SBND CAFs: Introduction and Tutorial

Dr Henry Lay 10" UK LArSoft Workshop
.| University of Wednesday 29th October 2025

2 Sheffield

.y

UN 14445, EVENT 120
uly 04, 2024

University of

Shefﬁeld

If you haven’t met me yet, | haven’t been doing a very
good job of TA-ing at this workshop so far!

Me!

I’m a postdoc at the University of Sheffield and was
previously a PhD student at Lancaster University.

| work on SBND where | am currently one of the
Reconstruction Conveners and was previously
responsible for CRT Installation & Commissioning.

| am not a CAF expert. | have some experience using
them and have attempted to turn that into a useful
tutorial for you today!

(l-\e.r«BL.a:)-vaersitboFs\f\eﬂ-“‘eld \ (Wednesday 29th october 2025 \ (cﬁrmtoru.-lo”‘mu_hrso&w/s \

Outline

Part 1: What are CAFs?

Part 2: What structure do the SBND CAFs have?

Part 3: Tutorial, how do | use the CAFs?

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \ 3

Outline

Part 1: What are CAFs?

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \ 4

CAF Introduction

- In the analysis tutorial you have learned how to write an “Analyzer” module which

produces TTrees with which you can easily analyse the data and make plots.

- |l cannot emphasise enough that this is a key skill - producing your own trees is usually the best
way to efficiently work on simulation and reconstruction developments!

- CAF stands for “Common Analysis Framework”

- CAFfiles are fundamentally just another example of a TTree file.

- They are intended to contain everything necessary for high level analyses (cross-sections,
oscillations, BSM searches etc).

- No heavy products: waveforms, hits etc.

- Designed to avoid all analysers producing their own custom trees as this is un-sustainable for the
scale of SBND data and Monte Carlo.

- Standard output from SBND productions (also used in DUNE).

(w%-wwtno(-‘s\aemdd \ (Wednesday 29th october 2025 \ (chrmtoru.-lo”‘mn.hrso&w/s \ 5

CAF Introduction

- Unlike the trees you made in your “Analyzer” tutorial the CAF files have an object

driven structure.
- We also produce “flat CAF” files which still use the structure given from the objects but as the name
suggests are “flattened” into simple branches.

- This makes the indexing of these branches very complicated - you should avoid treating these files
like “standard” trees.

- CAF files can be opened and utilised in a number of ways:
- CAFAna
- ROOT
- CAFPyAna
- Uproot

As with all tutorials we have a slack
channel #caf - please join and feel
free to ask questions there!

(l-\e.nrat.a::)-u-iverﬁtboFs\r\eﬂ-‘eld \ (Wednesday 29th october 2025 \ (cﬁrmtomL-D”‘mLArsOth/s \ 6

Outline

Part 2: What structure do the SBND CAFs have?

[Henr_‘a L.jj - udversﬂjj of s\effela] [We_dneﬁ;j 29\ october 2025] [chAF Tutorial - 10 ® Uk LASOFt Wis] 7

SBN(D) CAF Structure »’

What do | see when | open a CAF file? The structure of the CAFs is /

defined via the objects hosted

/env TDirectoryFile\ in the sbnanaob7j repository.
L. envtree TTree
globalTree TTree
recTree TTree
TotalPOT TH1D
TotalEvents TH1D
GenieEvtRecTree TTree
metadata TDirectoryFile

\|—>metatree TTree/

(He.mhu_qa—u-iver—s;tao(!s\«emeld \ (Wednesday 29th October 2025 \ (cAFmtmaL—lot“ml_ArsOFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure »

What do | see when | open a CAF file? The structure of the CAFs is /
\ defined via the objects hosted
/env TDirectoryFile in the sbnanaob7j repository.

of the value of all the
environment variables at the

/ time of making this file... useful
\ for some debugging purposes!

|_>envtree TTree
The env tree contains a dump '

(HentﬁL.%-Urive.r'sitUoFs\«eﬁ-\eld \ (Weckesdauy 2%th october 2025 \ (chrmwﬁa.l.-lo“‘mL_Ars&tw/s \ 9

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure »

What do | see when | open a CAF file? The structure of the CAFs is /
/ \ defined via the objects hosted
in the sbnanaob7j repository.

globalTree TTree

The global tree contains
weights for each event to assess
systematic uncertainties.

\- /

(HentﬁL.%-Urive.r'sitUoFs\«eﬁ-\eld \ (Weckesdauy 2%th october 2025 \ (chrmwﬁa.l.-lo“‘mL_Ars&tw/s\ 10

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure »

What do | see when | open a CAF file? The structure of the CAFs is /

defined via the objects hosted
/ \ in the sbnanaob7j repository.

recTree TTree
The recTree is the “main tree”
that contains the true and

reconstructed “record” of the

\ / events.

- Universitu of Sheffield Wedne: 29\ october 2025 cAF Tutorial - 10 * Uk LArSoft Wis 11
Henoy Lay ty Sclay

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure »

What do | see when | open a CAF file? The structure of the CAFs is /

/ \ defined via the objects hosted
in the sbnanaob7j repository.

TotalPOT TH1D A one bin histogram with the
total POT associated with all
the events in this file.

\- /

(HentﬁL.%-Urive.r'sitUoFs\«eﬁ-\eld \ (Weckesdauy 2%th october 2025 \ (chrmwﬁa.l.-lo“‘mL_Ars&tw/s\ 12

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure »’

What do | see when | open a CAF file? The structure of the CAFs is /

defined via the objects hosted
/ \ in the sbnanaob7j repository.

A one bin histogram with the
total number of events in this
file.

TotalEvents TH1D

\- /

- University of Sheffield Wedne: 29\ october 2025 cAF Tutorial - 10 * Uk LArSoft Wis 13
Henoy Lay ty Sclay

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure

What do | see when | open a CAF file? The structure of the CAFs is /

defined via the objects hosted
/ \ in the sbnanaob7j repository.

The GENIE event record contains a
more detailed information about
the generated neutrino events (the
\ / full GENIE output) which is useful

for applying cross-section
systematic weights.

GenieEvtRecTree TTree

- Universitu of Sheffield Wedne: 29\ october 2025 cAF Tutorial - 10 * Uk LArSoft Wis 14
Henoy Lay ty Sclay

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure

What do | see when | open a CAF file? The structure of the CAFs is /
/ \ defined via the objects hosted
in the sbnanaob7j repository.

metadata, similar key-value
structure to the envtree, this tree

netadata TDirectoryFile contains the metadata associated
metatree TTree with the file (code version used,
\ / production name, timestamp of
creation).

15

(HemBL.aU-mVe_rs;tUoFs\«eFﬁeLd \ (Weckesdauy 2%th october 2025 \ (cAFmtor-;aL-IO“‘mL_ArsoFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

SBN(D) CAF Structure - recTree

We will now focus on the recTree only, the main tree you would use to perform analysis
with the CAFs.

| will take you through the object structure of the tree, using the object names and also
the path name used in the tree.

Object

Tree Path

16

(W%-MVM%OFS&FFQM \ (Wednesday 29th october 2025 \ (cPoFmtoriaL-IO‘“mLArsOFtw/s \

SBN(D) CAF Structure - recTree

The StandardRecord is the top level object, it
represents all the true and reconstructed information

belonging to one “event” (by which | mean one StandardRecord
detector readout, not one neutrino interaction). rec

One entry in the recTree corresponds to one event!

17

(cAF Tutorial - 10 * Uk LArSoft W/is \

(Henry Lay - Urive.r'sita of s\effiela \ (Wecnesclay 29\ October 2025 \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord

...and this is only the first level

SBN(D) CAF Structure - recTree

vector<SRFakeReco>
fake reco

vector<SRSlice>

vector<SRCRTSpacePoint>
slc

crt_spacepoints

vector<SRInteractionTruthDLP>

SRSBNDTiminglInfo
vector<SRSBNDCRTTrack> SRTruthBranch dlp_true ®

sbnd timings
sbnd_crt_tracks # ﬂ = [¢]
StandardRecord vector<SRTrueParticle>

true_particles

vector<SROpFlash>

opflashes SRHeader m

tor<SRCRTHit
hdr SRSliceRecoBranch vectors n g
bool crt_hits

pass_flashtrig reco

\(

SRSBNDFrameShiftinfo
vector<SRInteractionDLP>

vector<SRCRTPMTMatch> sbnd_frames dlp vector<SRCRTTrack>
crtpmt_matches crt_tracks

18

(Hency Lay - University of Sheffiela] (Wednesday 29th October 2025] (cAF Tutorial - 10 ¥ UK LA-SoPt Wis]

...and this is only the first level
SBN(D) CAF Structure - recTree

vector<SRSlice> vector<SRFakeReco>

vector<SRC

crt_sp

vector<SRSBNDCRT The
sbnd_crt_traqg

vector<SROf
opflash

bool
pass_flas

SN— \\ \\\\ |

crepmé

19

(He_nrbL_nb-Mver'sitaoFs\\e_Fﬁe_Ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lo*“ml_ArSOFtw/s \

SBN(D) CAF Structure - recTree

Let’s take a step back... We won’t be going through all the branches for a number of reasons:

- There are well over 1000 branches.

- Some of them are SBND-only, some ICARUS-only and many are shared.
- Some of them are data-only, some are MC-only, and many are shared.

- Not all of them are filled.

(W%-MVM%OFS&FFQM \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lot“mLArsoFtw/s\ 20

SBN(D) CAF Structure - recTree

Let’s take a step back... We won’t be going through all the branches for a number of reasons:

- There are well over 1000 branches.

- Some of them are SBND-only, some ICARUS-only and many are shared.
- Some of them are data-only, some are MC-only, and many are shared.

- Not all of them are filled.

And on top of all of that, | definitely do not claim to be an expert in CAFs or all their branches!

What | will do is talk you through a few common branches that relate to things you’ve already
touched on this week. We will then use those branches to make a few plots!

(l-\ex\rBL.aﬂ-u-ive.rﬁtboFs\f\e.Fﬁeld \ (Wednesday 29th october 2025 \ (cﬁrmtoru.-lot“mmrs&tw/s\ 21

Branches we care about today...

As mentioned before, the StandardRecord is
the top level object from which the whole event
record can be accessed.

SRHeader hdr; ///< Header branch: run, subrun, etc.

/7 SRSpill spill; ///< Beam spill branch: pot, beam current, etc.
SRSliceRecoBranch reco; ///< Slice reco branch: tracks, showers, etc.

SRTruthBranch mc; ///< Truth branch for all interactions

int nslc = 0; ///< Number of slices in list

std::vector<SRSlice> slc; ///< Slice branch. Sta n d a rd ReCO r
int nfake_reco = 0; ///< Number of Fake-Reco's in list
std::vector<SRFakeReco> fake_reco; ///< List of fake-reco slices rec
int ntrue_particles = @; ///< Number of true particles in list
std::vector<SRTrueParticle> true_particles; ///< True particles in spill

int ncrt_hits = 0; ///< Number of CRT hits in event (ICARUS)
std::vector<SRCRTHit> crt_hits; ///< CRT hits in event (ICARUS)

int ncrt_tracks = ©; ///< Number of CRT tracks in event (ICARUS)
std::vector<SRCRTTrack> crt_tracks; ///< CRT tracks in event (ICARUS)

int ncrt_spacepoints = ©; ///< Number of CRT spacepoints in event (SBND)
std::vector<SRCRTSpacePoint> crt_spacepoints; ///< CRT spacepoints in event (SBND)

int nsbnd_crt_tracks = ©; ///< Number of CRT tracks in event (SBND)
std::vector<SRSBNDCRTTrack> sbnd_crt_tracks; ///< CRT tracks in event (SBND)

int nopflashes = 0; ///< Number of OpFlashes in spill
std::vector<SROpFlash> opflashes; ///< List of OpFlashes in spill

int ncrtpmt_matches = @; ///<Number of CRT-PMT Matches in event
std::vector<SRCRTPMTMatch> crtpmt_matches; ///< CRT-PMT matches in event

bool pass_flashtrig = false; ///< Whether this Record passed the Flash Trigger requirement
SRSBNDFrameShiftInfo sbnd_frames; ///< List of Frame Shift in event in unit [ns] (SBND)
SRSBNDTimingInfo sbnd_timings; ///< List of Timing Info in event in UNIX timestamp format(SBND)
int ndlp = 0; ///< Number of reco DLP (ML) interactions.
std::vector<SRInteractionDLP> dlp; ///< Reco DLP (ML) interactions.

int ndlp_true = @; ///< Number of true DLP (ML) interactions.
std::vector<SRInteractionTruthDLP> dlp_true; ///< True DLP (ML) interactions.

22

(w%-wthbo?smmeu \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lo“‘mmrs&tw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/StandardRecord.h

Branches we care about today...

The ‘slc’ branches contain the information from
the reconstructed slices produced by pandora.

unsigned producer { UINT_MAX }; //< Tndex of the producer that produced th
/7< Tn ICARUS, this is the sam

object

float charge { kSignalingNaN }; ///< Calorimetric ene

SRVector3p charge_center; //< Weighted mean of hit positions in XYZ [cn]

SRVector3D charge width; //< Vieighted standard deviation of hit positions in XYZ [cm]
SRVector3D vertex; /< Candidate neutrino vertex in local detector coordinates [

SRTrueInteraction truth; //!< Truth information on the slice
SRTruthMatch tmatch; //!< Matching information betwe

SRFlashMatch fmatch; //1< PHT S h £
SRFlashMatch fmatchop; //!< PMT Simple flash-match
SRFlashMatch fmatchara;
SRFlashMatch fmatchopara; //!< P Simple flash-mai

nple flash-m:

of TPC charge (OpFlash)
of TPC charge (XARAPUCA, SBND only)

(XARAPUCA OpFlash, SBND only)

//1< PNT Simple flas

-

slice of TPC char

SROpTOFinder opte; //1< OpTOFinder (flash-match and Q->L); filled with the *

2 st 0pTO score** as
SROpTOFinder opt_sec; //I< Secondary OpTOFinder (fla and Q->L);

soc
he **second highest Op

to the

SRTPCPMTBarycenterMatch barycenterfH;

to the OpFlash nearest to its charge cent

SRCorrectedOpFlash correctedOpFlash; //!< OpFlas

matc

ed to this slice

ed with using tpc informati

SRFakeReco fake_reco;

ice as a "clear” cosmic

bool 1s_clear _cosmic { false }; //1< Whether pandora marks the
int nu_pdg { INT_MIN }; 771< POG e PFPart:

e Neutrino

float nu_score { ksignalingNaN }; //!< Score of 1no-1ike the slice is according to pandora
float ng_filt_pass_frac { kSignalingNaN }; //!< Fraction of slice hits that pass the nugraph filter decoder
SRCRUMBSResult crumbs_result; //1< Score of how neutrino-like the slice is according to the CRUMBS ID

SRNUID nuid; //!< Neutrino 1D going into nu_score calculation
std::vector<size t> primary; //1< 1D's of primary tracks and showers in slice
int self { INTMIN }; /1< 1D of the particle representing this slice
SRSliceRecoBranch reco; //!< TPC reco information for

SRCVNScore cvn; //1< Interaction type classific scores for

Representation of artroot’s recob::Slice

vector<SRSlice>
slc

(Heny Lay - University of Sheffela \

(We_dnesdcxn 29t\ october 2025

(cAF Tutorial - 10 ¥ UK LArSoPt Wis \

23

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRSlice.h

Branches we care about today...

vector<SRSlice>
The ‘reco’ branch contains access to the PFPs, slc

Hits (off by default) and Stubs associated with
that slice.

std: :vector<SRPFP> pfp; ///< Vector of pfps StandardRecord SRSliceRecoBranch
size_t npfp; ///< Number of pfps rec reco
std::vector<SRHit> hit; ///< Vector of hits

size_t nhit; ///< Number of hits

std::vector<SRStub> stub; ///< Vector of stubs

size t nstub; ///< Number of stubs

24

(Henrhmd—wversitaoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (cAmeL—lot“ml_ArSOFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRSliceRecoBranch.h

Branches we care about today...

vector<SRSlice>

The ‘pfp’ branches contain information about [
S(cC

this PFP’s position within the slice’s hierarchy,
evaluations of its likely particle type and access
to its track and shower characterisations.

StandardRecord SRSliceRecoBranch

int id; /< ID of this pfp (taken from the pandora particle "ID" of this PFP)
unsigned int ndaughters; umber of daughters

std::vector<int> daughters; // ID's of daughters of this pfp rec reco

int parent; ///< 1D of parent particle of this pfp
bool parent_is_primary; ///< If this is a primary daughter of a neutrino/cosmic

float trackScore; ///< The MVA score that deter: es how
SRPFOChar pfochar; ///< The MVA inputs (features) in

re (PFO Characterisation)
SRCNNScore cnnscore; // CNN scores for this PFP VeCtor SRPFP
SRNuGraphScore ngscore; //< NuGraph scores for this PFP p/cp

int slcID; // ID of the slice that this PFP belongs to

float te; // TO assigned by TPC reco, if any

SRTrack trk; // Track reconstructed from this PFP
SRShower shw; // Shower reconstructed from this PFP

SRPFPRazzled razzled; // Results from the PFP MVA

Representation of artroot’s recob::PFParticle

25

(Hem-bu_qd—u-ivers;tao(!s\«emeld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lot“ml_ArSOFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRPFP.h

Branches we care about today...

vector<SRSlice>

The ‘trk’ branches contain information from the
track characterisation of this particular PFP and slc
access to calorimetry, momentum estimates,
CRT matches and PID tool results.

StandardRecord SRSliceRecoBranch

(recob Track.NPoints)

il rec reco

of the track in the x-y plane

unsigned producer; //< Index
unsigned short npts; /.
float len;

float costh;
float phi;
SRVector3D dir;
SRvector3D dir_end; c
SRVector3d start; //7< start point of track
SRVector3D end; ///< End point of track

bk .) s s vector<SRPFP>

Plane_t bestplane; ane index with the most hits. -1 if no calorimetry

SRTrkMCS mesP;

pfp

SRTrackTruth truth; ///< truth information
SRCRTHitMatch crthit; ///< CRT Hit match
SRCRTTrackMatch crttrack; b T
SRCRTSpacePointMatch crtspacepoint; ///< CR
SRSBNDCRTTrackMatch crtsbndtrack; ///< CRT

SRTrackscatterClosestApproach scatterClosestApproach;
SRTrackStoppingChi2Fit stoppingChi2Fit;

to spread about interpolated track
to dtox vs res. range SRTrack

SRTrackDazzle dazzle;

Representation of artroot’s recob::Track trk

26

(Henrhmd—mVersitﬁoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lot“ml_ArSOFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRTrack.h

Branches we care about today...

vector<SRSlice>
slc

The ‘calo’ branches contain the summary track
calorimetry information. They are in an array of]
set size 3, enumerated by plane. StandardRecord SRSliceRecoBranch

rec reco

float

Representation of artroot’s anab::Calorimetry

vector<SRPFP>
pfp

SRTrackCalol[3]
calo

SRTrack
trk

27

(He_nrbL_nb-Mver'sitaoFs\\e_Fﬁe_Ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lo*“ml_ArSOFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRTrackCalo.h

Branches we care about today...

The ‘points’ branches contain the track vector<SRSlice>
calorimetry information point by point. slc

float rr; //!< Res
float dqdx;
float dedx; //!< d

float pitch; //!< Tr
float t; //!<
float efield; //

StandardRecord SRSliceRecoBranch
k2ol o reco

pre calibration and electron lifetime correction

float sumadc; /
float width; //
short mult; !
short wire; //!
short tpc;
short start; //
short end; //!< e
unsigned channel;

SRTrueCaloPoint truth; //!< Truth information Ca[o

vector<SRPFP>
pfp

SRTrackCalol[3]

nnel of Calo-Point

vector<SRCaloPoint> SRTrack
points trk

28

(Henrth—Uﬁver—sitﬁoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lot“ml_ArSOFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRCaloPoint.h

Branches we care about today...

vector<SRSlice> SROpTOFinder
The ‘opt0’ branches contain information about slc opto
the flash that best matches this slice according
to the OpTOFinder algorithm.

int tpc; // tpc that the matching was performed in SRSI' R B h
o StandardRecord IceRecobranc
float score; // Op of the m: is the reciprocal of the LLH score or chi-squared score

float measPE; // tota [}

float hypoPE; // total PE of the shypothetical flash rec reco

Representation of artroot’s sbn::OpTOFinder

vector<SRPFP>
pfp

SRTrackCalol[3]
calo

vector<SRCaloPoint> SRTrack
points trk

29

(Henrth—Uﬁver—sitﬁoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lot“ml_ArSOFtw/s \

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SROpT0Finder.h

Some other interesting branches...

0 rec.slc.reco.pfp.shw O rec.hdr.pot
SRShower float
Shower representation of PFP (recob::Shower). Total POT associated with the subrun.
O rec.mc.nu O rec.slc.reco.pfp.[trk/shw].truth
SRTruelnteraction SRTrackTruth
True neutrino interaction (simb::MCTruth). PFP level truth matching completeness, purity and index.
C) rec.slc.reco.pfp.trk.crtspacepoint C) rec.slc.reco.pfp.[trk/shw].truth.p
SRCRTSpacePointMatch SRTrueParticle
CRTSpacePoint matched to a TPC track. True information about the best matched true particle.
O rec.slc.tmatch
SRTruthMatch

Slice level truth matching completeness, purity and index.

0 rec.slc.truth

SRTruelnteraction
True neutrino interaction matched to the slice (simb::MCTruth).

(w%-wthbo?smmeu \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lo“‘mmrs&tw/s \ 30

https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRShower.h
https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRTrueInteraction.h
https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRCRTSpacePointMatch.h
https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRTruthMatch.h
https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRTrueInteraction.h
https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRHeader.h
https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRTrackTruth.h
https://github.com/SBNSoftware/sbnanaobj/tree/develop/sbnanaobj/StandardRecord/SRTrueParticle.h

Finding branches yourself

What about all the branches | haven’t mentioned?

- Interrogating the CAF structure is more of an art than a science.

- There are a number of methods
- Directly investigating the tree structure in interactive ROOT sessions
- Following the object structure in sbnanaobj
- Asking the expertin a particular aspect of the simulation/reconstruction

(W%-MVM%OFS&FFQM \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lot“mLArsoFtw/s\ 31

Finding branches yourself

What about all the branches | haven’t mentioned?

Following the object structure in sbnanaobj

I’ve tried to give you the tools to go down this route, each of the Q symbols in previous
slides is a link to the relevant object in sbnanaobj and I've given screenshots of the

content of that object.

32

(W%-MVM%OFS&FFQM \ (Wednesday 29th october 2025 \ (cPoFmtoriaL-IO‘“mLArsOFtw/s \

https://www.youtube.com/watch?v=dQw4w9WgXcQ

Outline

Part 3: Tutorial, how do | make and use the CAFs?

(Hency Lay - University of Sheffiela] (Wednesday 29th October 2025] (cAF Tutorial - 10 ¥ UK LA-SoPt Wis] 33

Tutorial Outline

Goal: To learn how to use CAFAna to produce plots from SBND CAF files.

Content: We'll produce the same plots that you made in the analysis tutorial but this
time from the CAF files rather than your own trees. This should help you understand
how the CAF structure maps to the artroot objects you’ve been making/using all week!

(He_nrbu_qb—u-iver—s;tﬁoFs\«\eFﬁeld \ (Wednesday 29th October 2025 \ (cAFmtomL—lot“ml_ArSOFtw/s\ 34

Setting Up!
1. Setup your development area as you have all week.

We will also need sbnana to provide us with the ‘cafe’ command.

2. You can set this up by running setup sbnana v10_01_00 -q e26:prof. This is the
version consistent with sbndcode v10_06_01.

\

This is the version used in the
uk_larsoft_workshop 2025 branch!

35

(w%-wthbo?smmeu \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lo“‘mmrs&tw/s \

Making your CAF file!

There are a number of different CAF-making job fcls in sbndcode (O) they typically
vary based on the type of origin (neutrino, cosmic, both), type of sample (MC, data) and
whether or not you want to run systematic weight calculators or not.

We can use the “standard” neutrino one, despite our events being particle gun.
lar -c cafmakerjob_sbnd.fcl -s /PATH/TO/YOUR/RECO2/FILE
Note we can’t control the output file name with -T or -o, it’s form is set in the fcl file.

Once you have run this, you should find you have files called <reco2_name>.caf.root
and <reco2_name>.flat.caf.root in your directory.

If you don’t have a reco2 file you can use this prepared one: /scratch/LAR25/reconstruction/reco2_tutorial.root

36

(w%-wthbo?smmeu \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lo“‘mmrs&tw/s \

https://github.com/SBNSoftware/sbndcode/tree/develop/sbndcode/JobConfigurations/standard/caf

CAFAna 101

We’re going to be using CAFAna to produce our plots. CAFAna is a wrapper around the
normal ROOT framework. It consists of functionality to easily produce 1D, 2D, and 3D
distributions, normalise by exposure, make selections and perform oscillation fits.

There are two key ways of interacting with CAF files through CAFAna:

- Vars
- Cuts

Fundamentally both are just C++ functions. Vars return values to be used in distributions
whilst Cuts return booleans for selecting or rejecting. Both can call other Vars/Cuts
within their implementation and can be as complex or simple as required.

37

(l-\e.nrat.a::)-u-iverﬁtboFs\r\eﬂ-‘eld \ (Wednesday 29th october 2025 \ (cﬁrmtomL-D”‘mLArsOth/s \

CAFAna 101

Cuts and Vars can access the StandardRecord via two different ‘proxies’

- SRSpillProxy
- SRSliceProxy

< the ‘default’
The spill proxy allows Cuts and Vars to operate on a “once per event” basis

(StandardRecord) whilst the slice proxy allows them to operate on a “once per slice”
basis (SRSlice).

So we have Cut, Var, SpillCut, SpillVar, MultiVar and SpillMultiVar. The last two do what
they say on the tin, allow you to plot multiple values per proxy. This is done by returning

a vector of values instead of a single value.

38

(W%-MVM%OFS&FFQM \ (Wednesday 29th october 2025 \ (cPoFmtoriaL-IO‘“mLArsOFtw/s \

Baby’s First CAFAna Macro

So we know the boring “on paper” CAFAna basics, how does this actually look in reality
though?

(w%-wthbo?smmeu \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lo“‘mmrs&tw/s \ 39

Baby’s First CAFAna Macro

So we know the boring “on paper” CAFAna basics, how does this actually look in reality
though?

Make yourself a directory in your workshop area:

cd SMRB_SOURCE/sbndcode/sbndcode/Workshop
mkdir CAF
cd CAF

40

(HQ«BLQU-MthaoFs\neFﬁeld \ (Weckesdauy 2%th october 2025 \ (cﬁrmtoru-lot“mt_hrso(-‘tw/s \

Baby’s First CAFAna Macro

In that directory we are going to make our macro. I’'m calling mine Make_CAF_Plots.C
and opening it with emacs.

emacs -nw Make_CAF_Plots.C

(w%-wthbo?smmeu \ (Wednesday 29th october 2025 \ (cﬁrmtoru-lo“‘mmrs&tw/s \ 41

Baby’s First CAFAna Macro

In that directory we are going to make our macro. I’'m calling mine Make_CAF_Plots.C

and opening it with emacs.

emacs -nw Make_CAF_Plots.C

Reminder, the first plot we’re
planning on making is of all the
track lengths from our neutrino
candidate primary children...

42

(W%-MVM%OFS&FFQM \ (Wednesday 29th october 2025 \ (cPoFmtoriaL-IO‘“mLArsOFtw/s \

Baby’s First CAFAna Macro

In that directory we are going to make our macro. I’'m calling mine Make_CAF_Plots.C
and opening it with emacs.

emacs -nw Make_CAF_Plots.C

First let’s add all the #includes we’re going to need for our first plot...

#include "st
#include "“sbnai
#include "sb

using namespace ana,

#include "HenryVars.h"
#include "Hen P
#include "TCanvas.
#include "TH1.h"

43

(>Ha«bLnn-wauﬁkchswﬁFdd ‘\ (’ Wednesday 29th October 2025 \ (’cm=Tutmﬁ¢—w‘*UKLAma£tvﬂs]

Baby’s First CAFAna Macro

In that directory we are going to make our macro. I’'m calling mine Make_CAF_Plots.C
and opening it with emacs.

emacs -nw Make_CAF_Plots.C

First let’s add all the #includes we’re going to need for our first plot...

#include "st
#include "“sbnai
#include "sb

These headers give us access to the CAFAna
core utilities we want to use.

using namespace ana,

#include "HenryVars.h"
#include "Hen P
#include "TCanvas.
#include "TH1.h"

44

(>Ha«bLnn-wauﬁkchswﬁFdd ‘\ (’ Wednesday 29th October 2025 \ (’cm=Tutmﬁ¢—w‘*UKLAma£tvﬂs]

Baby’s First CAFAna Macro

In that directory we are going to make our macro. I’'m calling mine Make_CAF_Plots.C
and opening it with emacs.

emacs -nw Make_CAF_Plots.C

First let’s add all the #includes we’re going to need for our first plot...

#include '

#include "sbnana/C Dre; \ ler.

#include "sbnanaobj/StandardRecord/Proxy/SRProxy.h" This is the namespace all the useful CAF
objects live in. By declaring it here we don’t
have to write it out everytime, both in
#include "HenryVars.h" subsequent header files and the main body.
#include ' s.h"

#include '

#include '

(Henrth—Uﬁver—sitﬁoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (cAFTutor‘inl.—IOthLKl_ArSoFtW/S\ 45

Baby’s First CAFAna Macro

In that directory we are going to make our macro. I’'m calling mine Make_CAF_Plots.C
and opening it with emacs.

emacs -nw Make_CAF_Plots.C

First let’s add all the #includes we’re going to need for our first plot...

#include "“sl
#include "sbnai
#include "sbnan -
Header files where your personal Cuts and
using namespace ana; Vars are going to live. You can call them what
you like.
#include "HenryVars.h"
#include ' 5
#include "TCanvas.h" Don’t forget to create them (empty for now)
#include "TH1.h" touch HenryVars.h

touch HenryCuts.h

46

(>HmwﬁLnU-wausknchwﬁFdd ‘\ (’ Wednesday 29th October 2025 \ (>CN=Tutmﬁi—01*UKLﬂﬁ&ftvﬂs]

Baby’s First CAFAna Macro

In that directory we are going to make our macro. I’'m calling mine Make_CAF_Plots.C
and opening it with emacs.

emacs -nw Make_CAF_Plots.C

First let’s add all the #includes we’re going to need for our first plot...

#include "st
#include "“sbnai
#include "sb

using namespace ana,

#include "HenryVars.h"
#include "Hen : 2
'ffi,’h_ lude "TCa

ROOT plotting objects we are going to use.

#include "TH1.h"

47

(>Ha«bLnn-wauﬁkchswﬁFdd ‘\ (’ Wednesday 29th October 2025 \ (’cm=Tutmﬁ¢—w‘*UKLAma£tvﬂs]

Baby’s First CAFAna Macro

Now let’s add a skeleton body to our macro...

void Make CAF Plots()
{

const std::string inputName =

const TString saveDir = '

SpectrumLoader loader(inputName) ;

loader.Go();

}

('wyvaﬁj—u~wys@bostdﬁdd ‘\

scratch/LAR25/caf/reco2 t

rial.flat.caf.root":

(k hmdmuagbzﬂu~odmbm-2025

)

'

(cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

48

Baby’s First CAFAna Macro

Now let’s add a skeleton body to our macro...

void Make CAF Plots()
{

const std::string inputName =

const TString saveDir = "./plots"

SpectrumLoader loader(inputName) ;

loader.Go();

}

Like with ROOT, the main function
name should match the file name.

('wyvaﬁj—u~wys@bostdﬁdd ‘\

(Wecnesclay 29t\ october 2025

)

(cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

49

Baby’s First CAFAna Macro

Now let’s add a skeleton body to our macro...

void Make CAF Plots()
{

const std::string inputName = "/scratch/LAR25/caf/reco2 tut

const TString saveDir = "./plots";
SpectrumLoader loader(inputName) ;

loader.Go();

}

This points to the pre-prepared file | made, you can use this or point to your own!
The CAFAna functionality also supports using wildcards or samweb queries in this field.

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 50

Baby’s First CAFAna Macro

Now let’s add a skeleton body to our macro...

void Make CAF Plots()
{

const std::string inputName = "/scratch/LAR25/caf/reco2 tutorial.flat.caf.root";

const TString saveDir = '
SpectrumLoader loader(inputName) ;

loader.Go();

}

Choose somewhere to save the plots, please make sure the directory exists!

51

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

Baby’s First CAFAna Macro

Now let’s add a skeleton body to our macro...

void Make CAF Plots()
{

const std::string inputName = "/scratch/LAR25/caf/reco2 tut

const TString saveDir = "./plots";
SpectrumLoader loader(inputName) ;

loader.Go();

}

The SpectrumLoader is a key object in CAFANa, it fills spectra from the dataset given to it. In our
skeleton function we’ve not asked for any spectra yet!

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 52

Baby’s First CAFAna Macro

Let’s just check this macro runs!
cafe -b - Make_CAF_Plots.C

‘cafe’ is the CAFAna command (a wrapper on the ‘root’ command)
-b tells ROOT to run in batch mode (no graphics)
-q tells ROOT to quit on completion of the macro

Remember we haven’t really told the macro to do anything yet, so we’re not expecting
any plots!

53

(W%-MVM%OFS&FFQM \ (Wednesday 29th october 2025 \ (cPoFmtoriaL-IO‘“mLArsOFtw/s \

Baby’s First CAFAna Macro

Time to make a first Cut function. This should be placed inside your ‘Cuts’ header. The
purpose of this first cut is to ensure we only look at Pandora’s neutrino candidate slices.

const Cut kIsNeutrinoCandidateSlice([](const caf::SRSliceProxy *slc) {
return !slc->is_clear_cosmic;

});

(Henrhmd—mVersitﬁoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (CAFTut.or‘inL—IOthLKl_ArSoFtW/S\ 54

Baby’s First CAFAna Macro

Time to make a first Cut function. This should be placed inside your ‘Cuts’ header. The
purpose of this first cut is to ensure we only look at Pandora’s neutrino candidate slices.

const Cut kIsNeutrinoCandidateSlice([](const caf::SRSliceProxy *slc) {

recurn !slc->is_clear_cosmic;

k)

As we learned earlier, Cut is used on a SliceProxy (with SpillCut being used on SpillProxy).

(Henrhmd—wversitaoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (CAFTLLt.or‘inL—IOt“LKl_ArSoFtW/S\ 55

Baby’s First CAFAna Macro

Time to make a first Cut function. This should be placed inside your ‘Cuts’ header. The
purpose of this first cut is to ensure we only look at Pandora’s neutrino candidate slices.

const Cut kIsNeutrinoCandidateSlice([](const caf::SRSliceProxy *slc) {

return :sic->1s_cilear_Cosmic;

});

This is the name we will use to enact this cut in our spectra.

(Henrhmd—mVersitﬁoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (CAFTut.or‘inL—IOthLKl_ArSoFtW/S\ 56

Baby’s First CAFAna Macro

Time to make a first Cut function. This should be placed inside your ‘Cuts’ header. The
purpose of this first cut is to ensure we only look at Pandora’s neutrino candidate slices.

const Cut kTcNentrinnCandidateSlice([](const caf::SRSliceProxy *slc) {
return !slc->is_clear_cosmic;

3 i

Finally, and most importantly, the body. In this case the body is incredibly simple, we just use a
single field of the SRSlice object (Q) in order to ensure all “clear cosmics” fail this cut.

(Henrhmd—wversitaoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (CAFTLLt.or‘inL—IOt“LKl_ArSoFtW/S\ ST

https://github.com/SBNSoftware/sbnanaobj/blob/develop/sbnanaobj/StandardRecord/SRSlice.h#L59

Baby’s First CAFAna Macro

Next we will make the Var we want to plot. Place this in your ‘Vars’ header. We want to
plot the track lengths for children of the neutrino candidate.

const MultiVar kChildTracklLengths([](const caf::SRSliceProxy *slc) -> std::vector<double> {
Slu::vecwur<double> tracklLengths;

for(auto const& pfp : slc->reco.pfp)

{
if(!pfp.parent_is primary || pfp.parent == -1)
continue;

trackLengths.push back(pfp.trk.len);
}

return trackLengths;

1

We are using a MultiVar because we want to plot multiple entries per slice. As such, the return
type must be a vector.

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 58

Baby’s First CAFAna Macro

Next we will make the Var we want to plot. Place this in your ‘Vars’ header. We want to
plot the track lengths for children of the neutrino candidate.

const MultiVar kChildTracklLengths([](const caf::SRSliceProxy *slc) -> std::vector<double> {
std: :vector<double> tracklLengths;

for(auto const& pfp : slc->reco.pfp)

{
if(!pfp.parent_is primary || pfp.parent == -1)
continue;

trackLengths.push back(pfp.trk.len);
}

return trackLengths;

1

We loop through all the PFPs in the slice, and we only consider those whose parents were
the primary (we also have to exclude the primary itself).

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 59

Baby’s First CAFAna Macro

Next we will make the Var we want to plot. Place this in your ‘Vars’ header. We want to
plot the track lengths for children of the neutrino candidate.

const MultiVar kChildTrackl enaths(l1(const caf::SRSliceProxy *slc) -> std::vector<double> {
std: :vector<double> tracklLengths;

for(auto const& pfp : slc->reco.pfp)

{
if(!pfp.parent_is primary || pfp.parent == -1)
continue;

trackLengths.push back(pfp.trk.len);
}

return trackLengths;

1

The track lengths of interest are filled into a vector which is then returned.

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 60

Baby’s First CAFAna Macro

Next we will make the Var we want to plot. Place this in your ‘Vars’ header. We want to
plot the track lengths for children of the neutrino candidate.

const MultiVar kChildTracklLengths([](const caf::SRSliceProxy *slc) -> std::vector<double> {
std: :vector<double> tracklLengths;

for(auto const& pfp : slc->reco.pfp)
{
if(!pfp.parent_is primary || pfp.parent == -1) .
continue; Do you recognise the branch
trackLengths.push back(pfp.trk.len); names fI’OITI ourmap earlier?

}

return trackLengths;

1

(Henrbmb—wverstaoFsheFﬁdd \ (Wednesday 29th October 2025 \ (cAFmtor‘iqL—IOt“LKl_ArsOFtW/s \ 61

Baby’s First CAFAna Macro

Let’s move back to the macro file and implement our plot. We now add a couple of lines
between creating our SpectrumLoader and setting it off.

SpectrumLoader loader(inputName);
|

Binninc‘trackLonqthBins = Binning::Simple(70, 0, 350);

Spectrum *sChildTrackLength = ﬁeﬁ Spectrum(”"sChildTrackLength”, trackLengthBins, loader, kChildTrackLengths,
kNoSpillCut, kIsNeutrinoCandidateSlice);

loader.Go();

62

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

Baby’s First CAFAna Macro

Let’s move back to the macro file and implement our plot. We now add a couple of lines
between creating our SpectrumLoader and setting it off.

SpectrumLoader loader(inputName);

Nii Nt 1 | | ul
Binning trackLengthBins = Binning::Simple(70, 0, 350);

Spectrum *sChildTrackLength = ﬁeﬁ Spectrum(”"sChildTrackLength”, trackLengthBins, loader, kChildTrackLengths,
kNoSpillCut, kIsNeutrinoCandidateSlice);

loader.Go();

Create a binning scheme we want to use, in this case 70 equally divided bins between 0 and 350cm. There are
other functions (not ‘Simple’) that support variable length bins (O).

63

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \

https://github.com/SBNSoftware/sbnana/blob/develop/sbnana/CAFAna/Core/Binning.h

Baby’s First CAFAna Macro

Let’s move back to the macro file and implement our plot. We now add a couple of lines
between creating our SpectrumLoader and setting it off.

SpectrumLoader loader(inputName);

Nii Nt 1 | | ul
Binning trackLengthBins = Binning::Simple(70, 0, 350);

Spectrum *sChildTrackLength = ﬁeﬁ Spectrum(”"sChildTrackLength”, trackLengthBins, loader, kChildTrackLengths,
kNoSpillCut, kIsNeutrinoCandidateSlice);

loader.Go();

Create a (1D) Spectrum object by passing: a name, a binning scheme, the loader with the relevant dataset, the
Var you want to plot, any SpillCuts and any Cuts. There are lots of Spectrum constructor functions (O)
covering different dimension plots and different types of Vars.

64

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \

https://github.com/SBNSoftware/sbnana/blob/develop/sbnana/CAFAna/Core/Spectrum.h

Baby’s First CAFAna Macro

Finally, once the loader has run, we can produce our plots.

loader.Go();

TCanvas *cChildTrackLength = new TCanvas("cChildTrackLength”, "cChildTrackLength");
cChildTrackLength->cd();

THID *hChildTrackLength = sChildTrackLength->ToTHl1(sChildTrackLength->Livetime(), kLivetime);
hChildTrackLength->SetTitle(";Track Length (cm);Primary Children");
hChildTrackLength->Draw("histe");

cChildTrackLength->SaveAs(saveDir + "/child track length.pdf");
cChildTrackLength->SaveAs(saveDir + "/child_track_length.png”);

Hen - Universitu of s\heffiela Wedre: 29\ october 2025 cAF Tutorial - 10 ® Uk LArSoft Wis 65
oy Lay ty Sclayy

Baby’s First CAFAna Macro

Finally, once the loader has run, we can produce our plots.

loader.Go();

TCanvas *cChildTrackLength = new TCanvas("cChildTrackLength”, "cChildTrackLength");
cChildTrackLength->cd();

THID *hChildTrackLength = sChildTrackLength->ToTHl1(sChildTrackLength->Livetime(), kLivetime);
hChildTrackLength->SetTitle(";Track Length (cm);Primary Children");
hChildTrackLength->Draw("histe");

cChildTrackLength->SaveAs(saveDir + "/child track length.pdf");
cChildTrackLength->SaveAs(saveDir + "/child_track_length.png”);

Create a canvas to host the plot.

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 66

Baby’s First CAFAna Macro

Finally, once the loader has run, we can produce our plots.

loader.Go();

TCanvas *cChildTrackLength = new TCanvas("cChildTrackLength”, "cChildTrackLength");
cChildTrackLength->cd();

THID *hChildTrackLength = sChildTrackLength->ToTHl1(sChildTrackLength->Livetime(), kLivetime);
hChildTrackLength->SetTitle(";Track Length (cm);Primary Children");
hChildTrackLength->Draw("histe");

cChildTrackLength->SaveAs(saveDir + "/child track length.pdf");
cChildTrackLength->SaveAs(saveDir + "/child_track_length.png”);

Create a histogram object from our Spectrum and then draw it! We give it axis titles and then draw it with
(statistical) error bars.

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 67

Baby’s First CAFAna Macro

Finally, once the loader has run, we can produce our plots.

loader.Go();

TCanvas *cChildTrackLength = new TCanvas("cChildTrackLength”, "cChildTrackLength");
cChildTrackLength->cd();

THID *hChildTrackLength = sChildTrackLength->ToTHl1(sChildTrackLength->Livetime(), kLivetime);
hChildTrackLength->SetTitle(";Track Length (wmj;rrimary vniwuren j;
hChildTrackLength->Draw("histe");

cChildTrackLength->SaveAs(saveDir + "/child track length.pdf");

cChildTrackLength->SaveAs(saveDir + “/child_track_length.png”);

Crucially we have to tell the Spectrum what exposure we want it to scale the plot to (it knows the exposure of
the dataset it was given). You can pass it a POT or a Livetime (the default is POT, hence we specify kLivetime to
tell it to treat the first number as a Livetime). | have ‘hacked’ it slightly to ensure in this scenario we scale to the
original size of the sample (scale by 1).

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \

68

Baby’s First CAFAna Macro

Finally, once the loader has run, we can produce our plots.

loader.Go();

TCanvas *cChildTrackLength = new TCanvas("cChildTrackLength”, "cChildTrackLength");
cChildTrackLength->cd();

THID *hChildTrackLength = sChildTrackLength->ToTHl1(sChildTrackLength->Livetime(), kLivetime);
hChildTrackLength->SetTitle(";Track Length (cm);Primary Children");
hChildTrackLength->Draw("histe");

cChildTrackLength->SaveAs(saveDir + "/child track length.pdf");
cChildTrackLength->SaveAs(saveDir + "/child_track_length.png”);

Let’s save our plot in the directory we made earlier. | have chosen to save it as both a png and a pdf.

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \ 69

You did it!

You should now be the proud

owner of one track length plot,
look after it well!

Primary Children

If you’ve used the same file as you
used in the analysis workshop it
should also look identical!

0 100

200 300

Track Length (cm)
(He_nrbL_nb-Mver'sitaoFs\\e_Fﬁe_Ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lo*“ml_ArSOFtw/s \

70

Wrap Up

- Hopefully that wasn’t too much of a whirlwind!

- Key takeaways:
- CAFs are tree files produced as standard outputs from SBND productions
- They have an “object” driven structure which lives in sbnanaobj
- CAFAna provides a C++ framework for analysing the CAF files.
- Ifyou are a python fan, Sungbin has written a wonderful framework for analysing SBND CAFs in python,
cafpyana. See: https://github.com/sungbinoh/cafpyana/wiki

(w%-wwtno(-‘s\aemdd \ (Wednesday 29th october 2025 \ (cﬁrmtoru.-lo”‘mn.hrso&w/s\ &

https://github.com/sungbinoh/cafpyana/wiki

Wrap Up

- Hopefully that wasn’t too much of a whirlwind!

- Key takeaways:
- CAFs are tree files produced as standard outputs from SBND productions
- They have an “object” driven structure which lives in sbnanaobj
- CAFAna provides a C++ framework for analysing the CAF files.
- Ifyou are a python fan, Sungbin has written a wonderful framework for analysing SBND CAFs in python,
cafpyana. See: https://github.com/sungbinoh/cafpyana/wiki

- | have provided a “hidden” CAFAna macro in the CAF directory of the workshop area
- Is-la SMRB_SOURCE/sbndcode/sbndcode/Workshop/CAF/
- This macro and associated headers allows you to produce all the plots from the analyzer tutorial (and more).
- Indoing so it gives examples of 2D plots as well as using SpillCuts, Spillvars and truth information.
- Backup slides have information on this...

(w%-wwtno(-‘s\aemdd \ (Wednesday 29th october 2025 \ (cﬁrmtoru.-lo”‘mn.hrso&w/s\ 2

https://github.com/sungbinoh/cafpyana/wiki

Outline

[Henr_‘d L__n:j - u-ivers;gj of s\effela] [We_dneﬂ 29t\ october 2025] [chAF Tutorial - 10 ® Uk LASOFt Wis] 3

Side Note: Style

| added a little function to my macro to control a few global style parameters. Note, the
best way to do this consistently across all your macros is to use the rootlogon.C file.

#include “"IStyle.h”

void SetupStyle()

#include "TROO!.N" {

gStyle->SetLineWidth(4);

gStyle->SetMarkerStyle(8);
gStyle->SetMarkerSize(.5);
gStyle->SetTitleOffset(.8, "y");

gROOT->ForceStyle();

New function which is called at the start ‘E‘”“ Make CAF_Plots()
of the main function. SetupStyle():

(He_nr:jmb—uvivers;taoFshe_Fﬁe_ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lo*“ml_Ar&Ftw/s \ 4

Plot 2: dE/dx vs. Residual Range

The next plot we wanted to make is the 2D distribution of dE/dx against residual range
for all our tracks. In the macro we will need a new include, 2 new binning schemes, a
new spectrum and a new plotting block. You can work out where to put them...

#include . Binning dEdxBins = Binning::Simple(180, O, 30);
S ptiniizl ' Binning resRangeBins = Binning::Simple(200, O, 50);

Spectrum *sChildTrackdEdxResRange = new Spectrum("sChildTra Range”, loader, resRangeBins, KkChildTrackResRange,
dEdxBins, _hildTrackdEdx, kNoSpillCut, kIsNeutrinoCandidateSlice);

TCanvas *cChildTrackdEdxResRange = new TCanvas("cChildTrackdEdxResRange", "cChildTrackdEdxResRange");

cChildTrackdEdxResRange->cd();

hChildTrackdEdxResRange = (TH2D) sChildTrackdEdxResRange->ToTH2(sChildTrackdEdxResRange->Livetime(),
cm) ;dE/dx (MeV/cm) ;Primary Children");

kLivetime) ;

TH2D
hChildTrackdEdxResRange->SetTitle(";Residual Range
hChildTrackdEdxResRange->Draw("colz");

“/child_track dedx resrange.pdf”);

cChildTrackdEdxResRange->SaveAs(saveDir +
“/child_track _dedx_resrange.png");

cChildTrackdEdxResRange->SaveAs(saveDir +

75

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \

Plot 2: dE/dx vs. Residual Range

The next plot we wanted to make is the 2D distribution of dE/dx against residual range
for all our tracks. In the macro we will need a new include, 2 new binning schemes, a
new spectrum and a new plotting block. You can work out where to put them...

#include . Binning dEdxBins = Binning::Simple(180, O, 30);
S ptiniizl ' Binning resRangeBins = Binning::Simple(200, O, 50);

Spectrum *sChildTrackdEdxResRange = new Spectrun ("sChildTra ange"”, loader, resRangeBins, kChildTrackResRange,
ckdEdx, kNoSpillCut, kIsNeutrinoCandidateSlice);

TCanvas *cChildTrackdEdxResRange = new TCanvas("cChildTrackdEdxResRange", "cChildTrackdEdxResRange");
cChildTrackdEdxResRange->cd();

sChildTrackdEdxResRange->ToTH2(sChildTrackdEdxResRange->Livetime(), kLivetime);

H2D *hChildTrackdEdxResRange = (TH2D*)
cm) ;dE/dx (Mev/cm);Primary Children");

nthitdTrackdEdxResRange->SetTitle(" ;Residual Range
hChildTrackdEdxResRange->Draw("colz");

ChildTrackdEdxResR SaveAst D [Ld | :) Key differences are in the order of arguments for the
clh rac dXKesrange->>aveAs(save E /CN1ld_TrackK_adedx_resrange. pat - g
cChildTrackdEdxResRange->SaveAs(saveDir + "/child_track dedx resrange.png"); el ele i praglietion el a Uz net kL

76

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \

Plot 2: dE/dx vs. Residual Range

The next plot we wanted to make is the 2D distribution of dE/dx against residual range
for all our tracks. We also need the two variables in our Var file!

const MultiVar LldTrackdEdx([](const caf::SRSliceProxy *slc) -> std::vector<double> {
std::vector<double> dEdx;

for(auto const &pfp : slc->reco.pfp)
if(!pfp.parent_is_primary || pfp.parent

continue;

(auto const& point : pfp.trk.calo[2].points)
dx.push_back(point.dedx);

¥

return dEdx;
1}

const MultiVar kChildTrackResRange([](const caf::SRSliceProxy *slc) -> std::vector<double> {
std: :vector<double> rr;

for(auto const &pfp : slc->reco.pfp)

if(!pfp.parent_is_primary || pfp.parent

ontinue;

for(auto const& point : pfp.trk.calo[2].points)
rr.push_back(point.rr);

77

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

Plot 2: dE/dx vs. Residual Range

The next plot we wanted to make is the 2D distribution of dE/dx against residual range
for all our tracks. We also need the two variables in our Var file!

const MultiVar kChildTrackdEdx([](const caf::SRSliceProxy *slc) -> std::vector<double> {
std::vector<double> dEdx;

for(auto const &pfp : slc->reco.pfp)

if(!pfp.parent_is_primary || pfp.parent == -1)
continue;

We use the same selection as the track length

for(auto const& point : pfp.trk.calo[2].points)
dEdx.push_back(point.dedx); plOt

}
return dEdx;

Itis important we use the same selection in both
onst MultiVar kChildTrackResRange([](const caf::SRSliceProxy *slc) -> std::vector<double> { . .
std: :vector<double> rr; of these Vars, otherwise we will have two
for(auto const &pfp : slc->reco.pfp) o
(. e different length vectors and the correspondence

if(!pfp.parent_is_primary || pfp.parent == -1)

ontinue; between values will be lost.

for(auto const& point : pfp.trk.calo[2].points)
rr.push_back(point.rr);

}

return rr;

3

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

78

Plot 2: dE/dx vs. Residual Range

The next plot we wanted to make is the 2D distribution of dE/dx against residual range
for all our tracks. We also need the two variables in our Var file!

const MultiVar kChildTrackdEdx([](const caf::SRSliceProxy *slc) -> std::vector<double> {
std::vector<double> dEdx;

for(auto const &pfp : slc->reco.pfp)

if(!pfp.parent_is_primary || pfp.parent == -1

R ‘ | We’ve chosen the collection plane, like we did in
for(auto const& point : pfp.trk.calo[2].points) the analyzertutorial

dEdx.push_back(point.dedx);
}

return dEdx;

We can then loop through the calorimetry points
onst MultiVar kChildTrackResRange([](const caf::SRSliceProxy *slc) -> std::vector<double> { .
81d: :vectorsuouble Fr; to get the dE/dx and residual range values.

for(auto const &pfp : slc->reco.pfp)

if(!pfp.parent_is_primary || pfp.parent == -1)

ontinue;

for(auto const& point : pfp.trk.calo[2].points)
rr.push_back(point.rr);

}

return rr;

3

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

79

Plot 2: dE/dx vs. Residual Range

dE/dx (MeV/cm)

This one does look a little different to the one we
30 =r=—r—T—r— I T T 5 .
- made earlier.
25 . . .
& It still has the two populations, but it cuts off at
. 25cm and then has some smattering around
3 30cm from the higher ionising set.
15
3 A This is because the CAFs only keep the last 25cm
10f= & and first 5cm of calorimetry for each track (to
.o -
et e T 2 save space) (O).
i eniBieen Sud 1
. TR A healthy reminder to investigate all features of
T - T L T your plots, and think about code-based reasons
Residual Range (cm) as well as physics reasons for what you’re seeing.

80

(He.mhu_qa—u-iver—s;tao(!s\«emeld \ (Wednesday 29th October 2025 \ (cAFmtmaL—lot“ml_ArsOFtw/s \

https://github.com/SBNSoftware/sbncode/blob/develop/sbncode/CAFMaker/CAFMakerParams.h#L498-L508

Plots 3 & 4: Separating the longest track

We now want to separate our track length and dE/dx vs. residual range plots by which

track is longer. A simple particle identification technique. This gives us a chance to call
one Var within another Var.

const Var kLongestTrack([](const caf::SRSliceProxy *slc) -> int {
double maxLength std::numeric_limits<double>::lowest();
int maxLengthID std::numeric_limits<int>::signaling_NaN();

int 1= -1:

for(auto const& pfp : slc->reco.pfp)
{

++1;
if(!pfp.parent is primary || pfp.parent == -1) First we make a Var that returns the index of the

continue; . .
ik longest track in that slice.
if(pfp.trk.len > maxLength)
{
maxLength = pfp.trk.len;
maxLengthID = i;
}

}

return maxLengthlID;
1)

(He_anL_n:j—LHver'sitUoFs\«eFﬂeLd \ (Wednesday 29th October 2025 \ (cAFmtoriqL—lo*“ml_ArSoFtw/s \ 81

Plots 3 & 4: Separating the longest track

We now want to separate our track length and dE/dx vs. residual range plots by which
track is longer. A simple particle identification technique. This gives us a chance to call

one Var within another Var.

ildTrackLengthLongestTrack([](const caf::SRSliceProxy *slc) -> double {
engthID = kLongestTrack(slc);

its<int>::signaling_NaN())
e>::signaling_NaN();

rackLengthOtherTracks([](const caf::SRSliceProxy *slc) -> std::vector<double> {

ouble> tracklLengths;

int maxLengthID = kLongestTrack(slc);

int 1 = -1; Then we use that index to make a Var that returns
the track length of the longest track and a MultiVar

that returns the track lengths of the other tracks.

nst& pfp : slc->reco.pfp)

-1)

if(!pfp.parent_is primary || pfp.parent ==
ontinue;

if(maxLengthID == 1)
continue;

trackLengths.push back(pfp.trk.len);

return trackLengths;

1)

82

(cAF Tutorial - 10 ¥ UK LArSoPt Wis \

(He_nr'b Loy - Univer'sita of s\effela \ (We_d\eﬁdcxa 29t\ october 2025 \

Plots 3 & 4: Separating the longest track

We now want to separate our track length and dE/dx vs. residual range plots by which
track is longer. A simple particle identification technique. This gives us a chance to call

one Var within another Var.

Spectrum *sChildTracklLengthLongestTrack = new Spectrum(“sChildTrackLengthlLongestTrack", trackLengthBins, loader,
kChildTracklLengthLongestTrack, kNoSpillCut, kIsNeutrinoCandidateSlice);
Spectrum *sChildTrackLengthOtherTracks = new Spectrum("sChildTracklLengthOtherTracks", trackLengthBins, loader,
kChildTrackLengthOtherTracks, kNoSpillCut, kIsNeutrinoCandidateSlice);
ngelLongestTirack”, loader, resRangeBins,
kChildTrackResRangelLongestTrack, dEdxBins, kChildTrackdEdxLongestTrack,
kNoSpillCut, kIsNeutrinoCandidateSlice);
Spectrum("sChildTrackdEdxResRangeOtherTracks"”, loader, resRangeBins,
kChildTrackResRangeOtherTracks, dEdxBins, kChildTrackdEdxOtherTracks,
kKNoSpillCut, kIsNeutrinoCandidateSlice);

Spectrum *sChildTrackdEdxResRangelLongestTrack = new Spectrum(“"sChildTrackdEdxf

Spectrum *sChildTrackdEdxResRangeOtherTracks = new

We will need two spectrums for each of these plots... One for the longest track and one for the other tracks.

83

(He_nrbL_nb-Mver'sitaoFs\\e_Fﬁe_Ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lo*“ml_ArSOFtw/s \

Plots 3 & 4: Separating the longest track

We now want to separate our track length and dE/dx vs. residual range plots by which
track is longer. A simple particle identification technique. This gives us a chance to call

one Var within another Var.

rum *sChildTrackLengthLongestTrack = new Spectrum(’ dlracklLe , trackLengthBins, loader,

k(hlldTra(kangthlongestTr3(k kNoSpillCut, kIsNeutrinoCandidateSlice);
*sChildTrackLengthOtherTracks = new Spectrum("s dTrackLengthOtherTracks", trackLengthBins, loader,
kChildTldeLenthOLhelT , kNoSpillCut, kIsNeutrinoCandidateSlice);

rum *sChildTrackdEdxResRangelLongestTrack = new Spectrum("sChildTrackdEd

rum
(tTrack”, loader, resRangeBins,
kChildTrackResRangelLongestTrack, dEdxBins, kChildTrackdEdxLongestTrack,
kNoSpillCut, kIsNeutrinoCandidateSlice);
'sChildTrackdEdxResRangeOtherTracks", loader, resRangeBins,
kChildTrackResRangeOtherTracks, dEdxBins, kChildTrackdEdxOtherTracks,
kKNoSpillCut, kIsNeutrinoCandidateSlice);

Spectrum *sChildTrackdEdxResRangeOtherTracks = new Spectrum(

Back in the macro, we will need two spectrums for each of these plots... One for the longest track and one for

the other tracks.
We’re also going to need this include in a moment, so we can make a legend to distinguish the two components.

nclude “"TlLegend.h'

84

(He_nrbL_nb-Mver'sitaoFs\\e_Fﬁe_Ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lo*“ml_ArSOFtw/s \

Plots 3 & 4: Separating the longest track

We now want to separate our track length and dE/dx vs. residual range plots by which
track is longer. A simple particle identification technique. This gives us a chance to call

one Var within another Var.

[Canvas *cChildTrackLengthSeparated = new TCanvas(“"cChildTrackLengthSeparated", "cChildTracklLengthSe

cChildTrackLengthSeparated->cd();

TH1D *hChildTrackLengthLongestTrack = J(hlldTla(KLOHchLOHQCStTId(K >ToTH1(sChildTrackLengthLongestTrack->Livetime(), kLivetime);
hChildTrackLengthLongestTrack- >Ser|1719(ack Length (cm);Primary Children");

hChildTrackLengthlLongestTrack- >Setl1n9(olor(kMagenTa+))

hChildTrackLengthLongestTrack->Draw("histe");

TH1ID *hChildTrackLengthOtherTracks = sChildTrackLengthOtherTracks->ToTH1(sChildTrackLengthOtherTracks->Livetime(), kLivetime);

hChildTrackLengthOtherTracks- >>9rllno(olor(KO|anqe+2)
hChildTrackLengthOtherTracks->Draw("h X X

TLegend *1ChildTrackLengthSeparated = new TLegend(.4, .65, .6, .8);
LChildTrackLengthSeparated->AddEntry(hChildTrackLengthLongestTrack,
LChildTrackLengthSeparated->AddEntry(hChildTrackLengthOtherTracks,
LChildTracklLengthSeparated->Draw();

cChildTrackLengthSeparated->SaveAs(saveDir + "/child track
cChildTrackLengthSeparated->SaveAs(saveDir + "/child track_

We have a longer plotting block this time! This is the track length

85

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

Plots 3 & 4: Separating the longest track

We now want to separate our track length and dE/dx vs. residual range plots by which
track is longer. A simple particle identification technique. This gives us a chance to call

one Var within another Var.

[Canvas *cChildTrackLengthSeparated = new TCanvas("cChildTrackLengthSeparated", "cChildTracklLengthSeparated");

cChildTrackLengthSeparated->cd();

TH1D *hChildTrackLengthLongestTrack = J(hlldTla(KLOHchLOHQCStTId(K >ToTH1(sChildTrackLengthLongestTrack->Livetime(), kLivetime);
h{h1lr”v'url(Ionn?hlnnnncrlrﬁrl.,skn*rl1flnt’-l-'u.« lanath []|1r”, Children ')'

h(hlldTrarkl@ngrhlongestTra(k >Setl1n9(olor(kMagenT1+))

nuniLgirackrengunrongesuiracKk-2uraw| ILSEEe" };

THID *hChildTrackl enathftherTracke = sChildTrackl enathOtherTracks->ToTH1(sChildTrackLengthOtherTracks->Livetime(), kLivetime);

hChildTrackLengthOtherTracks->SetlLineColor(kOrange+2);

NMUNLLUTTaLRALENIYLIIvVLIIET 1T alLnR>-~Uiawl s Lesame),

TLegend *1ChildTrackLengthSeparated = new TLegend(.4, .65, .6, .8);
LChildTrackLengthSeparated->AddEntry(hChildTrackLengthLongestTrack,)
LChildTrackLengthSeparated->AddEntry(hChildTrackLengthOtherTracks, “Othe
LChildTracklLengthSeparated->Draw();

cChildTrackLengthSeparated->SaveAs(saveDir + "/
cChildTrackLengthSeparated->SaveAs(saveDir +

We set different line colours and make a legend to help distinguish the two. “le” means include the line
and error line in the legend display.

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

86

Plots 3 & 4: Separating the longest track

This went through the track length plot, the dE/dx vs. residual range plot is very similar.
You can work it out! Remember the solutions are available in the workshop branch!

C L] L] L] L] Ll L] L] Ll L] L] L] —_ L] L] L] L] L] Ll L] L] L] o
9_) 6= | || |] E || || s
S | L :
S -+- Longest Track % « Longest Track =
> + Other Tracks g’ ¢ Other Tracks .
@ x i
E L — Q -
= L .
o |||| © .
2 — =

X]

0 PR S S [T S S ST (S |SS—" — | I 0 1 1]

0 100 200 300 0 10 20 30 : 40 50
Track Length (cm) Residual Range (cm)

87

(Henrhmd—mVersitﬁoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (cAFmtoriaL—lot“ml_ArSOFtw/s \

Plot 5: OpTO Finder Time

This one actually becomes very straightforward!

Var : :SRSliceProxy *slc) -> double {

const KOpTOTime([](const caf

slc->optO.time;

return

35

Binning optOTimeBins = Binning::Simple(50, 1.6,

Spectrum *sOpTOTime = new Spectrum(“sOpTOTime", optOTimeBins, loader, kOpTOTime,

Canvas *cOpTOTime = new TCanvas("cOpTO@Time", "cOpTOTime");

cOpTOTime->cd();

*hOpTOTime = sOpTOTime- \TOTHl(sOpTOTlme >Livetime(),
>SetTitle(";0pTO Matched T@ (#mu s);Slices");
>50tL1ne(olor(kbreono2),

>Draw("histe");

TH1D

hOpTOTime -
hOpTOTime
hOpTOTime-

cOpTOTime->SaveAs (saveDir +
cOpTOTime->SaveAs(saveDir + "/o

kLivetime);

('wyvaﬁj—wayskbostﬁ%dd \ (k hmamuagbzﬁu«odmbm-zozs

)

kNoSpillCut,

kIsNeutrinoCandidateSlice);

Slices

1.6

06 1.602 1.604 1.606 608
OpT0 Matched TO (n s)

(cAF Tutorial - 10 ¥ UK LA-SoPt Wis \

88

Extra Plots

In the sbndcode/Workshop/CAF/ directory you should find the solutions. You will also
find a second set of files Extra_Plots.C ExtraVars.h ExtraCuts.h

In these files you will find examples that use SpillVar and SpillCut it also introduces POT
scaling, truth information, neutrino event files and variable binning.

8 3

T
———
Neutrinos (1x10°" POT)
Events (1x10?' POT)

Neutrino Candidate Slices (1x10?' POT)

0.8 1 0 1 2 3 4 0 5 10 15 20
Completeness E, (GeV) N Slices

- University of Sheffield \ (Wednesday 29th October 2025 \ (cAF Tutorial - 10 ¥ UK LArSoPt Wis \ 89

|
;

Extra Plot 1

Plot of true neutrino energy.

x10°

- Note we are reading a different CAF file. Not the
1ulp files we made but a GENIE neutrino file |
made for you.

- Forthefirst time we’ve used Binning::Custom
instead of Binning::Simple to provide these
variable length bins. 2000 N

- I have ‘POT-scaled these plots’ (check the P —|—‘_|_,
ToTH1() functions). | chose 1x10%! POT, the oL : : :]
total expected exposure of SBND. EctGev)

- The SpillMultiVar used returns all true neutrino
energies from this event.

D
o
(=3
o

Neutrinos (1x10?' POT)
S
|
1

Ny ——

(He_nrbu_qb—u-iver—s;tﬁoFs\«\eFﬁeld \ (Wednesday 29th October 2025 \ (cAFmtomL—lot“ml_ArSOFtw/s\ 90

Extra Plot 2

Plot of total number of slices

- This looks at the total number of slices in this
event.

- Note that, despite the POT scaling, the
statistical error bars have been preserved to
the sample scale.

)

~

Events (1x10?' POT

3000

2000

1000

x10°
r——

20
N Slices

(Heny Lay - University of Sheffela \

(We_dneﬁdcxn 29t\ october 2025

(cAFmtor-inl.

- 10 * Uk LArSoft Wis \

91

Extra Plot 3

Plot of number of neutrino candidate
compared to clear cosmic slices.

0

- Splitting the total number of slices into 600
Pandora’s “neutrino candidate” and “clear
cosmic” categories. -

- Useof a TLegend again.

- The clear cosmics histogram was made by an
example of subtracting one Spectrum from
another, this saved making an extra Spectrum 0

to be filled during running!

Events (1x10?' POT)

2000

10 15 20
N Slices

92

(Henrhmd—wversitaoFsheFﬁe_ld \ (Wednesday 29th October 2025 \ (cAmeL—lot“ml_ArSOFtw/s \

Extra Plot 4

Plot of some neutrino candidate slices’

completenesses T

- Completeness is a measure of how much of the
true neutrino activity made it into that slice.

- To demonstrate the use of both a SpillCut and
Cut in the same Spectrum | made a very
unrealistic selection (only neutrino candidate
slices are plotted for events with exactly one
neutrino candidate slice). Normally you would

N
=]
S
S

I

(9
o
o
(=]

|

N
o
o
o

|

—_
(=]
o
o

|

o
LEL LI |

Neutrino Candidate Slices (1x10%' POT)

make a much more sophisticated choice!

0.2

(Hency Lay - University of Sheffiela \ (Wednesday 29th October 2025

)

(cAF Tutorial - 10 ¥ UK LArSoPt Wis \

93

