
29th October 2025

10th UK LArTPC Software & Analysis
Workshop

Isobel Mawby & Alex Wilkinson
alex.j.wilkinson@warwick.ac.uk &

i.mawby1@lancaster.ac.uk
#analysis

Writing your First Analyz(s)er

Overview & aims of this session

● Learn how to do some physics with the reconstructed events you produced
○ Don’t worry if you didn’t manage to make the files, I’ll point you to some we’ve made

● Learn how to access the reconstructed neutrino information
○ There is a generic procedure for accessing almost all of the neutrino information you have in

every file you’ve made this week

● We’ll look at:
○ Reconstruction objects produced by Pandora and downstream reconstruction
○ Associations of these objects to higher-level information
○ Take your time & try to understand everything you do

● Hopefully we’ll be able to make some plots
2

Thanks to all who
have given this
tutorial over the last
few years, these
slides have been
(very marginally)
adapted from those
previous versions.

Side note

● We have included what will probably be far too much to achieve in these
sessions

● But hopefully it’s all structured clearly enough that you can continue with the
exercises in your own time

● So please don’t worry if you don’t make it hugely far through this tutorial,
there’s supposed to be too much content

● If you are reading these slides as a PDF, you might prefer to look at the Google
Slides link explicitly, as some code blocks render better there

4

https://docs.google.com/presentation/d/1bL7RrkiHPPfIH42ECJgcUi6bX8jisWbXYYNaMkw6Hj0/edit?usp=sharing
https://docs.google.com/presentation/d/1bL7RrkiHPPfIH42ECJgcUi6bX8jisWbXYYNaMkw6Hj0/edit?usp=sharing

Slide Structure

5

‘New Topic’ Slide ‘Lecture’ Slide ‘Exercise’ Slide

The helpers around the room are here
to be your (less sassy) clippy…

The pink text indicates places
where you need to replace the line
with your personal version.

1. The Analyzer Skeleton

66

The skeleton analysis module

There are 2 ways of beginning your analyzer:

1. Using the command:

We will use this - It’s great for starting something brand new

2. Copying an analyzer you’ve made previously & removing anything unnecessary

This is great if you want to do something similar to a previous analyzer
e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

7

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

cetskelgen

8

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

These are optional functions which will be
added to your analyzer, we’ll look at them

in the next few slides

Choose something sensible here,
e.g. test::AnalyseEvents

For more information, see:
https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

Let’s do it!

If you are using a fresh terminal you will need to setup again:

1. Navigate here:

2. Type the cetskelgen command:

cd $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis

cetskelgen -v -d . -e beginJob -e endJob analyzer test::AnalyseEvents

The full stop tells cetskelgen to place the analysis
module in the current directory

source /cvmfs/sbnd.opensciencegrid.org/products/sbnd/setup_sbnd.sh
source /PATH/TO/YOUR/BUILD/AREA/localProducts*/setup
mrbslp

We’ve put the CMakeLists.txt and build.sh files here…

9

Have you remembered
to setup the SL7

container?

What did we create?

● You should now find a file called
AnalyseEvents_module.cc, this
is your analyzer!

● Open this!

● The top section should look
something like the snippet on the
right

(but most likely with a less ugly colour
theme, apologies…)10

The Analyzer Structure

11

This is some information to explain what’s in the
file to someone who might want to use it
Or just for your forgetful, future self

These are the default headers which should hopefully
allow the empty analyzer to build
You’ll add to these later!

Setting up the class you’ve just created
You shouldn’t need to touch these

These are the functions you’re going to modify for the
analysis

The Analyzer Structure

Scroll down to the next chunk of code in
your analyzer module

This is the constructor, we’ll access configuration
parameters here later on

This is the analyze function, it’s called for every
event you give it in the LArSoft job

These optional functions are called once,
before and after any and all events are analyzed

Macro to tell art that this module exists
This is used in the fcl configuration in a few
slides

12

1313

2. Obtaining Our First Analysis Information

Writing out Analysis Information

1) We’re going to create a ROOT TTree to store our analysis information

2) Then we will add to our tree, the ‘Event ID’ of our created events
https://root.cern.ch/doc/master/classTTree.html 14

https://root.cern.ch/doc/master/classTTree.html

Creating a TTree

Add relevant LArSoft & ROOT headers

Declare TTree

Create your TTree

Add relevant LArSoft & ROOT headers

Declare TTree

Create your TTree

Note: The order represents their locations in the file15

Writing Out a Variable

Note: The order represents their locations in the file

In this case, the Event ID

16

Declare event-based variables

Access our event ID from the LArSoft event we’re
analysing & fill the TTree

Add branches for the variables we want to fill

Running the analysis module

In order to be able to run the analyzer, we now need to write 2 fhicl files

● The first will configure our analyser - an include fcl
○ This is where we point the analyzer to the objects/parameters we want to access from the

input files (this will make more sense soon…)

● The second will be used to run our analyser - a run/job fcl
○ This links together the configuration file and the analysis module

● The main reason we don’t just define our parameters in the run/job fcl is that multiple
run/job fcls can all inherit from the include fcl. This way we reduce our points of
maintenance.

17

Fhicl 1: Configuring the analyzer

Fhicl 1: Configuring the analyzer. Create a file, e.g. analysisConfig.fcl & fill it with this:

Your chosen name for this
parameter set Links the fhicl file to the analysis

module using the name you gave
your analyzer class

See what this does (and more
best practices) here

18

Later this is where we will add any
configuration of our analyzer module.

https://indico.fnal.gov/event/11857/sessions/1051/attachments/6785/8812/LArSoftUsability_workshop_June2016_knoepfel.pdf

Fhicl 2: Running the module

19

Include your analyzer configuration fhicl

Name this process
Must not include any underscores

Tell it to expect a ROOT input file

Output filename

ana sets our module analyzeEvents as part of the
workflow
Note, this matches the name in the configuration fcl file

Create another file, e.g.
run_analyseEvents.fcl

& fill it with this:

2020

Let’s try running it…

Pre-made reconstructed events

Haven’t made a reconstruction file? Don’t panic!

There is a pre-made reconstruction file which can be found here:

/scratch/LAr25/analysis/sim_g4_detsim_reco1_reco2_50.root

21

Compiling and running your code

First, we need to compile what you’ve written so far
From the $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis directory:

Then (when successful) run your analyzer!

Open the file in ROOT to investigate our output file...

22

lar -c run_analyseEvents.fcl -s /path/to/input/file.root -n 10

source build.sh

root -l analysisOutput.root

This has each build command in one place, have a look to make sure
you’re comfortable with what it does before using it

Let’s just run over 10 events while we
make sure things build.

We’ll run on the whole sample later

Looking at the output in ROOT

23

Here you can see that the name you gave to the
analyzer in the fhicl run script is the name of your
directory (ana): Open it with ->cd()

You can see the output (T)Tree that we created, use
Scan() to view its contents (can also use
Show(entryNumber), a TBrowser etc…)

Your tree exists and contains the event IDs! Success!
(hopefully)

24

A quick aside on how to access our reconstruction information, so we
can obtain some cooler analysis information!

24

3. Accessing Data Products

Accessing products from our files (1)

● Currently, just focused on EventID, but how do we access the information that we’ve added
to the ‘simulation/data’ files e.g. in the Pandora stage?

● There are two ways the information is stored in these files:

1) As a vector of objects:

e.g. a vector of all PFParticles created
by Pandora

std::vector<art::Ptr<recob::PFParticle>>

{PFP_A, PFP_B, PFP_C}

{PFP_A → Vtx_B,
 PFP_B → Vtx_A,
 PFP_C → Vtx_C}

2) As associations:

e.g. links between PFParticles and
their associated reconstructed vertex

25

● We can use eventdump.fcl to see what data products are saved in our
‘simulation/data’ files

lar -c eventdump.fcl whateverYourSimulationOrDataFileIsCalled.root -n 1

Accessing products from our files (2)

The process_name set in
the fcl

The name of the
producer that was run

The type of products that
were created

The number of each
product created

PFParticle vector PFParticle → SpacePoint association

26

Accessing Vectors (the technical details)

● In our analyzer, let’s say that we want to obtain the vector of slices

● We first need to set up the data object handle, consider this to be the link between your code and the
object vector in the simulation/data files

the type of object we’re after
the name of the producer that
created it (see previous slide)

● After we check that our handle is valid, we can now retrieve the vector in our code

27

e is the current art::Event

Accessing Associations (Technical Details)

● Say that, in our analyser, we want to obtain the vector of PFParticles connected to a given slice

● We first initialise a FindManyP object, consider this to be a link between your code and the associations of
a given object vector (in this case, the vector in which our considered slice lives)

our handle to the object vector the name of the producer
that created the

association28

‘Considered Object’ ‘Associated Object Vector’

Slice → PFParticle Vector

Accessing Associations (Technical Details)

● To get the PFParticles associated to a particular slice, in this case the first slice in sliceVector

● We then do:

HEY ISOBEL/ALEX!
What’s that key function about?

29

What’s the key function about?

● Every art::Ptr<...> has a key function

● It returns the index of the ‘pointed to’ object in the vector in which it lives, and is used to identify the
connected associations

Consider:

Then:

So, to get the PFParticle vector associated with sliceC, we’d do:

30

3131

4. Investigating our Neutrino Hierarchy

Obtaining the Neutrino Hierarchy

32

● In an experiment with background cosmic rays (like SBND), our reconstruction output will consist of
slices, some containing cosmic-like hierarchies, others neutrino-like hierarchies.

● IN OUR OPINION, the best way to obtain the PFParticles from a neutrino hierarchy is:
1) find the neutrino 2) get its children

Pandora will set the PDG code of the neutrino
PFP as either 12 or 14, NEVER use this for

nue/numu separation

The Neutrino Hierarchy in LArSoft

33

COW!

Implementing Neutrino Hierarchy Variables (1)

● Let’s ‘calculate’ some neutrino hierarchy variables, and add them to our tree!

1) First, we’ll need some new includes:

2) Create new member variables, and connect them to our (T)Tree

34

3) Calculate the neutrino
hierarchy variables

35

Initialise our neutrino hierarchy variables
to zero at the start of every event

Get the reconstructed slices in the event
and the PFParticle associations

Loop through the slices until we find the
neutrino PFParticle (here, we assume
that, across all slices, there is only one
neutrino candidate - this isn’t normally the
case!)

Fill the neutrino hierarchy variables, and
note the neutrino ID (and the neutrino
slice ID)

This statement comes from our assumption that there is only one
neutrino hierarchy, in a more sophisticated analysis you would want
to consider all neutrino candidates.

Need to account if our events do not contain any neutrino candidates

Implementing Neutrino Hierarchy Variables (4)HARD CODING MODULE NAMES IS A VERY VERY VERY BAD IDEA!

Save module names as
member variables instead!

We’ll see how to do this in the next few slides…36

Implementing Neutrino Hierarchy Variables (4)

● We pass module names into our analyzer through the analysisConfig.fcl file:

In your analyzer: In analysisConfig.fcl:

37

Fhicl configuration file linking & running

38

lar -c run_analyseEvents.fcl -s /path/to/input/file.root -n 10

source build.sh

root -l analysisOutput.root

Compile changes

Run analyzer

Check output

38

What our output looks like now

● Our (T)Tree should now have 2 new branches

● By viewing the tree, we can check that everything
looks sensible…

nPFParticles tells us how many particle we
have reconstructed

nPrimaryChildren is the number of
primary particles (children of the neutrino)

we have reconstructed

39

4040

5. Adding Track Information

Let’s have a look at the length of our muon/proton tracks

● The association we are after is:

recob::PFParticle → recob::Track

● But first, we’ll need to get the PFParticle handle so that we can initialise our FindManyP object

pandora

pandoraTrack

pandoraShower

recob::PFParticle

recob::Track

recob::Shower

In the SBND workflow, all PFParticles are fitted as both
tracks and showers

41

In analysisConfig.fcl

The details (bitty part)

In the configuration file add the label of
the track producer, we’ll also need the
PFParticle label

In analyzeEvents_module.cc

Add a new output to store the lengths of
the reconstructed tracks

Add a new field to store the TrackLabel and
PFParticleLabel that we set in the fcl above

Initialise PFParticle/TrackLabel from the
configuration

42

Add relevant header

Creating the output

Reset the values stored
in the vector for each
event in analyzer()

Add a new branch to the TTree using the
vector defined on the previous slide
in beginJob()

43

The details, in analyze

We need to get the handle to our
PFParticles so that we can get the
PFParticle -> Track associations

Checking that the parent of the current
PFParticle is the neutrino

Get the vector of Track objects
associated to the current PFParticle
There should be only a single track
associated with each PFParticle

Now fill the vector of Track lengths we
declared earlier

44

4545

Another way to view our analysis results…

Let’s look at the track lengths

Firstly, run over all your events by removing -n 10 from the command like this:

Open the output file and draw the track lengths! (using treeName->Draw(“branch name”))

46

You can also use -n -1

lar -c run_analyseEvents.fcl -s /path/to/input/file.root

root -l analysisOutput.root

root[0] ana->cd()
root[1] tree->Draw(“childTrackLengths”)

On the terminal

In the root terminal

What do you see?

47

protons!

You can clearly make out
what is likely to be
separate muon and

proton distributions! muons!

What do you see?

48

protons!

muons!

What do we think we can
see in this SBND event?

4949

6. Associations: Going a little deeper

Particle Ionisation

 [2007.06722] First results on ProtoDUNE-SP....

50

A plot from ProtoDUNE-SP LArTPC
showing the 2D dE/dx vs. residual range
distributions for Muons and Protons
produced in a test beam at CERN.

The theoretical distributions for each
particle type are given by the lines.

Good separation between Muons &
Protons due the large difference in
mass.

https://arxiv.org/abs/2007.06722

More associations!

51

Slice

"pandora"

PFParticle

"pandora"

Earlier we looked at the association between recob::Slices and recob::PFParticles

More details can be found in the doxygen entry.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations!

52

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Earlier we looked at the association between recob::Slices and recob::PFParticles

…and then between recob::PFParticles and recob::Tracks.

More details can be found in the doxygen entry.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations!

53

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

Earlier we looked at the association between recob::Slices and recob::PFParticles

…and then between recob::PFParticles and recob::Tracks.

…we can now make use of another association to get hold of the energy deposition
information we need to to recreate that ProtoDUNE plot.

This time we need the anab::Calorimetry object…

Notice I have drawn in a different colour to indicate it lives in a different namespace to the
other objects we’ve been looking at so far (anab not recob)

More details can be found in the doxygen entry.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

More associations!

54

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

Earlier we looked at the association between recob::Slices and recob::PFParticles

…and then between recob::PFParticles and recob::Tracks.

…we can now make use of another association to get hold of the energy deposition
information we need to to recreate that ProtoDUNE plot.

This time we need the anab::Calorimetry object…

Notice I have drawn in a different colour to indicate it lives in a different namespace to the
other objects we’ve been looking at so far (anab not recob)

We have at least one separate calorimetry object for each of the
three planes

The object contains vectors of dQ/dx, dE/dx, Residual Range etc
values. Each entry corresponds to a trajectory point.

These steps should feel familiar:

1. Add the relevant header for the anab::Calorimetry object
2. Add the module label to your configuration file and access it in the constructor
3. Add any declarations & branches for new variables you want to push to your tree
4. Access the list of anab::Calorimetry objects from a list of recob::Track objects

using art::FindManyP
5. Fill your tree variables with information from your anab::Calorimetry object.

Try making a start on this and we’ll go through it in more detail in a few minutes…

Accessing Calorimetry

55

Accessing Calorimetry (1)

56

 1. Add the relevant header for the anab::Calorimetry object

 2. Add the module label to your configuration file and access it in the constructor

 3. Add any declarations & branches for new variables you want to push to your tree

Try to remember where
each line goes…

Accessing Calorimetry (2)

57

 4. Access the list of anab::Calorimetry objects from a list of recob::Track objects using art::FindManyP

 5. Fill your tree variables with information from your anab::Calorimetry object.

Accessing Calorimetry (2)

58

 4. Access the list of anab::Calorimetry objects from a list of recob::Track objects using art::FindManyP

 5. Fill your tree variables with information from your anab::Calorimetry object.

Remember, there are separate
calorimetry objects for each plane,
let’s only consider the collection
plane.

Accessing Calorimetry (2)

59

 4. Access the list of anab::Calorimetry objects from a list of recob::Track objects using art::FindManyP

 5. Fill your tree variables with information from your anab::Calorimetry object.

We can insert the whole
vectors in one go!

Histogram time!

You should be pretty familiar with rebuilding & running your analyzer now…

You can now use your calorimetry branches to make a 2D histogram in ROOT.

60

root[0] ana->cd()

root[1] TH2D *h = new TH2D("h","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[2] tree->Draw("childTrackdEdx:childTrackResRange>>h", "", "colz")

You should see something like this!

What do you find most interesting about the distribution?

61

Try playing around with the axis labels/style
options using the GUI.

You can save the plot at the end too!

6262

7. A very simple PID

Finding the longest track

63

● Since we have generated a single muon and proton with defined momenta, we can be
reasonably confident that they will be very different lengths in each event.

● We can harness this as a very simple particle identification technique for our sample.

● Let’s loop through our neutrino children to find which track was the longest track in
each neutrino hierarchy. We should do this in a separate loop before the main analysis
loop.

Finding the longest track (1)

64

Within the loop we check
whether this track replaces our
current longest.

We make some variables to
track which track was longest
and what that length was.

Then we loop through the PFPs
and get their associated tracks,
just like we do in the main
analysis loop.

Finding the longest track (2)

65

In our main loop we can then add a
variable which is a boolean
(true/false) describing whether this
track is the longest or not.

Finding the longest track (2)

66

In our main loop we can then add a
variable which is a boolean
(true/false) describing whether this
track is the longest or not.

What else do we need to
add? I’ve left some stuff

out!

Finding the longest track (2)

67

In our main loop we can then add a
variable which is a boolean
(true/false) describing whether this
track is the longest or not.

What else do we need to
add? I’ve left some stuff

out!

Once you think you have included all the necessary additions
you will, as usual, need to recompile your analyzer and run it
over your reconstruction file again…

More plots, YAY!

Now we know which tracks are the longest, and which tracks are just
common garden tracks. We can use this to split our plots up…

Let’s open our file again, this time making two versions of our dE/dx vs.
Residual Range histogram.

68

root[0] ana->cd()

root[2] TH2D *hShort = new TH2D("hShort","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[1] TH2D *hLong = new TH2D("hLong","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

More plots, YAY!

69

root[3] tree->Draw("childTrackdEdx:childTrackResRange>>hLong", "childTrackIsLongest", "")

root[4] tree->Draw("childTrackdEdx:childTrackResRange>>hShort", "!childTrackIsLongest", "same")

This time we need to include our condition on the draw command…

root[5] hLong->SetMarkerColor(kMagenta+2)

root[6] hShort->SetMarkerColor(kOrange+2)

We need to tell the two apart… Let’s draw them in different colours!

root[6] c1->Modified()

Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html

Tell the canvas (default c1) to implement these changes and redraw the canvas

https://root.cern.ch/doc/master/classTColor.html

More plots, YAY!

70

root[3] tree->Draw("childTrackdEdx:childTrackResRange>>hLong", "childTrackIsLongest", "")

root[4] tree->Draw("childTrackdEdx:childTrackResRange>>hShort", "!childTrackIsLongest", "same")

This time we need to include our condition on the draw command…

root[5] hLong->SetMarkerColor(kMagenta+2)

root[6] hShort->SetMarkerColor(kOrange+2)

We need to tell the two apart… Let’s draw them in different colours!

root[6] c1->Modified() Tell the canvas (default c1) to implement these changes and redraw the canvas

Why don’t you try this for
the track length plot too?

Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html

https://root.cern.ch/doc/master/classTColor.html

7171

Some final plots…

Track lengths

For the next section we have produced a file with 50 events so that the plots are a little
cleaner. You can continue to use your 10 event file or the 50 event file reconstructed file
is available here:

/scratch/LAr25/analysis/sim_g4_detsim_reco1_reco2_50.root

72

Track lengths

You should’ve seen that there
were two clearly separated
distributions for the longest
track compared to the other
tracks.

Why is this?

73

Energy deposition

By plotting our dE/dx vs. Residual Range
separately curve based on which track
was longer we see a clear difference
between the distributions.

This results from the fact that the proton
is more highly ionising than the muon as
it moves through the argon.

74

75

arXiv:1205.6747v2
[physics.ins-det] 5 Jun 2012

This ArgoNeuT plot shows the
theoretical separating power of
the average dE/dx vs. residual

range distributions. The overlaid
black data points show a single
stopping track in the ArgoNeuT

detector.

Energy distributions

76

arXiv:1205.6747v2 [physics.ins-det] 5 Jun 2012

This ArgoNeuT plot shows the theoretical separating power of the average dE/dx vs.
residual range distributions. The overlaid black data points show a single stopping
track in the ArgoNeuT detector.

It shows us that our longest track distribution fits the theoretical
distribution for muons, and the others for protons!

If you have some spare
time, try to work out

what is going on down
here!

7777

8. Recovering t0

Detector system associations

78

We have previously looked at associations between reconstructed quantities for the purpose of
accessing geometry and calorimetry information about the particles in our events.

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

Detector system associations

79

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

OpT0FinderResult

"opt0finder"

We can also look at
associations between the

different detector systems:
TPC, PDS & CRT

In this scenario we are going to
use the precision timing of the

PDS to set the t0 of the TPC
reconstruction and thus the

relative x-position.

We have previously looked at associations between reconstructed quantities for the purpose of
accessing geometry and calorimetry information about the particles in our events.

Detector system associations

Slice

"pandora"

PFParticle

"pandora"

Track

"pandoraTrack"

Calorimetry

"pandoraCalo"

OpT0FinderResult

"opt0finder"

We can also look at
associations between the

different detector systems:
TPC, PDS & CRT

In this scenario we are going to
use the precision timing of the

PDS to set the t0 of the TPC
reconstruction and thus the

relative x-position.

We have previously looked at associations between reconstructed quantities for the purpose of
accessing geometry and calorimetry information about the particles in our events.

80

We try and match the charge image we saw in the TPC to the light
image we saw with the PDS, if they agree we can use the PDS’ much
more precise timing to adjust the timing (x-position) of our TPC slice.

Adding Flash Matching Information

We’re going to leave you to try and add this one on your own. The object is called
sbn::OpT0Finder and lives here. You will need to:

- Add the relevant header
- Add the module label to the fcl file and access it in the analyzer
- Use the association to access the object
- Sometimes there are multiple OpT0Finder results per slice, you should pick the one

with the largest score variable.
- Save the time variable from the object to your tree.

81

We will go through all of this in a moment so
don’t worry if you get stuck, this is hard!

https://github.com/SBNSoftware/sbnobj/blob/develop/sbnobj/Common/Reco/OpT0FinderResult.h

Adding OpT0Finder

Add the relevant header

82

Add the module label to the fcl file and access it in the analyzer

Use the association to access the object

Accessing OpT0Finder

83

● Sometimes there are multiple OpT0Finder results per slice, you should pick the one with the
largest score variable.

● Save the time variable from the object to your tree.

84

A few noteworthy points…

1. This uses our slice object so needs to happen in the slice loop.

2. You may well have found the top scoring object in a different way. Many approaches are
legitimate.

85

A few noteworthy points…

3. We need to have defined fOpT0 and added it as a branch too.

T0 Results

Remember way back in the simulation tutorial? You defined t0 to be 1600ns.

86

● Your OpT0 results should give you values
close to that original simulated time.

● Last year we discovered this number to be off
and it took us a long time and asking other
experts to understand why.

● Worth remembering that all of us still have to
ask questions all the time, so never worry
about reaching out with questions!

8787

9. Truth Matching (Bonus Task!)

Truth Matching

88

- When working with simulated files, we know the ‘truth’ of our events i.e. what did the
generator actually produce

- We can match (or backtrack) our reconstructed PFParticles to the simulated MCParticles to
understand how well our reconstruction and/or selections perform!

- Task: Use the same procedure as before to add a ‘BacktrackedPDG’ branch to our analysis
tree, in the following steps we’ll store the PDG code of the MCParticle that best matches our
reconstructed particle

ParticleDataGroup example codes:

muon = 13 proton = 2212 charged pion = 221

More at: https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf

TruthMatchUtils

89

- Our very own Dominic Brailsford created some ‘backtracking’ tools that can be found here:
https://github.com/LArSoft/larsim/blob/develop/larsim/Utils/TruthMatchUtils.h

- We’re going to use the function:

int g4id = TruthMatchUtils::TrueParticleIDFromTotalRecoHits(clockData, track_hits, 1);

You’ll see that we need:
- the track’s recob::Hits (use track-hit associations analogous to what you’ve done before)
- clockData which we obtain from the 'DetectorClocksService', like so:

auto const clockData = art::ServiceHandle<detinfo::DetectorClocksService const>()->DataFor(evt);

1 indicates that we want
to ‘roll up’ our shower

hierarchies to the leading
electron/photon

https://github.com/LArSoft/larsim/blob/develop/larsim/Utils/TruthMatchUtils.h

GitHub searching…

90

- But wait, this gives me the g4id (the trackID) of the matched MCParticle, how do I get the
MCParticle itself?

- To do this, we use the ParticleInventoryService
- I don't want to give you the exact code snippet here.. so why don't you search a relevant

GitHub repo (e.g. dunereco) for examples to see how this is used

Search ParticleInventoryService here I think that you have to be signed
into GitHub for this to work

https://github.com/DUNE/dunereco

GitHub searching…

91

- Scroll through the options until you find something that might be promising, e.g.:

- You’ll only be shown the area around the first mention of your search keyword, open up the
code to find other mentions of ParticleInventoryService…

MCParticle

92

- Okay, so now you have the MCParticle but how do we get from it the PDG code?
- If you google the class name simb::MCParticle you’ll find the doxygen overview of the

MCParticle class methods and member variables.

- See if you can find the appropriate
function to fill your tree branch

Header Issues

93

- Attempt to build. You’re going to run into some errors (oops!)
- I’ve done this on purpose, because I think that they represent the most common build errors

you’ll come across when writing an analyser

1. Header issue
- We’re missing some header files
- You need to find the header file in which the class or function that your using is defined
- Typically I identify the headers I need from the usage in other files, so use your new GitHub

search skills to find out the needed headers

Header Issues

94

2. CMakeList errors

- In our analysis directory lives a CMakeLists.txt file, which essentially tells us the libraries that
the analyser needs to be aware of when building

- We need to make it aware of the ParticleInventoryService and TruthUtils libraries.
- Please add, to the CMakeLists.txt file, the lines:

larsim::MCCheater_ParticleInventoryService_service
larsim::Utils

Runtime errors

95

- Your code should now build. But we’re going to hit a runtime error that complains about not
knowing about one of our new services

- If your code doesn’t complain, your ‘BacktrackedPDG’ branch will likely be filled by -1

3. Not declaring appropriate services configuration
- We need to ‘configure’ the BackTrackerService and ParticleInventoryService in our run fcl:

 ParticleInventoryService: @local::sbnd_particleinventoryservice
 BackTrackerService: @local::sbnd_backtrackerservice
 DetectorClocksService: @local::sbnd_detectorclocks

Now remake your track length plot!

96

- Make our plot as before, this time
colour our plots by the
backtrackedPDG

tree->Draw("childTrackLengths>>muonTrack_hist(100, 0,
300)", "abs(backtrackedPDG) == 13”)

tree->Draw("childTrackLengths>>protonTrack_hist(100, 0,
300)", "abs(backtrackedPDG) == 2212”)

muonTrack_hist->SetLineColor(kBlue)
protonTrack_hist->SetLineColor(kRed)
muonTrack_hist->Draw(“hist”)
protonTrack_hist->Draw(“hist same”)

Bonus Bonus Task

97

- We could go even further, why don’t you calculate how often the longest reconstructed track
is a backtracked muon?

9898

Final notes

ROOT Workflows

● These tutorials focus on using ROOT via a VNC connection

● Trying to open root files (or any visualisation) via a standard ssh connection will result in
bad times

● You can often set up a VNC over an ssh connection (e.g. to the Fermilab GPVMs)

● You can also copy root files to your local machine and run root macros locally (the TTree
files are much smaller than the art files and root can be compiled on a laptop fairly
easily with minimal dependencies)

99

https://wiki.dunescience.org/wiki/DUNE_Computing/Using_VNC_Connections_on_the_dunegpvms

Some important file locations

Our version of the code lives here:

100

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/AnalyseEvents_module.cc

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/analysisConfig.fcl

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/run_analyseEvents.fcl

Type ls -a in the directories to see hidden files and directories

Documentation and additional information

101

The documentation for each art object/tool we have looked at lives here:

● recob::PFParticle - https://code-doc.larsoft.org/docs/latest/html/classrecob_1_1PFParticle.html
● art::FindManyP - https://code-doc.larsoft.org/docs/latest/html/classart_1_1FindManyP.html
● recob::Track - https://code-doc.larsoft.org/docs/latest/html/classrecob_1_1Track.html
● anab::Calorimetry - https://code-doc.larsoft.org/docs/latest/html/classanab_1_1Calorimetry.html

Remember you can look at all of the objects and their corresponding producers in any
reco file by looking at an event dump:

lar -c eventdump.fcl -s /path/to/reco/file.root -n 1

Some useful doxygen/github

Pandora Github:

https://github.com/PandoraPFA

102

LArSoft-y things:

Doxygen:
https://code-doc.larsoft.org/docs/latest/html/

Github:
https://github.com/LArSoft/

Experiment-based:

SBN-wide Doxygen:
https://sbnsoftware.github.io/doxygen/

sbndcode Github:
https://github.com/SBNSoftware/sbndcode

MicroBooNE Github:
https://github.com/uboone

DUNE Github:
https://github.com/DUNE

https://github.com/PandoraPFA
https://code-doc.larsoft.org/docs/latest/html/
https://sbnsoftware.github.io/doxygen/
https://github.com/SBNSoftware/sbndcode
https://github.com/uboone
https://github.com/DUNE

Previous tutorials

103

Isobel Mawby & Alex Wilkinson’s tutorial from 2025 (DUNE-focused workshop at CERN) is here:
https://indico.cern.ch/event/1461779/contributions/6319649/ (password: LArSAW2025)

Henry Lay & Lan Nguyen’s tutorial from 2024 is here:
https://indico.ph.ed.ac.uk/event/313/contributions/3414/

Isobel Mawby & Henry Lay’s tutorial from 2023 is here:
https://indico.ph.ed.ac.uk/event/268/contributions/2731/

Ed Tyley & Rhiannon Jones’ tutorial from 2022 is here:
https://indico.ph.ed.ac.uk/event/130/contributions/1747/

Ed Tyley & Rhiannon Jones’ tutorial from 2021 is here:
https://indico.ph.ed.ac.uk/event/91/contributions/1417/

Owen Goodwin’s tutorial from 2020 is here:
https://indico.hep.manchester.ac.uk/static/5856/contributions/12-4-0-slides

Rhiannon Jones’ tutorial from 2019 is here: (this link no longer works - SAD.)
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544

Leigh Whitehead’s tutorial from 2018 is here: (this link no longer works - SAD.)
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372

https://indico.cern.ch/event/1461779/contributions/6319649/
https://indico.ph.ed.ac.uk/event/313/contributions/3414/
https://indico.ph.ed.ac.uk/event/268/contributions/2731/
https://indico.ph.ed.ac.uk/event/130/contributions/1747/
https://indico.ph.ed.ac.uk/event/91/contributions/1417/
https://indico.hep.manchester.ac.uk/static/5856/contributions/12-4-0-slides
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372

