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Consolidated reconstruction

* We use a multi-algorithm approach to create two algorithm chains:
* Consolidated reconstruction uses these chains to guide reconstruction for all use cases:

* Cosmic rays v/, Multiple drift volumes v/, Arbitrary wire angles v, 2 or 3 wire planes v

Neutrino (or
TestBeam)

Cosmic-Ray
Muons

Also includes delta ray

) reconstruction
Target reconstruction of

particles emerging from
an identified vertex % Target reconstruction of straight-line

particles in detector (e.g. cosmic-ray muons)



Consolidated reconstruction
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Consolidated reconstruction - Algorithm chains

* Two Pandora algorithm chains created for LArTPC use, with many algs in common:
* PandoraCosmic: strongly track-oriented; showers assumed to be delta rays, added as daughters of primary

muons; muon vertices at track high-y coordinate.
e PandoraNu: finds neutrino interaction vertex and protects all particles emerging from vertex position. Careful

PandoraNu

treatment to address track/shower tensions. PandoraCosmic

Initially use a two-pass approach:
Input to PandoraNu excludes hits
from unambiguous cosmic rays.

3D vertex reconstruction

‘ Track and shower reconstruction

Particle refinement

! Cosmic-ray muon tagging : [ Particle hierarchy reconstruction

L -
Unambiguous cosmic-ray muons Other particles, input to PandoraNu Output: candidate neutrinos




PandoraCosmic - PandoraNu

PandoraCosmic

:_Cosmic-ray muon tagging :

Unambiguous cosmic-ray muons

Other particles, input to PandoraNu

PandoraNu

Input: cosmic-removed 2D hits

2D reconstruction

3D vertex reconstruction

| Track and shower reconstruction

Particle refinement

I Particle hierarchy reconstruction

Output: candidate neutrinos

Other particles, input
to PandoraNu
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Inputs to Pandora
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Cosmic-Ray Muon Reconstruction - 2D

* For each plane, produce list of 2D clusters that represent continuous, unambiguous lines of hits:

* PandoraCosmic: strongly track-oriented; showers assumed to be delta rays, added as daughters of primary
muons; muon vertices at track high-y coordinate.

* Clusters refined by series of cluster-merging and cluster-splitting algs that use topological info.

Example: Crossing
cosmic-ray muons

Simulated

unresponsive channels \ / \

w, wire position / /
Ly x, drift position /

(@) (b)




Topological Association - 2D

* Cluster-merging algorithms identify associations between multiple 2D clusters and look to grow
the clusters to improve completeness, without compromising purity.

* The challenge for the algorithms is to make cluster-merging decisions in the context of the entire event, rather
than just considering individual pairs of clusters in isolation.

* Typically need to provide a definition of association (for a given pair of clusters), then navigate forwards and
backwards to identify chains of associated clusters that can be safely merged.

LongitudinalAssociation CrossGapsAssociation
iy on/near target

outer cluster

Cluster

3
v merging r
. Check associations h“‘up

both ways
—>
inner cluster

u [cm]

T-» X [cm]




Track Pattern Recognition - 3D

* Our original input was 3x2D images of charged particles in the detector.

* Should now have reconstructed three separate 2D clusters for each particle:
e Compare 2D clusters from u, v, w planes to find the clusters representing same particle.
* Exploit common drift-time coordinate and our understanding of wire plane geometry.
» At given x, compare predictions {u,v>w; v,w—=>u; w,u—>v} with cluster positions, calculating y?

w \ U,véw&a@% Close agreement: predictions
\H If clusters are from sit right upon real hits here

same particle, expect |
w hits to match Vv

predictions uv>w Y
_

Candidate 2D
Clusters

Sample Cluster

| 1 o L i consistency across

—» X, common drift-time coordinate common x-overlap region

Store all results in a “tensor”, recording x-overlap span, no. of sampling points, no. of “matched”
sampling points and 2. Documents all 2D cluster-matching ambiguities.
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Track Pattern Recognition - 3D

Tensor stores overlap details for trios of 2D clusters. Tools make 2D reco changes to resolve any
ambiguities. If a tool makes a change (e.g. splits a cluster), all tools run again.

ClearTracksTool LongTracksTool
: ? uvw ! u:v:w
5 ~ 11 1:2:2
T“ / 3 \ Tu
No. of
1 . associated 2D T

Clusters u:v: w

o

Find unambiguous elements in Resolve obvious ambiguities: clusters

——> x, drift position

—— xdiftposiion the tensor, demanding that the are matched in multiple configurations,
common x-overlap is 90% of the but one tensor element is much
x-span for all three clusters. “better” than others.
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Track Pattern Recognition - 3D

u.vw

1:2:1

I u.v.w
I
I

1:2:2
T / o
Z AN

Candidate cluster

split

OvershootTracksTool UndershootTracksTool

T ' N/ T ' }__ ———
| . Two clustersin w !

: + and v, matched to
! . common u cluster.
I l
| / Split u cluster.
|
|
|

. :

Two clusters in v view,

Candidate cluster | matched to common
merge

clustersin uand w
views. Merge v clusters.

Tw

—> X drift position ——>  x, drift position
* Use all connected clusters to assess whether this is a true 3D kink topology.
* Modify 2D clusters as appropriate (i.e. merge or split) and update cluster-matching tensor.

* Initial ClearTracks tool then able to identify unambiguous groupings of clusters and form particles.



Stitching and T, Identification

* In a LArTPC image, one coordinate derived from drift times of ionisation electrons

* But, only know electron arrival times, not actual drift times: need to know start time, T,

* For beam particles, can use time of beam spill to set T,, but unknown for cosmic rays

* Place all hits assuming T, =T

Beam?

it 3D vieW

Stitch together any cosmic rays

crossing between volumes, identifying TO

but can identify T, for any cosmic rays crossing volumes

APA

Electron drift
direction

CPA

To=T

Beam

Corrected T,

Electron drift
direction

APA
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Delta-Ray Reconstruction - 2D, 3D

* Assume any 2D clusters not in a track particle are from delta-ray showers:
* Simple proximity-based re-clustering of hits, then topological association algs.
* Delta-ray clusters matched between views, creating delta-ray shower particles.
* Parent muon particles identified, and delta-ray particles added as children.

Child delta ray
(shower) particles

Parent muon
(track) particle
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3D Hit/Cluster Reconstruction

* For each 2D Hit, sample clusters in other views at same x, to provide u,,, v,, and w,, values

in’

* Provided u,,,

* Analytic expression to find 3D space point that is most consistent with given u,, v;, and w,,
¢ Xz = (uout - uin)2 / Ouz + (Vout - Vin)2 / Uvz + (Wout - \Nin)2 / Uwz
* Write in terms of unknown y and z, differentiate wrty, z and solve

v,, and w; values don’t necessarily correspond to a specific point in 3D space

* Can iterate, using fit to current 3D hits (extra terms iny?) to produce smooth trajectory
| L

|

Final 3D
output

First pass
3D hits
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Cosmic Ray Tagging and Slicing

Identify clear cosmic rays (red) and hits to
reexamine under test beam hypothesis (blue)

* Clear cosmic rays:
* Particles appear to be “outside” of detector if T, = T,
* Particles stitched between volumes using a Ty # Ty,
e Particles pass through the detector: “through going”

w, wire

L»x,'time ' /

Slice 1 :
| Slice 2

* Slice/divide blue hits from separate ' \ T
interactions

* Reconstruct each slice as test beam \Slice 3 Slice 4
particle \ N
* Then choose between cosmic ray or \ Beam
test beam outcome for each slice ' Particle | ~— Slice 5.6.7




Neutrino Reconstruction

* Must be able to deal with presence of any cosmic-ray muon remnants.

* Run fast version of reconstruction, up to 3D hit creation
* “Slice” 3D hits into separate interactions, processing each slice in isolation.
* Each slice = candidate neutrino particle.

* Neutrino pass reuses track-oriented clustering and topological
association.
* Topological association algs must handle rather more complex topologies.
* Specific effort to reconstruct neutrino interaction vertex.
* More sophisticated efforts to reconstruct showers.

w [cm]

T-» X [cm]
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Neutrino event,
amongst cosmic-

/ ray remnants



Vertex Reconstruction — BDT version

* Search for neutrino interaction vertex:

* Use pairs of 2D clusters to produce list of possible
3D vertex candidates.

* Examine candidates, calculate a score for each and
select the best.

High ET sum:
= suppress candidate

q% <—— Vertex candidate A

= Candidate N Senergy kick Sasymmetry Sbeam deweight

X A 49E-07 3.5E-06 1.00 0.14
S, B 1.3E-02 3.1E-02 099 042
c 1.1E-03 24E-03 095 046
D 57E-10 1.1E-09 1.00 0.52
E 9.0E-01 9.0E-01 1.00 099

C o .

o Downstream usage:

— D * Split 2D clusters at

projected vertex position.

* Use vertex to protect
primary particles when
growing showers.

w, wire position

¥« Selected candidate E
x, drift position
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- [cm]

T-» x [em]

2D projection of 3D
vertex candidate

Scores for labelled
candidates, with
breakdown into

component parts:



Vertexing reconstruction — U-Net version

In training hits are assigned Network trained to learn Network infers hit distances
a class according to distance those distances from input and resultant heat map
from true vertex images isolates candidate vertex




Shower Reconstruction - 2D

* Track reconstruction exactly as in PandoraCosmic, but now also attempt to reconstruct
primary electromagnetic showers, from electrons and photons:

* Characterise 2D clusters as track-like or shower-like and use topological properties to identify clusters
that might represent shower spines.

* Add shower-like branch clusters to shower-like spine clusters. Recursively identify branches on the top-
level spine candidate, then branches on branches, etc.

Protected track
clusters

/\

Candidate
shower spines

/\ shower branches
w, wire position / //
]_> x, drift position Interaction Vertex

Candidate
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Shower Reconstruction - 3D

* Reuse ideas from track reco to match 2D
shower clusters between views: 1

* Build a tensor to store cluster overlap and

relationship information. > Fitted shower envelopes

. . - for v and w clusters
* Overlap information collected by fitting shower

envelope to each 2D cluster.

* Shower edges from two clusters used to predict !
| =

envelope for third cluster. T w

Predicted shower
envelope for u cluster

——> x, drift position
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Particle Refinement - 2D, 3D

 Series of algs deal with remnants to improve particle completeness (esp. sparse showers):
* Pick up small, unassociated clusters bounded by the 2D envelopes of shower-like particles.

* Use sliding linear fits to 3D shower clusters to define cones for merging small downstream shower particles
or picking up additional unassociated clusters.

* |f anything left at end, dissolve clusters and assign hits to nearest shower particles in range.

Fragments to

/ collect
3D Shower .

N Cluster ’ | ) N R

Cone 1l v Cone 2 Cone 3 Cone 4



Particle Hierarchy Reconstruction - 3D

22

* Use 3D clusters to organize particles into a hierarchy, working outwards from interaction vtx

* Use the hierarchy to access particles in analyzers

Track (p), daughter of primary p

Simulated it Pandora
Reconstruction at ProtoDUNE-SP

Simulated v, Pandora
Reconstruction at MicroBooNE

Daughter Tracks and Showers <G

Track (p), primary daughter of v,

Shower (e+), daughter of primary m+

)

Track (7*), primary daughter of v,

w, wire position

]—> X, drift position

EPJC (2018) 78:82

Parent v, /

interaction vertex Track (u), primary daughter of v,

Parent Track <G
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Consolidated output

)

:'. !f‘/

~—  Child tracks and showers

&
E.g. Reconstruction output: test beam particle (electron)  pgrent track — \, E.g. Test beam particle: charged pion
\

and: N reconstructed cosmic-ray muon hierarchies \

_ \




Reconstruction Output

* Must translate output from Pandora Event Data Model to LArSoft Event Data Model. The
key output is the PFParticle (PF = Particle Flow):
* Each PFParticle corresponds to a distinct track or shower and is associated to 2D clusters.
* 2D clusters group hits from each readout plane, and are associated to the input 2D hits.
* PFParticles also associated to 3D spacepoints and a 3D vertex.
* PFParticles placed in a hierarchy, with identified parent-daughter relationships.
* PFParticles flagged as track-like or shower-like (both outcomes are persisted).

[ Parent PFParticle ] [ Child PFParticle ]
Rab _--" Just the most important
[ PFParticle ] outputs shown here

. :

[ 3D Vertex ] [ 2D Clusters ] [ 3D SpacePoints ] [ 3D Track/Shower ]

\ 4

oo |




Overall summary

* The use of Liquid Argon technology is one of the cornerstones of the current and future
neutrino programmes.

* High-performance reconstruction techniques are required in order to fully exploit the
imaging capabilities offered by LArTPCs:

* Pandora multi-algorithm approach uses large numbers of decoupled algorithms to gradually build up a
picture of events.

* OQutput is a carefully-arranged hierarchy of reconstructed particles, each corresponding to a distinct
track or shower.
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