and can be used in NCSM calculation up to $A \sim 16$;

How to extract the thresholds ?

Wrap-up on the spectrum after analysis of the results

⁴Li, ⁴He, ⁴H and 4n

Preliminary, in the sense that insufficient rotation required convergence analysis (only lower bound of can be extracted);

Proof of principle that the CS-Hamiltonian is accurate and can be used in NCSM calculation up to $A \sim 16$;

- Discrepancies with experiments too large to be corrected by 3N forces;
- Convergence analysis with $h\Omega$ and Θ can help to identify resonances.

⁴H system: a benchmark with Faddeev calculation

We compare with a calculation based on solving the Faddeev equations.

Deltuva & Lazauskas, 2019, PRC

We perform a naïve extrapolation wrt to the CS rotation angle θ .

We find an overall agreement of the calculating with the exact solution (up to 500 keV bias due to the extrapolation).

Existence of the ⁴n resonance

CS shows **no indication** of such a resonance in 1^+ , 1^- , 0^+ or 0^- .

The results give a lower bound of:

or

 $\Gamma_r = 4.5 \text{ MeV}$

 $\Gamma_r = 1.9 E_r$

No ⁴n resonance exist in the vicinity of the real momentum energy axis.

(iii) Research directions

Complexity of scattering problem

Nuclear theory is data driven.

Solution \otimes Global optical models (*NN* or $N\bar{p}$ or $N\pi$ scattering) are not applicable to exotic systems.

Credits H. Lenske

Antiprotonic Atoms

Annihilation cross-section of the A = 3 + 1 system N_{max} = 70 compared to data.

Method	ϵ_{1S} (keV)	Γ _{1S} /2 (keV)
NCSM/RGM	2.43	1.27
Faddeev	1.92	0.89
Exp.	-1.05 ± 0.025	0.55 ± 0.0375

• Cross-section, differential cross-section, spin polarization, E.M. transitions to the continuum etc... all are calculated (or calculable).