

HV-CMOS pixel tracking detector R&D for future collider experiments

Fuat Ustuner 08.07.2025

Silicon as a Tracking Device

- Silicon is the most common material for collider-based experiments as a tracking detector.
- The combination of well-suitable properties for charged particle detection.
- Examples of silicon-based tracking detectors from,
 - ATLAS ITk upgrade (pixel area ~14m²)
 - Mighty Tracker Upgrade (~15m²)
 - Future experiments:
 - IDEA (~100m²) for FCC-ee and CEPC

Pixel Detectors in Particle Physics

Hybrid-pixel detectors:

- ITk upgrade
- Some limitations:
 - Cost (High):
 - Construction process is complex
 - Large amount of material

H. Spieler, Semiconductor Detector Systems. Oxford, U.K.: Oxford Univ. Press, 2005 Peric et al., High-Voltage CMOS Active Pixel Sensor, 2021

HV-CMOS:

- offers promising solutions to address some of the limitations.
- The electronic readout and active area are in the same silicon die. (monolithic).
 - Production cost (low) → No hybridisation
 - A much simpler assembly procedure

ATLASPix3.1 and GECCO DAQ

HV-CMOS Technology	TSI 180nm
Substrate [Ωcm]	200
Matrix [pixel]	132x372
Pixel Pitch [μm²]	50x150
Sensor size [mm²]	20.2x21

- The first full size monolithic HV-CMOS sensor including two fully functional shunt low-dropout regulators. → Serial Powering
- The breakdown voltage is ~-65 V (unirradiated)
- Each pixel has a custom design readout circuitry.
- Each column has a digital FE.

System Scale and Serial Powering (SP)

- System readout challenge: scale 1 -> 2x10⁵ sensors
 - Data aggregation is usually implemented to minimize services (power/data lines)
 - Leads to multi-chip modules (e.g. quad module in ITk) usually powered in parallel
 - Serial Powering, where all modules in a local structure are powered via constant current
- SP is developed and verified for **ATLAS and CMS** pixel upgrade LS3 using **hybrid pixel detectors**.
- However, this has not been studied for HV-CMOS-based pixel detectors.

J. Chan, Serial Powering of ATLAS ITk Pixel Modules

Serial Powering Chain with 3 Quad Modules

	Chip	Current	VDDD	VDDA
Q-2	W6-40	350 mA	1.98 V	1.93 V
Q-3	W6-28	703 mA	2 V	1.946 V
	W6-29	699 mA	2.01 V	1.99V
Q-4	W6-10	1040 mA	2.02 V	1.97 V
	W6-12	1048 mA	2 V	1.937 V
	W6-13	1052 mA	1.981 V	1.96 V

Threshold Scan (Untuned) & Sr90 Measurement

- 400 pixels are used. (10-29 / 150-169).
- TDAC=4, and global threshold DAC is 50.

Next Steps

Next Steps:

- Supplying the HV for measurements.(near term)
- Expand SP setup to include more chips/modules. (near term)
- Prototype an SP chain with 2-3 quad modules integrated in a stave, including power and data distribution flexes and structural support.

A. Andreazza, The IDEA Silicon Tracker, ICHEP 2024

Backup

ATLASPix3.1 Quad Module GECCO Readout DAQ

08/07/2025

LVDS signals are decoupled on flex.

• CMD configuration mode is used at 160 MHz.

Chip Probe Testing

- Probe testing, at the individual chip level, is a key step in semiconductor manufacturing.
- Evaluates functionality and quality of individual ICs while still on the wafer.
- Temporary electrical contact is made with test pads or contact points on each chip.
- Electrical signals are sent through the probes.
- Aims:
 - Test electrical behaviour of regulators
 - Identify potential defects and contaminations

Probe Testing Setup at Milan

VDDA2 in, Pad-104

GNDD, Pad-116

VDDA2 out, Pad-106

VDDD2 in, Pad-117

Vina2, Pad-108

VDDD2 out, Pad-118

GNDA, Pad-110 🗸

Vind2, Pad-119

VDDA1 in, Pad-24

GNDD, Pad-39

VDDA1 out, Pad-26

VDDD2 in, Pad-40

Vina1, Pad-28
VDDD2 out, Pad-41

GNDA, Pad-30 Vind2, Pad-42

Gluing the Chip to Quad Flex

- The assembly tool is used to mount the chips onto the quad flex.
- This tool ensures precise alignment and positioning of the chips onto the quad flex.
- The inter-chip spacing at the **center** is maintained at **200** μ m.
- After gluing, a weight (300g) is applied to the module for at least 5 hours.

Assembled "Quad" Modules

Quad module-2 Quad module-3 Quad module-4

- In total 5 quad-modules are assembled, 3 are in Edinburgh for SP and multichip studies
 - Quad Module-2: Chip1 W6-40,
 - Quad Module-3: Chip1 W6-28 and Chip2 W6-29
 - Quad Module-4: Chip1 W6-10, Chip2 W6-12, Chip3 W6-13 and chip4 W6-14 (chip4 couldn't be bonded)
- The wirebonding process time is around an hour per chip, and ~4 hours for one module (in best case scenario).

Shunt-LDO Regulators on ATLASPix3.1

- ATLASPix3.1 can be powered via a single constant current with two shunt-low dropout regulators.
 - Digital & Analog (VDDD/A)
 - 3-bits to tune threshold of the shunt regulator
 - 3-bits to tune VDDs
- **Vin** is created from constant current via regulators.
- VDDD/A presents the regulated voltage (output of the shunt-LDOs) to use the chip for operation.

Shunt: allows for the constant current operation, extra current protection

LDO: regulates VDDD/A

Quad Module-2

- The quad module-1 includes one wirebonded chip. The chip is W6-40, does not have a probing test results.
- The input current is **349 mA** as the regulation starts.

- Ohmic behaviour is seen after regulation starts.
- V_{offset} (the minimum required voltage to run the regulators)
 2.27 V.
- Parasitic resistance is 0.14 Ohm.

Quad Module-3

- The quad module-2 includes two wirebonded chip. The chips are **W6-28 and W6-29**.
- The input currents change between 640.75 mA and 703.96mA as the regulation starts for each regulators on the

chips.

- Ohmic behaviour is seen after regulation starts.
- V_{offset} (the minimum required voltage to run the regulators) is 2.14V.
- Parasitic resistance is 0.76 Ohm.

Quad Module-4

- The quad module-4 includes three wirebonded chip. The chips are W6-10, W6-12 and W6-13.
- The input currents change between 1 A and 1.2 A as the regulation starts for each regulators on the chips.

- Ohmic behaviour is seen after regulation starts.
- V_{offset} (the minimum required voltage to run the regulators) is 2.26 V.
- Parasitic resistance is 0.24 Ohm.

Threshold & Noise scan for 2 configurations

		Single Module		Serial Powering Chain	
		Threshold (V)	Noise (V)	Threshold (V)	Noise (V)
Quad Module-2	Chip-1	0.683 ± 0.07	0.018 ± 0.003	0.685 ± 0.06	0.016 ± 0.002
Quad Module-3	Chip-1	0.718 ± 0.06	0.017 ± 0.002	0.705 ± 0.06	0.017 ± 0.002
	Chip-2	0.677 ± 0.07	0.018 ± 0.003	0.675 ± 0.07	0.017 ± 0.003

- Performed threshold and noise scans with the same 400 pixels in 2 configurations:
 - The variation of threshold values is <2%.

ATLASPix3.1 Quad Module Readout

