Writing your First Analyz(s)er

29" October 2025 RUN 14445, EVENT 120
',%é: July 04, 2024
10" UK LArTPC Software & Analysis
Workshop

Isobel Mawby & Alex Wilkinson
alex.j.wilkinson@warwick.ac.uk &
i.mawbyl@lancaster.ac.uk
#analysis

Overview & aims of this session

e Learn how to do some physics with the reconstructed events you produced
o Don’tworry if you didn’t manage to make the files, I’ll point you to some we’ve made

e Learn how to access the reconstructed neutrino information
o Thereis a generic procedure for accessing almost all of the neutrino information you have in
every file you’ve made this week

o We'll look at:
o Reconstruction objects produced by Pandora and downstream reconstruction
o Associations of these objects to higher-level information
o Takeyourtime &try to understand everything you do

e Hopefully we’ll be able to make some plots

Thanks to all who
have given this
tutorial over the last
few years, these
slides have been
(very marginally)
adapted from those
previous versions.

Side note

e We have included what will probably be far too much to achieve in these
sessions

e But hopefully it’s all structured clearly enough that you can continue with the
exercises in your own time

e So please don’t worry if you don’t make it hugely far through this tutorial,
there’s supposed to be too much content

e Ifyou arereading these slides as a PDF, you might prefer to look at the Google
Slides link explicitly, as some code blocks render better there

https://docs.google.com/presentation/d/1bL7RrkiHPPfIH42ECJgcUi6bX8jisWbXYYNaMkw6Hj0/edit?usp=sharing
https://docs.google.com/presentation/d/1bL7RrkiHPPfIH42ECJgcUi6bX8jisWbXYYNaMkw6Hj0/edit?usp=sharing

Slide Structure

‘New Topic’ Slide

" ,'I':! *h I” ;
B o A
1. The Analyzer Skeleton

Wl i WL L el 6 41 e . o
| 1n ‘

i

S

|
:“_\}}}\x\\\\\\\,\f?ii&&m SN

The indicates places
where you need to replace the line
with your personal version.

‘Lecture’ Slide

The skeleton analysis module

There are 2 ways of beginning your analyzer:

1. Using the command:

We will use this - It’s great for starting something brand new

2. Cgpying an analyzer you've made previously & removing anything unnecessary

This is great if you want to do something similar to a previous analyzer
e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

‘Exercise’ Slide

The Analyzer Structure %

parameters here later on

This is the constructor, we’ll access configuration

This is the analyze function, it's called for every
event you give it in the LArSoft job

|

These optional functions are called once,
before and after any and all events are analyzed

Macro to tell art that this module exists
This is used in the fcl configuration in a few

Scroll down to the next chunk of code in
your analyzer module

slides

The helpers around the room are here
to be your (less sassy) clippy...

The skeleton analysis module

There are 2 ways of beginning your analyzer:

1. Usingthe command:

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

We will use this - It’s great for starting something brand new

2. Copying an analyzer you’ve made previously & removing anything unnecessary

This is great if you want to do something similar to a previous analyzer
e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

cetskelgen

These are optional functions which will be
added to your analyzer, we’ll look at them
in the next few slides

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

For more information, see: Choose something sensible here,
https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen e.g. test::AnalyseEvents

https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

Have you remembered

) ° t tup the SL7
Let’s do it! e

If you are using a fresh terminal you will need to setup again:

source /cvmfs/sbnd.opensciencegrid.org/products/sbnd/setup_sbnd.sh
source /PATH/TO/YOUR/BUILD/AREA/localProducts*/setup
mrbslp

1. Navigate here: We’ve put the CMakeL ists. txt and build. sh files here...

cd $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis

The full stop tells cetskelgen to place the analysis
2. Type the cetskelgen command: module in the current directory

cetskelgen -v -d . -e beginJob -e endJob analyzer test::AnalyseEvents

What did we create?

e You should now find a file called
AnalyseEvents_module.cc, this
is your analyzer!

Open this!
The top section should look

something like the snippet on the
right

(but most likely with a less ugly colour
10 theme, apologies...)

test
AnalyseEvents;

test::AnalyseEvents

AnalyseEvents(fhicl: :ParameterSet & p)

AnalyseEvents(AnalyseEvents
AnalyseEvents(AnalyseEvents&&) =

art::EDAnalyzer

AnalyseEvents& operator=(AnalyseEvents
AnalyseEvents& operator=(AnalyseEvents&&) =

E irea junctions.
void analyze(art::Event

void beginJob()
void endJoh

override

The Analyzer Structure

This is some information to explain what's in the
file to someone who might want to use it
Or just for your forgetful, future self

These are the default headers which should hopefully
allow the empty analyzer to build
You’ll add to these later!

Setting up the class you’ve just created
You shouldn’t need to touch these

These are the functions you’re going to modify for the
analysis

test
AnalyseEvents

test::AnalyseEvents art::EDAnalyzer

AnalyseEvents(fhicl::ParameterSet

AnalyseEvents(AnalyseEvents
AnalyseEvents(AnalyseEvents&&
AnalyseEvents& operator=(AnalyseEvents
AnalyseEvents& operator=(AnalyseEvents

void analyze(art::Event x €) override

void beginJob()
void endJob

The Analyzer Structure

This is the constructor, we’ll access configuration
parameters here later on

This is the analyze function, it’s called for every
event you give it in the LArSoft job

These optional functions are called once,
before and after any and all events are analyzed

Macro to tell art that this module exists
This is used in the fcl configuration in a few
slides

Scroll down to the next chunk of code in
your analyzer module

test::AnalyseEvents::AnalyseEvents(fhicl::ParameterSet
: EDAnalyzer{p},
{
}
void test::AnalyseEvents::analyze(art::Event c
{
}
void test::AnalyseEvents::beginJob()
{
}
void test::AnalyseEvents::endJob()

{
}

DEFINE_ART_MODULE(test::AnalyseEvents)

Writing out Analysis Information

2) Then we will add to our tree, the ‘Event ID’ of our created events

14 https://root.cern.ch/doc/master/classTTree.html

https://root.cern.ch/doc/master/classTTree.html

Creating a TTree

Add relevant LArSoft & ROOT headers

Declare TTree

Create your TTree

15

TTree *fTree;

}s

void test::AnalyseEvents::beginJob()
{

art::ServiceHandle<art::TFileService> tfs;
fTree = tfs->make<TTree>("tree"”, "Output TTree");

}

Note: The order represents their locations in the file

Writing Out a Variable

Declare event-based variables

Access our event ID from the LArSoft event we’re
analysing &fill the TTree

Add branches for the variables we want to fill

TTree *fTree;

unsigned int fEventID;

}y
voild test::AnalyseEvents::analyze(art::Event

{

fEventID = e.id().event();

fTree->Fill();
}

void test::AnalyseEvents::beginJob()

{

art::ServiceHandle<art::TFileService> tfs;
fTree = tfs->make<TTree>("tree", "Output TTree");

fTree->Branch("eventID", &fEventID);
}

Note: The order represents their locations in the file

17

Running the analysis module

In order to be able to run the analyzer, we now need to write 2 fhicl files

e The first will configure our analyser - an include fcl

o Thisis where we point the analyzer to the objects/parameters we want to access from the
input files (this will make more sense soon...)

e The second will be used to run our analyser - a run/job fcl
o This links together the configuration file and the analysis module

e The main reason we don’t just define our parameters in the run/job fcl is that multiple

run/job fcls can all inherit from the include fcl. This way we reduce our points of
maintenance.

Fhicl 1: Configuring the analyzer

Fhicl 1: Configuring the analyzer. Create a file, e.g. analysisConfig. fcl & fill it with this:

Your chosen name for this
parameter set

See what this does (and more
best practices) here

18

BEGIN_PROLOG

analyseEvents:

{
}

END_PROLOG

module type:

Links the fhicl file to the analysis
module using the name you gave
"AnalyseEvents” your analyzer class

Later this is where we will add any
configuration of our analyzer module.

https://indico.fnal.gov/event/11857/sessions/1051/attachments/6785/8812/LArSoftUsability_workshop_June2016_knoepfel.pdf

Create another file, e.g.

Fhicl 2: Running the module run_analyseEvents. fcl
& fill it with this:

Include your analyzer configuration fhicl

process_name: AnalyseEvents

Name this process =

module_type: RootInput
maxEvents: -1

}

Must not include any underscores

services:

TFileService: { fileName:

Tell it to expect a ROOT input file /ecabte: rsona services

physics:
{

analyzers:

ana: @local::analyseEvents

Output filename

patho: [ana]
end_paths: [pathe]

ana sets our module analyzeEvents as part of the

workflow
Note, this matches the name in the configuration fcl file 19

~ !'..,Ltw fffii g

Pre-made reconstructed events

Haven’t made a reconstruction file? Don’t panic!

There is a pre-made reconstruction file which can be found here:

/scratch/LAr25/analysis/sim_g4_detsim_recol_reco2_50.root

21

Compiling and running your code

First, we need to compile what you’ve written so far
From the $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis directory:

This has each build command in one place, have a look to make sure
you’re comfortable with what it does before using it

source build.sh

Then (when successful) run your analyzer!

Let’s just run over 10 events while we
lar -c run_analyseEvents.fcl -s /path/to/input/file.root -n 10 make sure things build.
We’ll run on the whole sample later

Open the file in ROOT to investigate our output file...

root -1 analysisOutput.root

22

Looking at the output in ROOT

Here you can see that the name you gave to the
analyzer in the fhicl run script is the name of your
directory (ana): Open it with ->cd()

You can see the output (T)Tree that we created, use
Scan() to view its contents (can also use
Show(entryNumber), a TBrowser etc...)

Your tree exists and contains the event IDs! Success!
(hopefully)

bash-4.2%|root -1 analysisOutput.root
root [0]
Attaching file analysisOutput.root as _file@...

(TFile *)_0x22081e00
root [1]
TFile** analysisOutput.root
TFile* analvsisOutput_ root
KEY: TDirectoryFile ana;l ana (AnalyseEvents) folder
oot 4]
root [2]
(bool) true
root [3]

root [3]
TDirectorvEile* ana ana (Ann]yanvnan) folder

KEY: TTree tree;1 Output TTree
root (4]
root [4]Itree->8(dn() I

. IEEEE

Row eventID.e *
e e R ok ok R ok ok o ok R R e e o ok R K

*
*
*
*
*
*
*
*
¥
*
¥
*

OQONIOIUHEWN=D
DOOONOOULSE WN =
¥ % K E K K E E A

p—

" W i e (I | B y v S I TEEUE f 3
| | 7} Yl B o pEo : s A |
. e il i | |@ i , g EOCEEKI ~
H 1
s o ; U ! = \ 1l o . 3 !
| gl ik (st .| I} P 8 ARSI | A) |) == quill s
S o P——— e g Z n—— X Iy
iz - = g ~
4 . > —— sl f - 3 —— y
g 1 | ey Al wadia | T — g 1 b Beeey o o » < B
g ' 4 b eSS Sy R - e 5 ISR]
| ! {4y : ol I > . e I . e e — R - ¥ i E P
LB | : i } i] = i (% 3 o SRRy " s ' {
| Y | . . \ 3 A& N :A‘ i A, e ALITRS d

A quick aside on how to access our reconstruction information, so we

obtain some cooler analysis i

S

can nformation!

—

e

Accessing products from our files (1) S@fﬁ:

e Currently, just focused on EventlID, but how do we access the information that we’ve added
to the ‘simulation/data’ files e.g. in the Pandora stage?

e There are two ways the information is stored in these files:

std: :vector<art::Ptr<recob::PFParticle>> 1) As a vector of objects:
e.g. a vector of all PFParticles created

PFP_A, PFP_B PFP_C
(PFP_A, = -C} by Pandora

{PFP_A > Vtx_B 2) As associations:

PFP_B » Vtx_A,

PFP_C » Vtx_C) e.g. links between PFParticles and

their associated reconstructed vertex

Accessing products from our files (2)

e We can use eventdump.fcl to see what data products are saved in our
‘simulation/data’ files

lar -c eventdump.fcl whateverYourSimulationOrDataFileIsCalled.root -n 1

PFParticle vector PFParticle — SpacePoint association

RecolReco2.. pandora ::vector<recob::
RecolReco2.. pandora :tAssns<recob:: ,anab::T0Q,void>
RecolReco2.. pandora ::Assns<recob:: ,recob::Slice,void>

RecolReco2.. pandora :tAssns<recob:: ,recob::SpacePoint, void>
RecolReco2.. pandora ::Assns<recob:: ,larpandoraobj::

The process_name set in The name of the The type of products that The number of each
the fcl producer that was run were created product created

26

Accessing Vectors (the technical details)

e Inouranalyzer, let’s say that we want to obtain the vector of slices

e Wefirst need to set up the data object handle, consider this to be the link between your code and the
object vector in the simulation/data files

::ValidHandle< ::vector< ::Slice>> sliceHandle = e.getValidHandle< ::vector< ::Slice>>("pandora");

the name of the producer that

;) e is the current art::Event
the type of object we’re after created it (see previous slide)

e After we check that our handle is valid, we can now retrieve the vector in our code

d::vector<art::Ptr< ::Slice>> sliceVector;

if (sliceHandle.isValid())
::fill_ptr_vector(sliceVector,

27

e Saythat, in our analyser, we want to obtain the vector of PFParticles connected to a given slice

Slice — PFParticle Vector
‘Considered Object’ ‘Associated Object Vector’

e Wefirstinitialise a FindManyP object, consider this to be a link between your code and the associations of
a given object vector (in this case, the vector in which our considered slice lives)

: :PFParticle> slicePFPAssoc(, e, "pandora");

our handle to the object vector the name of the producer
that created the

28 association

Accessing Associations (Technical Details)

e TogetthePFParticles associated to a particular slice, in this case the first slice in sliceVector

e Wethendo:

<ref ::Slice> slice(sliceVector.at(0));

::vector< ::Ptr<recob::PFParticle>> slicePFPs(slicePFPAssoc.at(slice.key()));

HEY ISOBEL/ALEX!
What’s that key function about?

29

What’s the key function about?

e Everyart::Ptr<...> hasakey function

e |treturnstheindex of the ‘pointed to’ object in the vector in which it lives, and is used to identify the
connected associations

Consider:

::vector<art::Ptr<recob::Slice>> isobelsAwesomeSliceVector = {sliceA, sliceB, sliceC};

Then:

sliceA->key() == sliceB->key() == 1 sliceC->key() == 2

So, to get the PFParticle vector associated with sliceC, we’d do:

std:::vector<art::Ptr<)t :PFParticle>> slicePFPs = slicePFPAssoc.at(sliceC.key());

30

Obtaining the Neutrino Hierarchy Sofft

In an experiment with background cosmic rays (like SBND), our reconstruction output will consist of
slices, some containing cosmic-like hierarchies, others neutrino-like hierarchies.

IN OUR OPINION, the best way to obtain the PFParticles from a neutrino hierarchy is:
1) find the neutrino 2) get its children

(art::Ptr<recob::Slice> &slice : sliceVector)
7
L
std::vector<art::Ptr<recob::PFParticle>> slicePFPs(slicePFPAssoc.at(slice.key()));

(- art::Ptr<recob::PFParticle> &slicePFP : slicePFPs)
{

bool isPrimary(slicePFP->IsPrimary());
bool isNeutrino((std::abs(slicePFP->PdgCode()) == 12) || (std::abs(slicePFP->PdgCode()) == 1

(!(isPrimary && isNeutrino))

Pandora will set the PDG code of the neutrino
PFP as either 12 or 14, NEVER use this for
nue/numu separation

’

The Neutrino Hierarchy in LArSoft S—Qf%

didILeaveTheOvenOnPFP->Self() == curiousGeorgePFP->Self() ==
didILeaveTheOvenOnPFP->Parent() == 11 curiousGeorgePFP->Parent() == 13
didILeaVeTheOVenoonp—>DaUghter() == {4, 13} CuriousGeorgePFP_)Daughters() ——— {}

queeniePFP->Self() == 11 willIAmPFP->Self() == 13

queeniePFP->Parent() == kPFParticlePrimary w%llIAmPFP—>Parent() ==
queeniePFP->Daughters() == {1, 5, 7, 9} willIAmPFP->Daughters() == {3, 10, 6}

e Let’s ‘calculate’ some neutrino hierarchy variables, and add them to our tree!

1) First, we’ll need some new includes:

2) Create new member variables, and connect them to our (T)Tree

unsigned int fEventID; fTree->Branch("eventID", &fEventID);

unsigned int fNPFParticles; fTree->Branch("nP les”, &fNPFParticles);
unsigned int fNPrimaryChildren; fTree->Branch("nPrimaryChildren”, &fNPrimaryChildren);

34

3) Calculate the neutrino
hierarchy variables

Initialise our neutrino hierarchy variables
to zero at the start of every event

Get the reconstructed slices in the event
and the PFParticle associations

Loop through the slices until we find the
neutrino PFParticle (here, we assume
that, across all slices, there is only one
neutrino candidate - this isn’t normally the
case!)

Fill the neutrino hierarchy variables, and
note the neutrino ID (and the neutrino
slice ID)

Need to account if our events do not contain any neutrino candidates

35

void test::AnalyseEvents::analyze(art::Event

Set the event I[
e.id().event()

art::ValidHandle<std: :vector<recob::Slice

std: :vector<art::Ptr<recob::Slice
(sliceHandle.isValid())

art::fill_ptr_vector(sliceVector

sliceHandle = vector<recob: :Slice

sliceVector

e.getValidHandle<std

sliceHandle)

art: :FindManyP<recob: :PFParticle

sllcePFPAssoc sliceHandle, e, fSlicelabel)

int nulID = - nuSliceKey =
&slice : sliceVector)

art::Ptr<recob::Slice

std::vector<art::Ptr<recob: :PFParticle slicePFPs(slicePFPAssoc.at(slice.key())

art::Ptr<recob: :PFParticle> &slicePFP : slicePFPs
bool isPrimary(slicePFP->IsPrimary
bool isNeutrino((std::abs(slicePFP->PdgCode (12) || (std::abs(slicePFP->PdgCode

I (isPrimary && isNeutrino))
nuSliceKey = slice key‘wr
nuID = slicePFP->Self();

fNPFParticles = slicePFPs.size()
fNPrimaryChildren = slicePFP->NumDaughters()

This statement comes from our assumption that there is only one

it neutrino hierarchy, in a more sophisticated analysis you would want
to consider all neutrino candidates.
(nuID
std: :cout "The neutrino lives in slice nu nuSliceKey

(fSlicelabel

HARD CODING MODULE NAMES IS AVERY VERY VERY BAD IDEA!

: :FindManyP<recob: :PFParticle> slicePFPAssoc(sliceHandle, e,

: :FindManyP<recob: :PFParticle> slicePFPAssoc(sliceHandle, e, fSlicelLabel);

*

Save module names as
member variables instead!

36 We'll see how to do this in the next few slides...

Implementing Neutrino Hierarchy Variables (4)

e We pass module names into our analyzer through the analysisConfig.fcl file:

In your analyzer: In analysisConfig.fcl:
BEGIN_PROLOG

2 3 analyseEvents:

std::string fSlicelLabel; { y

test::AnalyseEvents::AnalyseEvents(fhicl::ParameterSet NOdUlG_tWﬁ)E: AnalyseEvents
: EDAnalyzer{p},

fSliceLabel(p.get<std::string>("SliceLabel")) SlicelLabel: ”pandora”
¢)
}

END_PROLOG

37

Fhicl configuration file linking & running

source build.sh Compile changes

lar -c run_analyseEvents.fcl -s /path/to/input/file.root -n 10 Run analyzer

root -1 analysisOutput.root Check output

38

38

What our output looks like now

Our (T)Tree should now have 2 new branches

nPFParticles tells us how many particle we
have reconstructed

nPrimaryChildren is the number of
primary particles (children of the neutrino)
we have reconstructed

By viewing the tree, we can check that everything
looks sensible...

Analysis > root -1 analysisOutput.root
root [0]
Attaching file analysisOutput.root as _file@...
(TFile *) 0@x30c2b70
root [1] .1ls
TFilexk analysisOutput.root
TFilex analysisOutput.root
KEY: TDirectoryFile ana;l1 ana (AnalyzeEvents) folder
root [2] ana->cd()
(bool) true
root [3] .1ls
TDirectoryFilex ana ana (AnalyzeEvents) folder
KEY: TTree tree;1 Output TTree
root [4] tree->Scan()
soksoRRRFoRRFRFKAR KA HKFKA
* Row * eventID.e ¥ nPFPartic * nPrimaryC 4
sokskokrkoRskkkkRRRRkF KRRk kkokkodRFKRKRF KKK K KK
* Eh * ‘

N

NVNoONOCCOPrPWNPEPEOS®
* K X X X X X ¥
PP POOOPOPOW
* K X X X X ¥ X X
NNNWOWNWNWO

|
2
3
4
5
6
7
8
9
10

* X X X X X X ¥ X ¥

E 3 1
kakskokokokokokokokokokkk kKKK KKk kK

| PANS

Let’s have a look at the length of our muon/proton tracks @{E

In the SBND workflow, all PFParticles are fitted as both
tracks and showers

e The association we are afteris:

pandoraTrack recob: : Track

pandoraShower recob: : Shower

recob: :PFParticle » recob::Track

e Butfirst, we’ll need to get the PFParticle handle so that we can initialise our FindManyP object

41

The details (bitty part) L 4

In analysisConfig. fcl module_type: "AnalyseEvents"

In the configuration file add the label of
the track producer, we’ll also need the

SlicelLabel: "pandora”
_ PFParticlelLabel: "pandora”
PFParticle label TrackLabel: "pandoraTrack"

Add relevant header

Add a new output to store the lengths of std::vector<float> fChildTrackLengths;

the reconstructed tracks
std::string fSlicelabel;
std::string fPFParticlelLabel;
) std::string fTrackLabel;
Add a new field to store the TrackLabel and }s
PFParticleLabel that we set in the fcl above test::AnalyseEvents::AnalyseEvents(fhicl::ParameterSet
: EDAnalvzer{p}.
fSliceLabel(p.get<std::string>("SliceLabel
cle - . fPFParticleLabel(p.get<std::string> Pa
Initialise PFParl—-'Cl(:-‘/TraCkLabEI from the fTrackLabel(p.getSs%d: :string>(ﬂg kLabel

configuration {
}

Creating the output

Reset the values stored

. fNPFParticles =

in the Yectorfor each fiPrisarychiidren = 83
eventlnanalyzer() fChildTrackLengths.clear();

Add a new branch to the TTree using the ,
])) >Branch("eventID", &fEventID);
vector defined on the previous slide >Branch("nF -les", &fNPFParticles);
H\beginJob() >Branch(3 ; &fNPr?maryChildren);
>Branch("childTrackLengths", &fChildTrackLengths);

43

The details, in analyze

art::ValidHandle<std: :vector<recob: :PFParticle>> pfpHandle =
VVe|1eed'u)gettheI1andletC)our e.getValidHandle<std::vector<recob: :PFParticle>>(fPFParticlelLabel);
PFParticlessothatvvecar1getthe art::ValidHandle<std::vector<recob::Track>> trackHandle =

. .. e.getValidHandle<std: :vector<recob::Track>>(fTrackLabel);
PFParticle -> Track associations

art::FindManyP<recob::Track> pfpTrackAssoc(pfpHandle, e, fTrackLabel);

Checkingthatthe|oarentofthe<1uTent std::vector<art::Ptr<recob::PFParticle>> nuSlicePFPs(slicePFPAssoc.at(nuSliceKey));
PFParticle is the neutrino
(const art::Ptr<recob::PFParticle> &nuSlicePFP : nuSlicePFPs)
‘
(nuSlicePFP->Parent() != <long unsigned int>(nulD))

Get the vector of Track objects
associated to the current PFParticle
There should be only a single track
associated with each PFParticle

]

std::vector<art::Ptr<recob::Track>> tracks = pfpTrackAssoc.at(nuSlicePFP.key());

(tracks.size() != 1)

’

Now fill the vector of Track lengths we
declared earlier art::Ptr<recob::Track> track = tracks.at(9);

fCchildTrackLengths.push_back(track->Length());

3

Let’s look at the track lengths

You can alsouse -n -1

Firstly, run over all your events by removing

-n 10

from the command like this:

lar -c run_analyseEvents.fcl -s /path/to/input/file.root

Open the output file and draw the track lengths! (using ->Draw(* "))

root -1 analysisOutput.root On the terminal

root[@] ana->cd()

root[1] tree->Draw(“childTrackLengths”)

In the root terminal

46

What do you see?

You can clearly make out
what is likely to be
separate muon and

proton distributions!

childTrackLengths

htemp
Entries 21
Mean 141.6
StdDev 118.3
protons! P -...]
+—
_________ N
\
I
I
I
I
I
| | | | | | | | | l | | | | | \l‘l | ‘ | | | | ‘ | 'l
100 150 200 ~ 250 300 ~

childTrackLengths

47

What do you see?

, RUN 14445, EVENT 120
N July 04, 2024

childTrackLengths

What do we think we can
see in this SBND event?

htemp
Entries 21
Mean 141.6
Std Dev 118.3
protons!) oon
-
_________ N
\
I
I
I
I
I
| | | | | I | | | ‘ | | | | ‘ | 'l
100 250 300 ~

childTrackLengths

48

Particle lonisation

[2007.06722] First results on ProtoDUNE-SP....

A plot from ProtoDUNE-SP LArTPC

showing the 2D dE/dx vs. residual range
distributions for Muons and Protons »
produced in a test beam at CERN. SrE g Proton Expeciation "1

10 IR E - =2 = N_Iypr_p-E?pectatio-n_ 120

The theoretical distributions for each
particle type are given by the lines.

100

dE/dx [MeV/cm]

Good separation between Muons &
Protons due the large difference in :
mass. R T e S

0 0 40 80 10 120
Residual Range [cm]

50

https://arxiv.org/abs/2007.06722

More associations!

Earlier we looked at the association between

Slice

"pandora"

PFParticle

"pandora"

More details can be found in the doxygen entry. 51

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations!

Earlier we looked at the association between

...and then between s and !
Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

More details can be found in the doxygen entry. 52

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations! a i
Softt

Earlier we looked at the association between
...and then between s and !
Slice

...we can now make use of another association to get hold of the energy deposition "pandora”
information we need to to recreate that ProtoDUNE plot.

This time we need the object... !
PFParticle

Notice | have drawn in a different colour to indicate it lives in a different namespace to the e
other objects we’ve been looking at so far (not)

Calorimetry Track

"pandoraCalo” "pandoraTrack"

More details can be found in the doxygen entry.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations! a i
Softt

Earlier we looked at the association between

...and then between s and !
Slice

...we can now make use of another association to get hold of the energy deposition "pandora"

information we need to to recreate that ProtoDUNE plot.

This time we need the object... !
PFParticle

Notice | have drawn in a different colour to indicate it lives in a different namespace to the e
other objects we’ve been looking at so far (not)

We have at least one separate calorimetry object for each of the
three planes Calorimetry Track

"pandoraCalo” "pandoraTrack"

The object contains vectors of dQ/dx, dE/dx, Residual Range etc
values. Each entry corresponds to a trajectory point.

Accessing Calorimetry

These steps should feel familiar:

Add the relevant header forthe anab: :Calorimetry object
Add the module label to your configuration file and access it in the constructor
Add any declarations & branches for new variables you want to push to your tree

Access the listof anab: :Calorimetry objects from a list of recob: : Track objects

> w e

using art::FindManyP
5. Fill your tree variables with information from your anab: : Calorimetry object.

Try making a start on this and we’ll go through it in more detail in a few minutes...

55

Accessing Calorimetry (1)

Add the relevant header for the object

Add the module label to your configuration file and access it in the constructor

std::string fCalorimetrylLabel;

fCalorimetrylLabel(p.get<std::string>("CalorimetrylLabel

CalorimetryLabel: "pandoraCalo"

Add any declarations & branches for new variables you want to push to your tree

std::vector<std::vector<float>> fChildTrackdEdx;
std::vector<std::vector<float>> fChildTrackResRange;

fTree->Branch("childTrackdEdx", &fChildTrackdEdx);
fTree->Branch("childTrackResRange", &fChildTrackResRange);

Try to remember where
each line goes...

56

Accessing Calorimetry (2)

4. Access the list of objects from a list of objects using

art::ValidHandle<std: :vector<recob::Track>> trackHandle =
e.getValidHandle<std: :vector<recob::Track>>(fTrackLabel);

art::FindManyP<anab::Calorimetry> trackCaloAssoc(trackHandle, e, fCalorimetrylLabel);

5. Fill your tree variables with information from your object.

std::vector<art::Ptr<anab::Calorimetry>> calos = trackCaloAssoc.at(track.key());

(auto const& calo : calos)

{

t int plane = calo->PlaneID().Plane;

(plane != 2)

]

fchildTrackdEdx.push_back(calo->dEdx());
fChildTrackResRange.push_back(calo->ResidualRange()); 57

}

Accessing Calorimetry (2)

4. Access the list of objects from a list of objects using

art::ValidHandle<std: :vector<recob::Track>> trackHandle =
e.getValidHandle<std: :vector<recob::Track>>(fTrackLabel);

art::FindManyP<anab::Calorimetry> trackCaloAssoc(trackHandle, e, fCalorimetrylLabel);

5. Fill your tree variables with information from your object.

std::vector<art::Ptr<anab::Calorimetry>> calos = trackCaloAssoc.at(track.key());

(auto const& calo : calos)

{
t int plane = calo->PlaneID().Plane;

Remember, there are separate
calorimetry objects for each plane,

(plane != 2) . .
; let’s only consider the collection

fchildTrackdEdx.push_back(calo->dEdx()); plane.

fChildTrackResRange.push_back(calo->ResidualRange()); 55
}

Accessing Calorimetry (2)

4. Access the list of objects from a list of objects using

art::ValidHandle<std: :vector<recob::Track>> trackHandle =
e.getValidHandle<std: :vector<recob::Track>>(fTrackLabel);

art::FindManyP<anab::Calorimetry> trackCaloAssoc(trackHandle, e, fCalorimetrylLabel);

5. Fill your tree variables with information from your object.

std::vector<art::Ptr<anab::Calorimetry>> calos = trackCaloAssoc.at(track.key());

(auto const& calo : calos)

{

t int plane = calo->PlaneID().Plane;

(plane != 2)

]

fchildTrackdEdx. push_back(calo->dEdx()); We can insert the whole
fChildTrackResRange.push_back(calo->ResidualRange()); vectors in OnE}gO! 59

}

Histogram time!

You should be pretty familiar with rebuilding & running your analyzer now...

You can now use your calorimetry branches to make a 2D histogram in ROOT.

root[0] ana->cd()

root[1] TH2D *h = new TH2D("h","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[2] tree->Draw("childTrackdEdx:childTrackResRange>>h", "", "colz")

60

You should see something like this!

What do you find most interesting about the distribution?

dE/dx vs. Residual Range

30 10
h
Entries 9106 9
25 Mean x 21.63
) ooy 3961018 Try playing around with the axis labels/style
StdDevy 3.137 7

options using the GUI.

You can save the plot at the end too!

61

~ !'..,Ltw fffii g

Finding the longest track

e Since we have generated a single muon and proton with defined momenta, we can be
reasonably confident that they will be very different lengths in each event.

e We can harness this as a very simple particle identification technique for our sample.
e Let’sloop through our neutrino children to find which track was the longest track in

each neutrino hierarchy. We should do this in a separate loop before the main analysis
loop.

63

Finding the longest track (1) §/=

int longestID = std::numeric_limits<int>::lowest();
float longestLength = std::numeric_limits<float>::lowest();

We make some variables to
track which track was longest (const art::Ptr<recob::PFParticle> &nuSlicePFP : nuSlicePFPs)
and what that length was. €

(nuSlicePFP->Parent() != <long unsigned int>(nuID))

s

Then we loop through the PFPs std::vector<art::Ptr<recob::Track>> tracks = pfpTrackAssoc.at(nuSlicePFP.key());

and get their associated tracks,
just like we do in the main (tracks.size() != 1)
analysis loop. #

art::Ptr<recob::Track> track = tracks.at(0);

el (track->Length() > longestLength)
Within the l.oop we check :
whether this track replaces our

longestID = track->ID();
current longest. longestLength = track->Length();

}

Finding the longest track (2)

In our main loop we can then add a
variable which is a boolean
(true/false) describing whether this
track is the longest or not.

fChildTrackIsLongest.push _back(track->ID() == longestID);

65

Finding the longest track (2)

In our main loop we can then add a
variable which is a boolean
(true/false) describing whether this
track is the longest or not.

fChildTrackIsLongest.push_back(track->ID()

What else do we need to
add? I've left some stuff

out!

== longestID);

66

Finding the longest track (2) odcr e et somes

In our main loop we can then add a
variable which is a boolean
(true/false) describing whether this
track is the longest or not.

What else do we need to

fChildTrackIsLongest.push _back(track->ID() == longestID);

Once you think you have included all the necessary additions
you will, as usual, need to recompile your analyzer and run it
over your reconstruction file again...

67

More plots, YAY!

El.fjanan

Now we know which tracks are the longest, and which tracks are just B tree!

..... eventlD
common garden tracks. We can use this to split our plotsup... gonpaMS

..... & nPrimaryChildren

. . o . 1 & chidTrackLengths
Let’s open our file again, this time making two versions of our dE/dx vs. .. chidTrackisLongest
. . £ chidTrackdEdx

Residual Range histogram. N ————

root[@] ana->cd()

root[1] TH2D xhLong = new TH2D("hLong","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[2] TH2D *hShort = new TH2D("hShort","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

More plots, YAY! 0

This time we need to include our condition on the draw command... E]"'%J‘;::vemm
? &nPFParticles

root[3] tree->Draw("childTrackdEdx:childTrackResRange>>hLong", "childTrackIsLongest", "") - § nPrimaryChildren

%chidTrackLengths
: &childTracklsLongest
chidTrackdEdx

L2 ﬂ chidTrackResRange

root[4] tree->Draw("childTrackdEdx:childTrackResRange>>hShort", "!childTrackIsLongest", "same")

We need to tell the two apart... Let’s draw them in different colours!

root[5] hLong->SetMarkerColor(kMagenta+2) Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html

root[6] hShort->SetMarkerColor(kOrange+2)

root[6] c1->Modified() Tell the canvas (default c1) to implement these changes and redraw the canvas

https://root.cern.ch/doc/master/classTColor.html

Why don’t you try this for
M O re p lOtS) YAY! the track length plot too?

This time we need to include our condition on the draw command... E]"'%J‘;::vemm
? &nPFParticles

root[3] tree->Draw("childTrackdEdx:childTrackResRange>>hLong", "childTrackIsLongest", "") - § nPrimaryChildren

3¢ chidTrackLengths
3y child TrackisLongest
... g% child TrackdEdx

root[4] tree->Draw("childTrackdEdx:childTrackResRange>>hShort", "!childTrackIsLongest", "same") B A chidTrackResRange

We need to tell the two apart... Let’s draw them in different colours!

root[5] hLong->SetMarkerColor(kMagenta+2) Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html

root[6] hShort->SetMarkerColor(kOrange+2)

root[6] c1->Modified() Tell the canvas (default c1) to implement these changes and redraw the canvas

https://root.cern.ch/doc/master/classTColor.html

~ !'..,Ltw fffii g

Track lengths

For the next section we have produced a file with 50 events so that the plots are a little
cleaner. You can continue to use your 10 event file or the 50 event file reconstructed file
is available here:

/scratch/LAr25/analysis/sim_g4_detsim_recol_reco2_50.root

72

Track lengths

% 40(—
You should’ve seen that there " b
= — Longest Track
were two clearly separated o —————
distributions for the longest 250
track compared to the other 2oF.
tracks. e
ol
Why is this? 5
Oi,_‘lj||||||||||||||||||r]|_|||m|||||
0 50 100 150 200 250 300 350

Track Length (cm)

73

Energy deposition

* Longest Track

By plotting our dE/dx vs. Residual Range
* Other Tracks

separately curve based on which track
was longer we see a clear difference
between the distributions.

dE/dx (MeV/cm)

This results from the fact that the proton
is more highly ionising than the muon as
it moves through the argon.

OE‘I | ‘I I I.I I‘l I I‘I L | l‘.l I-:l I Im; I“I“l L1 I.I t[l‘?‘;l-1 1 .I I.I |‘l l.].I l .[1 .I.I
0 5 10 15 20 25 30 35 40 45 50
Residual Range (cm)

74

arXiv:1205.6747v2
[physics.ins-det] 5 Jun 2012

This ArgoNeuT plot shows the
theoretical separating power of
the average dE/dx vs. residual
range distributions. The overlaid
black data points show a single
stopping track in the ArgoNeuT
detector.

o

B

GEANT4 MC predictions
—__ proton

@
o

—__ pion
—_ muon

w
=3

dE/dx (MeV/cm)
N
o

dE/dx (MeV/cm)

=) 2]
ST

e b b b L 1y
5 10 15 20 25 30
residual range (cm)

« Longest Track
¢ Other Tracks

3 40 45 50
Residual Range (cm)

Corporate neé&sl&(ou to find the differences
between this picture and this picture.

| They're the same picture.

Energy distributions

arXiv:1205.6747v2 [physics.ins-det] 5 Jun 2012

E GEANT4 MC predictions £ %F
= ___ proton S e
> o 7
[— kaon 2 o5l
=3 ___ pion g) * Longest Track
X [n.
S —__ muon ° EA * Other Tracks
“_é 20 if It shows us that our longest track distribution fits the theoretical
- distribution for muons, and the others for protons!
15¢
If you have some spare
time, try to work out
what is going on down
here!
o1||1111|||1111||1.11|||1111111 .,1|‘|
0 5 10 15 20 25 30 30 35 20 45 50
Residual Range (cm)

residual range (cm)

This ArgoNeuT plot shows the theoretical separating power of the average dE/dx vs.

residual range distributions. The overlaid black data points show a single stopping
track in the ArgoNeuT detector.

76

~ !'..,Ltw fffii g

Detector system associations

We have previously looked at associations between reconstructed quantities for the purpose of
accessing geometry and calorimetry information about the particles in our events.

Slice

"pandora"

PFParticle

"pandora"

Calorimetry Track

"pandoraCalo" "pandoraTrack"

78

Detector system associations

We have previously looked at associations between reconstructed quantities for the purpose of
accessing geometry and calorimetry information about the particles in our events.

Slice
We can also look at
"pandora" associations between the
different detector systems:
TPC, PDS & CRT

PFParticle OpTOFinderResult
In this scenario we are going to
use the precision timing of the
PDS to set the t0 of the TPC
reconstruction and thus the
relative x-position.

"pandora" "opt@finder"

Calorimetry Track

"pandoraCalo" "pandoraTrack"

79

Detector system associations

We have previously looked at associations between reconstructed quantities for the purpose of

. > look at
etween the

tor systems:
2 & CRT
We try and match the tharge image we saw in the TPC to the e are goingto

image we saw with the PDS, if they agree we can use the PDS’ much | timingof the
more precise timing to adjust the timing (x-position) of our TPC slice. |0 of the TPC

reconsuoctomrand thus the

Calorimetry Track

relative x-position.

"pandoraCalo" "pandoraTrack"

80

Adding Flash Matching Information

We’re going to leave you to try and add this one on your own. The object is called
sbn: :0pToOFinder and lives here. You will need to:

- Add the relevant header

- Add the module label to the fcl file and access it in the analyzer

- Use the association to access the object

- Sometimes there are multiple OpTOFinder results per slice, you should pick the one
with the largest score variable.

- Save the time variable from the object to your tree.

We will go through all of thisin a moment so
don’t worry if you get stuck, this is hard!

81

https://github.com/SBNSoftware/sbnobj/blob/develop/sbnobj/Common/Reco/OpT0FinderResult.h

Adding OpTOFinder

Add the relevant header

OpTOFinderLabel: "optoOfinder”

Use the association to access the object

art::FindManyP<sbn: :0pTOFinder> sliceOpTOAssoc(sliceHandle, e, fOpTOFinderLabel);

Accessing OpTOFinder

e Sometimes there are multiple OpTOFinder results per slice, you should pick the one with the

largest score variable.
e Save thetime variable from the object to your tree.

std::vector<art::Ptr<sbn::0pTOFinder>> opTOs = sliceOpTOAssoc.at(nuSliceKey);

std::sort(opTOs.begin(), opTOs.end(),

[J(auto const& a, auto const& b)
{ a->score > b->score; });

(opTOs.size() != 0)
fOpTO = opTOs[O]->time;

83

A few noteworthy points...

1. Thisusesour slice object so needs to happen in the slice loop.

2. You may well have found the top scoring object in a different way. Many approaches are
legitimate.

std::vector<art::Ptr<sbn::0pTOFinder>> opTOs = sliceOpTOAssoc.at(nuSliceKey);

std::sort(opTOs.begin(), opTOs.end(),
[J(auto const& a, auto const& b)
{ a->score > b->score; });

(opTOs.size() != 0)
fOpTO = opTOs[O]->time;

84

A few noteworthy points...

std::vector<art::Ptr<sbn::0pTOFinder>> opTOs = sliceOpTOAssoc.at(nuSliceKey);

std::sort(opTOs.begin(), opTOs.end(),
[J(auto const& a, auto const& b)
{ a->score > b->score; });

(opTOs.size() != 0)
fOpTO = opTOs[O]->time;

3. We need to have defined fOpT0 and added it as a branch too. 85

TO Results

Remember way back in the simulation tutorial? You defined t0 to be 1600ns.

e Your OpTO results should give you values
1 —L close to that original simulated time.

Slices
[6,]

e Lastyear we discovered this number to be off
and it took us a long time and asking other
experts to understand why.

ﬂ L e Worth remembering that all of us still have to
ask questions all the time, so never worry

about reaching out with questions!

IIIIIIIIlIIIl‘|II\|II\||\

B 1 1 1 1 I Il Il L ‘ 1 1 | | | 1 1 1 | 1 | Il 1 | 1 1 1 Il
1%02 1.603 1.604 1.605 1.606 1.607 1.608
TO (us)

86

SN ik L o .
11 A‘H 1 K Tk
! g
i |]
i 1 (
1 \

Truth Matching

- When working with simulated files, we know the ‘truth’ of our events i.e. what did the
generator actually produce

- We can match (or backtrack) our reconstructed PFParticles to the simulated MCParticles to
understand how well our reconstruction and/or selections perform!

- Task: Use the same procedure as before to add a ‘BacktrackedPDG’ branch to our analysis
tree, in the following steps we’ll store the PDG code of the MCParticle that best matches our
reconstructed particle

ParticleDataGroup example codes:

muon=13 proton=2212 charged pion=221

88
More at: https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf

TruthMatchUtils

- Our very own Dominic Brailsford created some ‘backtracking’ tools that can be found here:
https://github.com/LArSoft/larsim/blob/develop/larsim/Utils/TruthMatchUtils.h

1 indicates that we want

- We’re going to use the function: to ‘roll up’ our shower
hierarchies to the leading
int g4id = TruthMatchUtils::TrueParticleIDFromTotalRecoHits(clockData, track_hits, 1); electron/photon

You’ll see that we need:
- the track’s recob::Hits (use track-hit associations analogous to what you’ve done before)
- clockData which we obtain from the 'DetectorClocksService', like so:

auto const clockData = art::ServiceHandle<detinfo::DetectorClocksService const>()->DataFor(evt);

89

https://github.com/LArSoft/larsim/blob/develop/larsim/Utils/TruthMatchUtils.h

GitHub searching...

- Butwait, this gives me the g4id (the trackID) of the matched MCParticle, how do | get the
MCParticle itself?

- To do this, we use the ParticlelnventoryService

- ldon't want to give you the exact code snippet here.. so why don't you search a relevant
GitHub repo (e.g. dunereco) for examples to see how this is used

Il Pullrequests 2) Actions [Projects Security [~ Insights

Edit Pins ~ Watch 6 Fork 30

\) dunereco

| think that you have to be signed

Search ParticlelnventoryService here _ ‘ .
into GitHub for this to work

90

https://github.com/DUNE/dunereco

GitHub searching... S—f%

- Scroll through the options until you find something that might be promising, e.g.:

V' dunereco/CVN/func/AssignLabels.cxx

#include "larsim/MCCheater/BackTrackerService.h"
#include "larsim/MCCheater/ParticleInventoryService.h"

art::ServiceHandle<cheat: :BackTrackerService> backTrack;
art::ServiceHandle<cheat::ParticleInventoryService> partService;

- You’ll only be shown the area around the first mention of your search keyword, open up the
code to find other mentions of ParticlelnventoryService...

MCParticle

MCParticle class methods and member variables.

Okay, so now you have the MCParticle but how do we get from it the PDG code?
If you google the class name simb::MCParticle you’ll find the doxygen overview of the

simb::MCParticle Class Reference

simb::MCParticle

MCParticle &
Deep Underground Neutrino Experiment
https://internal.dunescience.org » doxygen > classsimb_1...

simb::MCParticle Class Reference i

MCParticle &

==

Public Member Functions - Static Public Attributes - Protected Types - Protected Attributes - Friends -

int
Detailed Description - Member Typedef Documentation .. o
const TVector3 &

void

std::string
std::string
void

See if you can find the appropriate
function to fill your tree branch

void
int
int

#include <MCParticle.h>

Public Member Functions

MCParticle ()

Don't write this as ROOT output. More...
MCParticle (const int trackld, const int pdg, const std::string process, const int mother=-1, const double mass=s_uninitialized, const int status=1)
Standard constructor. More...
MCParticle (MCParticle const &)=default
operator= (const MCParticle &)=default
MCParticle (MCParticle &&)=default
operator= (MCParticle &&)=default
MCParticle (MCParticle const &, int)
Trackld () const

StatusCode () const

PdgCode () const

Mother () const

Polarization () const

SetPolarization (const TVector3 &p)
Process () const

EndProcess () const

SetEndProcess (std::string s)
AddDaughter (const int trackID)
NumberDaughters () const

Daughter (const int i) const

92

Header Issues

- Attempt to build. You’re going to run into some errors (oops!)
- I've done this on purpose, because | think that they represent the most common build errors
you’ll come across when writing an analyser

/home/lar25-t09/sbndcode_2025/srcs/sbndcode/sbndcode/Workshop/Analysis/AnalyseEvents_module.cc:244:49: error: ‘'detinfo’' was not declared in t
his scope
auto const clockData = art::ServiceHandle<detinfo::DetectorClocksService>()->DataFor(e);

|
/home/lar25-t09/sbndcode_2025/srcs/sbndcode/sbndcode/Workshop/Analysis/AnalyseEvents_module.cc:244:79: error: template argument 1 is invalid
244 | auto const clockData = art::ServiceHandle<detinfo::DetectorClocksService>()->DataFor(e);
| ~
/home/lar25-t09/sbndcode_2025/srcs/sbndcode/sbndcode/Workshop/Analysis/AnalyseEvents_module.cc:244:79: error: template argument 2 is invalid
/home/lar25-t09/sbndcode_2025/srcs/sbndcode/sbndcode/Workshop/Analysis/AnalyseEvents_module.cc:246:35: error: 'Hit' is not a member of 'recob

246 | std::vector<art::Ptr<recob::Hit>> track_hits = trackHitAssoc.at(track.key()):

1. Headerissue
- We’re missing some header files
- You need to find the header file in which the class or function that your using is defined
- Typically I identify the headers | need from the usage in other files, so use your new GitHub
search skills to find out the needed headers 93

Header Issues

2. CMakelist errors

3.10-2.17-e26-prof/lib:/cvmfs/larsoft.opensciencegrid.org/products/cetlib/v3_18_02/s1f7.x86_64.e26.prof/lib && :

/usr/bin/ld: Dwarf Error: found dwarf version '5', this reader only handles version 2, 3 and 4 information.
sbndcode/sbndcode/Workshop/Analysis/CMakeFiles/sbndcode_Workshop_Analysis_AnalyseEvents_module.dir/AnalyseEvents_module.cc.o: In function 't4
st::AnalyseEvents::analyze(art::Event const&)':

AnalyseEvents_module.cc:(.text+0x37e3): undefined reference to "TruthMatchUtils::TrueParticleIDFromTotalRecoHits(detinfo::DetectorClocksData
const&, std::vector<art::Ptr<recob::Hit>, std::allocator<art::Ptr<recob::Hit> > > const&, bool)'

AnalyseEvents_module.cc:(.text+0x3863): undefined reference to "TruthMatchUtils::Valid(int)'
collect2: error: 1d returned 1 exit status
ninja: build stopped: subcommand failed.

FATAL ERROR: stage install FAILED for MRB project larsoft v10_06_00 with code 1

- Inour analysis directory lives a CMakeLists.txt file, which essentially tells us the libraries that
the analyser needs to be aware of when building

- We need to make it aware of the ParticlelnventoryService and TruthUTtils libraries.

- Please add, to the CMakeLists.txt file, the lines:

larsim::MCCheater_ParticlelnventoryService_service

larsim::Utils 4

Runtime errors

Your code should now build. But we’re going to hit a runtime error that complains about not
knowing about one of our new services

- If your code doesn’t complain, your ‘BacktrackedPDG’ branch will likely be filled by -1

- ServiceNotFound BEGIN
Unable to create ServiceHandle.
Perhaps the FHiCL configuration does not specify the necessary service?
The class of the service is noted below...
---- ServiceNotFound BEGIN

ServicesManager unable to find the service of type
---- ServiceNotFound END

‘cheat: :BackTrackerService'.

3. Notdeclaring appropriate services configuration
- We need to ‘configure’ the BackTrackerService and ParticlelnventoryService in our run fcl:
ParticlelnventoryService: @local::sbnd_particleinventoryservice
BackTrackerService: @local::sbnd_backtrackerservice

DetectorClocksService: @local::sbnd_detectorclocks 95

Now remake your track length plot!

- Make our plot as before, this time
colour our plots by the
backtrackedPDG

tree->Draw("childTrackLengths>>muonTrack_hist(100, O,
300)", "abs(backtrackedPDG) == 13”)

tree->Draw("childTrackLengths>>protonTrack_hist(100, O,
300)", "abs(backtrackedPDG) == 2212")

muonTrack_hist->SetLineColor(kBlue)
protonTrack_hist->SetLineColor(kRed)
muonTrack_hist->Draw(“hist”)
protonTrack_hist->Draw(“hist same”)

30

25

20

15

10

o
ti:lllllllllllllllllllllllllll

||||||||||1|1|||||||H|n||||

o

50 100 150 200 250

300

96

Bonus Bonus Task

- We could go even further, why don’t you calculate how often the longest reconstructed track
is a backtracked muon?

97

~ !'..,Ltw fffii g

ROOT Workflows

e These tutorials focus on using ROOT via a VNC connection

e Tryingto open root files (or any visualisation) via a standard ssh connection will resultin
bad times

e You can often set up a VNC over an ssh connection (e.g. to the Fermilab GPVMs)

e You can also copy root files to your local machine and run root macros locally (the TTree
files are much smaller than the art files and root can be compiled on a laptop fairly
easily with minimal dependencies)

99

https://wiki.dunescience.org/wiki/DUNE_Computing/Using_VNC_Connections_on_the_dunegpvms

Some important file locations

Our version of the code lives here:

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/AnalyseEvents_module.cc

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/analysisConfig.fcl

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/run_analyseEvents.fcl

Type 1s -ain the directories to see hidden files and directories

100

Documentation and additional information

The documentation for each art object/tool we have looked at lives here:

recob: :PFParticle - nhttps://code-doc.larsoft.org/docs/latest/html/classrecob_1_1PFParticle.html
art::FindManyP - https://code-doc.larsoft.org/docs/latest/html/classart_1_1FindManyP.html
recob::Track - https://code-doc.larsoft.org/docs/latest/html/classrecob_1_1Track.html

anab::Calorimetry - https://code-doc.larsoft.org/docs/latest/html/classanab_1_1Calorimetry.html

Remember you can look at all of the objects and their corresponding producers in any
reco file by looking at an event dump:

lar -c eventdump.fcl -s /path/to/reco/file.root -n 1

101

Some useful doxygen/github

LArSoft-y things:

Doxygen:
https://code-doc.larsoft.org/docs/latest/html

Github:
https://github.com/LArSoft/

Pandora Github:

https://github.com/PandoraPFA

Experiment-based:

SBN-wide Doxygen:
https://sbnsoftware.github.io/doxygen/

sbndcode Github:
https://github.com/SBNSoftware/sbndcode

MicroBooNE Github:
https://github.com/uboone

DUNE Github:
https://github.com/DUNE

102

https://github.com/PandoraPFA
https://code-doc.larsoft.org/docs/latest/html/
https://sbnsoftware.github.io/doxygen/
https://github.com/SBNSoftware/sbndcode
https://github.com/uboone
https://github.com/DUNE

Previous tutorials

Isobel Mawby & Alex Wilkinson’s tutorial from 2025 (DUNE-focused workshop at CERN) is here:
https://indico.cern.ch/event/1461779/contributions/6319649/ (password: LArSAW2025)

Henry Lay & Lan Nguyen’s tutorial from 2024 is here:
https://indico.ph.ed.ac.uk/event/313/contributions/3414/

Isobel Mawby & Henry Lay’s tutorial from 2023 is here:
https://indico.ph.ed.ac.uk/event/268/contributions/2731

Ed Tyley & Rhiannon Jones’ tutorial from 2022 is here:
https://indico.ph.ed.ac.uk/event/130/contributions/1747

Ed Tyley & Rhiannon Jones’ tutorial from 2021 is here:
https://indico.ph.ed.ac.uk/event/91/contributions/1417/

Owen Goodwm s tutorial from 2020 is here

Rhiannon Jones’ tutorial from 2019 is here: (this link no longer works - SAD.)
https://indico.hep.manchester.ac.uk/getFile.py/access?contribld=13&sessionld=4&resld=0&materialld=slides&confld=5544

Lelgh Whltehead s tutorial from 2018 is here (this link no longer works - SAD.)

103

https://indico.cern.ch/event/1461779/contributions/6319649/
https://indico.ph.ed.ac.uk/event/313/contributions/3414/
https://indico.ph.ed.ac.uk/event/268/contributions/2731/
https://indico.ph.ed.ac.uk/event/130/contributions/1747/
https://indico.ph.ed.ac.uk/event/91/contributions/1417/
https://indico.hep.manchester.ac.uk/static/5856/contributions/12-4-0-slides
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372

