MANCHESTER

The University of Manchester

IMPERIAL

Simulation Tutorial

Anyssa Navrer-Agasson and Joe Bateman
10t LArTPC Software Workshop - 27t October 2025

MANCHESTER

1824

—n 25 What you will be learning?

IMPERIAL

What a FHICL file is and some basic syntax.

How to write your first FHIiCL file to begin simulating particles.

1

2

3. How you can use lar to run your simulation.

4. To use Geant4 and lar to propagate your particles.
5

To simulate the detector response.

By the end of this tutorial, you should have generated a sample of 10 1ulp events
up to the detector simulation stage. This is a sample you’ll be using in subsequent

tutorials.

This tutorial is heavily inspired by the previous tutorials of Rob
Derby, Luis Mora Lepin, Marina Reggiani-Guzzo and Aran Borkum.
Thank you!

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824
The University of Manchester

IMPERIAL

What is a FHICL?

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

WM \\hat is a FHICL?

IMPERIAL

* FHICL (pronounced “fickle”) stands for Fermilab Hierarchical Configuration
Language to configure software built on art, such as LArSoft.

e Hierarchical refers to how FHICL files inherit variables from “parent” FHiCLs.

* Configuration describes how FHiCLs can modify the variables of your simulation tools
without needing to recompile.

* Language — FHiCLs have their own specific syntax, taking elements from JSON, C++ and
python.

* They appear across the simulation chain and are identified by the .fcl extension.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

Why FHiCLs?

IMPERIAL

 FHiCLs allow us to avoid hardcoded variables in
each LArSoft module you use.

* You can inherit and modify variables from parent
FHICL files, without needing to recompile

e Parameters will persist across a chain of FHiCLs
and from simulation through reconstruction to
analysis code.

27 October 2025 10th LArTPC Software Workshop

Your FHiCL's parents
BeamEnergy: 8 # GeV, BNB

Your beautiful FHiCL

BeamEnergy: 120 # GeV, NuMI

v
Your FHiCL's child
BeamEnergy # 120 GeV

MANCHESTER

1824

WS What will you need?

IMPERIAL

* This tutorial will require a workspace with sbndcode, and the workshop branch
uk_larsoft_workshop 2025 checked out and set up.

e Refer back to Rachel’s tutorial for more details!

e Starting from a fresh environment:

e Start the container using:
source /scratch/LAR25/useful/container.sh

e You likely made a setup script in the previous session (setup. sh) in your LArSoft directory. Use source
setup.sh to runthe script, or use the following commands:

source /cvmfs/sbnd.opensciencegrid.org/products/sbnd/setup_sbnd.sh
source localProducts_*/setup

mrbsetenv

mrbslp

(a copy of this script can also be found here: /scratch/LAR25/setup/setup.sh)

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

S FHiCL Syntax

IMPERIAL

e Parameters:

* You can define integers, floats and strings as

parameters. pi: 3.14159
beam: "BNB"

e Both C++ (//) and pythonic (#) style comments can [l i
be used to make your variables clearer.

* Sequences:

o i Seql: [1, 2, 3]
§eque|jces can take the same and mixed types of cec2: 1) [3.3) “Gaussian”]]
input, including other sequences!

Seql[2]: 3

* You can also override elements of a sequence.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824 .
The University of Manchester F H I c L Sy n ta x

IMPERIAL
* Tables:
* We can define a table using curly braces and can
assign entries to a mix of types. 52?1514159
e Entries can be overwritten similarly to a EggT [ENB[23 \Gaussian'], 4]
sequence.
* Splicing tables: fab-beam: WU
* Tables can be spliced together using Egﬁie}{;tabl
@table: :name. ?= 100
* Spliced tables inherit the entries each table beam_name: tab2.beam

called, in addition to any newly defined entries.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

S FHiCL Syntax

IMPERIAL
* Prologs: BEGIN_PROLOC
. numi: 120

* We can use prologs to define useful END_PROLOG
configuration values that we may want BeamEnergy: @local::numi
to reference later, or in subsequent
files.

* |f these configurations are defined in beam_config.fcl
beam_config.fcl, we can use BEGIN_PROLOG

bnb: 8
numi: 120
END_PROLOG

#include to inherit the prolog.

 Then those configurations can be called
using@local: :<var>.
your_working fhicl.fcl
#include "beam_ config.fcl"

BeamEnergy: @local::numi

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

BES FHICL Configurations

IMPERIAL

* You may be beginning to see why prologs are useful:

* Instead of repeatedly defining parameters, we can define everything in
higher level FHiCLs and inherit.
* This leaves us with tidier files and information/parameters unified between

workflows.

10th LArTPC Software Workshop

27 October 2025

MANCHESTER

1824
The University of Manchester

IMPERIAL

Creating a FHICL file

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

s Getting started

IMPERIAL

 Now we’ve reviewed some of the syntax,
we’ll learn how to write a FHICL that can be

run by LArSoft.

* To begin, make a new working directory in
your home folder and use your preferred cd $HOME

mkdir simulation tutorial

text editor to create a new file called SHRES i S EEerEa SEEE T el
sim_tutorial gennon@ TO.fcl.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo BASIC STrUCtUre

IMPERIAL

#tinclude

* FHICL files that run with LArSoft have the
same basic structure, with specific fields to |[ERSZTEREIE
be filled out :

* Include: Import other FHiCLs you need.

services: {

. }
* Process name: Name this set of modules. source: {

* Services: Define the simulation-specific |
services required. physics:{

e Source: Define your FHICL inputs.

* Physics: Declare and configure the modules
that will be run. }

e OQOutputs: Specify outputs of the FHICL.

outputs:{

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

The University of ."n.-"'.l'(:|'{“:-|.k” 1
oo Basic structure
o Include #include
* These behave as you have seen earlier, Process_iame:

telling your FHiICL what files to inherit from.

services: {

* For this example, we should include the :
following FHiCLs: source: {

}
physics:{

outputs:{

#include "simulationservices sbnd.fcl" }
#include "messages sbnd.fcl"

#include "singles sbnd.fcl"
#include "rootoutput sbnd.fcl"

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo BASIC STrUCtUre

IMPERIAL

#tinclude

* Process name

- This defines the name for the collection of [AGEREEE
modules this FHiCL will run.

services: {

e This name should be unique, as the same
process cannot be run multiple times over B

source: {

the same art-root file.

. . . . }
* The aim of this tutorial is to generate single |GG

particles, so you should call this process ;
SingleGen outputs:{

. }
process name: SingleGen

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo BASIC STrUCtUre

IMPERIAL

#tinclude

 Services

* The services table defines the simulation- |
specific services that are generally needed. e
services: { _

e This could include detector geometry,
physical properties or file management.)

source: {

e For this tutorial, we need SBND-specific |
service configuration, and a root output: physics:{

outputs:{

services:{
@table::sbnd _simulation_services }
TFileService:{
fileName:"hist prod single sbnd.root"”
}

}

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

The University of ."n.-"'.l'(:|'{“:-|.k” i
oo Basic structure
o Source #include
* This table contains all information process_name:

regarding the input that this FHiCL will take.

services: {

* module _type: EmptyEvent tells the ;
FHIiCL to begin with an empty event, as we [EECTEGEE

are at the starting point of the simulation. |
physics:{

outputs:
source:q P {

module type: EmptyEvent

timestampPlugin:{ }
plugin type:
"GeneratedEventTimestamp"

}

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo BASIC STrUCtUre

IMPERIAL

#tinclude

e maxEvents: 10 sets the default number
of events to simulate. A value of -1 will process_name:
process every event in an input.

* This can be overwritten at execution.

}
o firstRun and firstEvent dasg set the [EXAGRGENE
default start values for run and event.

services: {

}
physics:{

source:q }
module type: EmptyEvent outputs:{
timestampPlugin:{
plugin_type:"GeneratedEventTimestamp"
maxEvents: 10)
firstRun: 1
firstEvent: 1

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

The University of ."n.-"'.l'(:|'{“:-|.k” 1
oo Basic structure
o PhySiCS #include
* This table declares and configures the process_name:

modules that will be run over the input.

* These are split into producers,
analyzers and filters. }

source: {

services: {

* Producers: modules here add information [
to the art-root file physics:{

* Modifies the input file.

physics:{
producers:{
rns: { module type: }
"RandomNumberSaver"

outputs:{

generator: @local::sbnd _singlep

}

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo BASIC STrUCtUre

IMPERIAL

* Analyzers: Perform analysis using the
input file without modifying it.

e Filters: Removes files we aren’t
interested in.

* Modifies the input file.

physics:{
producers:{
rns: { module type:
"RandomNumberSaver"

generator: @local::sbnd _singlep

analyzers: { }
filters: { }

#tinclude
process _hame:

services: {

}
source: {

}
physics:{

outputs:{

}

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

CeERTAL Basic structure

#tinclude

e Configuring modules:

* simulate: Declare the order to run process_name:
producers.

 Streaml: Define the art-root output
stream of the FHiCL J ounce: {

services: {

Yo
physics:{ FSES |
producers:{
rns: { module_type:

"RandomNumberSaver" outputs:{

generator: @local::sbnd _singlep

}

analyzers: { }

filters: { }

simulate: [rns, generator]
streaml: [outl]

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo BASIC STrUCtUre

IMPERIAL

#tinclude

e Configuring modules:

* trigger_paths : lists everything that will [
modify an event (producers & filters)

services: {

 end_paths: lists everything won’t modify
an event (analyzers and outputs).)

source: {

physics:{
producers:{ }
rns: { module_type: . .
"RandomNumberSaver" B ES 5

generator: @local::sbnd_singlep

analyzers: { } outputs:{

filters: { }

simulate: [rns, generator] }
streaml: [outl]

trigger paths: [simulate]

end paths: [streaml]

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824 °
oo Basic structure
o Outputs #include

* This table declares where the output of the |ReEEElAs
FHICL should go.

* Notice that the output has the same name
(outl) as was defined in streaml.)

source: {

services: {

* Thelinesin outl inherit the rootoutput 8
table and define the name of the output physics:{
file (overwritable at execution).

}
e outputs:{ <

outl:{
@table::sbnd_rootoutput }
fileName:
"prodsingle sbnd %p-%tc.root”

}

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

IMPERIAL

* With all these building blocks in place, your FHiCL file should look like
this:

physics:{
#include "simulationservices sbnd.fcl" producers:{
#include "messages sbnd.fcl" rns: { module type:
"RandomNumberSaver"

#include "singles sbnd.fcl"
#include "rootoutput_sbnd.fcl” generator: @local::sbnd_singlep
process nhame: SingleGen
services:q analyzers: { }

@table::sbnd_simulation_services filters: { }

TFileService:{ simulate: [rns, generator]

fileName:"hist prod single sbnd.root" streaml: [outl]
} trigger paths: [simulate]

} end_paths: [streami]
source:{

}
module type: EmptyEvent outputs:{
timestampPlugin:{ outl:{
plugin_type:"GeneratedEventTimestamp" @table::sbnd_rootoutput
fileName:

maxEvents: 10 "prodsingle sbnd %p-%tc.root"
firstRun: 1

firstEvent: 1

Note: a copy of this file can be found here: SMRB_SOURCE/sbndcode/sbndcode/Workshop/TPCSimulation/sim_tutorial_gennon0_TO.fcl

27 October 2025 10th LArTPC Software Workshop 24

MANCHESTER

1824

s |@SK 1o Running your first FHICL

IMPERIAL

* Now you have a simple FHICL to simulate, how do we run it? If you've setup
sbndcode in your container, you will have access to the 1lar command. To

use it with your FHiICL, using the —c (--config) option:
lar -c sim_tutorial gennono@ TO.fcl

* If your FHICL is formatted correctly, once the command has finished runnin
you will see an event summary and the “Art has completed and will exit wit

status 0” message.

* You can also use options to override some of the parameters defined in your
FHiCL:
* -n (--nevts): specify the number of events to process.
e -0 (--output): set the name of the output file.
e -s(--source): specify which file to take as an input.
* You can get a full list of options by using 1ar --help

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824
The University of Manchester

IMPERIAL

Modifying your FHiCL

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oS What is being simulated?

IMPERIAL

* This FHIiCL can now be run by LArSoft, but what is it simulating?

* We can begin to work that out by looking at the FHiCLs we import into
sim_tutorial gennon@ TO.fcl using find fcl.sh

* A copy of the script that you can copy to your home directory lives here:
$MRB_SOURCE/sbndcode/sbndcode/Workshop/TPCSimulation/find fcl.sh

* Copy the script into your working directory and use it to find
singles sbnd.fcl:

source find_fcl.sh singles_sbnd.fcl

* This will return the path to the FHiCL in your LArSoft install directory, which
you can open using your preferred text editor.

* Take a look inside and see if you can spot what particle is being simulated
(you may need to identify another FHICL to investigate!).

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo singles_sbnd.fcl

IMPERIAL

#include "singles.fcl"

Opening the file, you’ll see a
prolog like this. BEGIN_PROLOG

* |Inthe FH|C|_ Wwe can see some sbnd_singlep: @local::standard singlep
of the parameters that we can

mOdlfy, SUCh as: physics.producers.generator.T0: [1.7e3]
. physics.producers.generator.Po: [-1.0]
e |nitial energy. PO physics.producers.generator.SigmaP: [0.0]
physics.producers.generator.PDist: ©
e |nitial time: TO physics.producers.generator.Xe: [150.0]
physics.producers.generator.Y0: [150.0]
e sy . physics.producers.generator.z0: [-50.0]
° Inltlal pOSItIOﬂ. XO, YO, Z0 physics.producers.generator.ThetadXzZ: [15.0]

, physics.producers.generator.Theta@Yz: [-15.0]
° HOwever, we Stl” don t knOW physics.producers.generator.SigmaThetaXz: % 8 g]

physics.producers.generator.SigmaThetaYZ:]
what particle we're simulating.

END_PROLOG

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

IMPERIAL

* We can look further back by opening singles.fcl:
source find fcl.sh singles.fcl

 What we’re looking for is the Monte Carlo PDG code of the particle being
simulated:

 We can find the name of the particle the code corresponds to using the list outlined here:
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf

27 October 2025 10th LArTPC Software Workshop

https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf

.
The University of Manchester S I n g I e S ° fc I

IMPERIAL

singles.fcl

BEGIN_PROLOG SigmaX: o]
SigmaY: o]
SigmaZ: .0]
SigmaT: .0]
PosDist: "uniform"
standard_singlep: TDist: "uniform"
{ ThetaoXZ: [0.]
module_type: "SingleGen" ThetaoYZ: [3.3
ParticleSelectionMode: "all" SigmaThetaXzZ: [@.
SigmaThetaYZ: [©.
PadOutVectors: AngleDist: "Gaussia

}

]
0
0
S

]
]ll
n

PDG: [13]

PO: [6.] random_singlep: @local::standard_singlep

SigmaP: [0.] random_singlep.ParticleSelectionMode: "singleRandom"

PDist: "Gaussian"

X0: [25.] argoneut_singlep: @local::standard_singlep
microboone _singlep: @local::standard_singlep
microboone singlep.Theta@YZ: [0.0]

Yo: [0.] microboone_singlep.X@: [125]

Zo: [20.] microboone_singlep.Z0@: [50]
Coordinates
To: [0.] END_PROLOG

27 October 2025 10th LArTPC Software Workshop 30

MANCHESTER

1824

[J
The University of Manchester S I n e S C
e

IMPERIAL

* We can learn a few other things from this file:

* module_type: SingleGen refers to a module in already in LArSoft, which this
FHIiCL calls. The module is a C++ file with functions called over the input

event, and you can learn more about it here.

* We now have the full list of parameters defined in the standard _singlep
table, including the PDG sequence. By default, singles.fcl will produce
a single 6 GeV muon but, as you may recall, this can be overridden.

* Note: this isn’t the only way to get a list of parameters defined in a
FHiCL:

thicl-dump sim tutorial gennon@ TO.fcl >
sim_tutorial gen.txt

will write the full list of parameters to a text file.

27 October 2025 10th LArTPC Software Workshop

https://github.com/LArSoft/larsim/blob/develop/larsim/EventGenerator/SingleGen_module.cc

MANCHESTER

1824

=il Mlodifying your output

IMPERIAL

 Example 1: If we want to replace the muon with an electron, leaving
everything else untouched:

sim_tutorial_gennon@_T0O.fcl

physics.producers.generator.PDG: [11]

 Example 2: What if we want to produce multiple particles in a single
event? We could try adding another PDG code to the sequence:

sim_tutorial_gennon@_TO.fcl

physics.producers.generator.PDG: [11, 13]

e But would that work as we might expect?

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

~eseness [MlOAifYiNg your output

IMPERIAL

Running sim_tutorial_gennon@_TO.fcl currently:

%#MSG-s ArtException: SingleGen:generator@Construction 20-0ct-2025 07:40:40 CDT

* We're now missing entries [EEEOrEty

cet::exception caught in art

for several parameters. -+~ singleGen BEGIN
. . The PO,
We can fix this by: Signa,
. . X0,
1. Assigning a second Yo,
entry for each =y
parameter. Signa,
igmaZz,
2. Setting o
PadOutVectors: SignaThetaXz,

SigmaThetaYZ

True, repeating single S
entries for all particles Sigmaf,

deflned In the PDG vector(s) defined in the fhicl files has/have a different size than the PDG vector
and it has (they have) more than one value,
Sequence- disallowing sensible padding and/or you have set fPadOutVectors to false.

-- SingleGen END
%MSG
Art has completed and will exit with status 65.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

=wecos: Modifying your output

IMPERIAL

* We can also combine these two solutions and only modify select
variables.

 Example 3: We want to produce two particles, a 0.7 GeV electron and a

0.8 GeV muon, that are otherwise identical. We could instead modify our
FHICL to include:

sim_tutorial_gennono_T0.fcl

physics.producers.generator.PadOutVectors:
physics.producers.generator.PDG: [11, 13]

physics.producers.generator.Po: [0.7, 0.8]

e This will now run and produce the particles and energies that we expect.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824
The University of Manchester

IMPERIAL

Simulation workflow

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

s SlAIUlQ@tion workflow

IMPERIAL

* The simulation chain in LArTPC experiments generally follows the same
three-stage structure:

1. Particle generation
Simulation of the primary particles being looked at.
2. Particle propagation
Handling of how these particles propagate through argon.

3. Detector simulation

Simulating how the detector responds to charge and light generated
inside the detector.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

s Prticle generation

IMPERIAL

e Typical LArSoft generators include:

* Single particle gun: Like the FHIiCL we just created, this generator
simulates single particles by specifying time, position and kinematics.

* GENIE: Typical neutrino interaction generator, provided an input flux.
* CORSIKA: Cosmic ray simulations.

UNIVERSAL NEUTRINO GEMNERATOR
& GLOBAL FIT

e MARLEY: Low energy neutrinos, such as supernova and solar neutrinos.

* TextFileGen: Simulate particles based on an input text file (ie. in the C@RSIKA
hepevt format), typically the output of a BSM generator. ‘ e

e After this stage, the ART-ROOT file will typically include a number of
simb::MCTruth objects.

27 October 2025 10th LArTPC Software Workshop

MANC HF% [ER

=" Particle propagation

IMPERIAL

e QOutput products of the generation stage are now propagated through
the detector volume using Geant4.

* This handles the simulation of ionization, decays, argon interactions and
showering that is seen as particles traverse a volume of argon.

* After this stage, the ART-ROOT file will typically include a large number
simb::MCParticle objects.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

svees: Detector simulation

IMPERIAL

* This stage simulates the detector response:
* Wire response to charge across each plane.
 PMT response to light — more details tomorrow.

* We now have additional recob::wire and raw::OpDetWaveform objects
in our ART-ROOT file, the simulated detector response to our input.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

s SlAIUlQ@tion workflow

IMPERIAL

* These stages each have an associated FHiCLs to use. For this tutorial,
these will be:

1. Particle generation
sim_tutorial gennon® TO.fcl, the FHICL you made earlier.
2. Particle propagation
g4 workshop.fcl, included in your LArSoft build.
3. Detector simulation
detsim_workshop.fcl, also included in your LArSoft build.
* Each experiment will have its own version of these simulation FHiCLs. In the case

of SBND, they are called standard_g4 sbnd.fcl and
standard detsim sbnd.fcl

27 October 2025 10th LArTPC Software Workshop

MANCHESTER
1824

- Checking your outputs

IMPERIAL

BT

* Once you've run through the simulation chain, it can be useful to inspect your
generated events by eye:

lar -c evd _sbnd.fcl -s your detsim output file.root

* There are three view options using evd sbnd. fcl:

Time vs wire, charge view Ortho3D Display3D
AN e

e |f each stage has run correctly, you should be able to see the paths your particles traced
through the detector, each labelled by color.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

oo Checking your outputs

IMPERIAL

* If you are working on a Fermilab GPVM in future and want to look at an
event display, it’s easiest to set up a VNC to view it.

e Useful instructions on how to do this are available on the SBN software wiki.

* Alternative event display tools are also available, such as TITUS, but are
beyond the scope of this tutorial.

27 October 2025 10th LArTPC Software Workshop

https://sbnsoftware.github.io/sbndcode_wiki/Viewing_events_remotely_with_VNC.html
https://sbnsoftware.github.io/sbndcode_wiki/TITUS_Event_Display.html

MANCHESTER

1824
The University of Manchester

IMPERIAL

Running the simulation

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

B Task 2: Simulating 10 events

IMPERIAL
* Now we’ve gone through the simulation chain from generation to
detector response, it's your turn to simulate some events.

e To start, try simulating a single particle for each event.
 Remember that the output of each step will be the input of the next!

10th LArTPC Software Workshop

27 October 2025

MANCHESTER

1824

=nvins: Simulating 10 events

IMPERIAL

* Solution:
* Insim_tutorial gennon@ TO.fcl:

sequences should contain one entry
each.

* Inthe terminal:
lar -c sim_tutorial gennon@ TO.fcl -n 10 -o output _gen.root
lar -c g4 workshop.fcl -s output _gen.root -o output g4.root

lar -c detsim _workshop.fcl -s output g4.root -o output detsim.root
 Tryusing evd sbnd.fcl and have a look at the events you’ve generated.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

=nnss Mlain Task: Simulating 1ulp

IMPERIAL

* The goal of this tutorial is to simulate 10 events, each with 1 muon (13)
and 1 proton (2212). To do this, you’ll need to modify
sim_tutorial gennon® TO.fcl to meet the following
requirements:

Muon: momentum = 0.7 GeV/c ; theta_xz =-10 deg ; theta yz =0 deg
Proton: momentum = 0.7 GeV/c ; theta_xz = 35 deg ; theta yz = 10 deg
Start position for both particles (x,y,z) = (-100,0,150) cm

Starting time TO for both particles = 1600 ns

Set all variations (vertex position, momentum, angles and time) to O
Set all distributions to “uniform” (vertex position, time and angle)

Set particle being created from the same vertex: SingleVertex: True

If you’re running low on time, a FHiCL meeting these requirements can be found here:

27 October 2025

SMRB_SOURCE/sbndcode/Workshop/TPCSimulation/.solutions/sim_tutorial_gen_non0_TO _complete.fcl

10th LArTPC Software Workshop

MANCHESTER

1824

e [Ml@ln Task: Particle gun

IMPERIAL

* Once you’ve modified sim_tutorial gennon@ TO.fcl, use lar with
your FHICL:

lar -c sim_tutorial gennon@ TO.fcl -o output gen.root -n 10

* You can quickly check the output file using:
lar -c eventdump.fcl-s output _gen.root -n 1

* Hopefully, you’ll see the expected simb::MCTruth object in the output.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

SRS Main Task: G4 and DetSim

IMPERIAL

* The next stages will be the same as previously:

lar -c g4 workshop.fcl -s output gen.root -o output g4.root
lar -c detsim _workshop.fcl -s output g4.root -o output detsim.root

e Once again, you can use eventdump.fcl to check that you have the
products you expect in output detsim.root.

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

s [Ml@ln Task: Visualising events

IMPERIAL

* You can also check your sample using:

lar -c evd_sbnd.fcl -s N R B I I
output detsim.root -n 10 o 3

* If everything has gone correctly, you shouh i3 E
see something like this:
Once you’re happy with your output, e \ E
simulate another 10 events, adding a 3 ~ 3
gaussian variation to theta_xz and theta_y ™ ™ @ oW

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

e BONUS TaSKSs

IMPERIAL

* If you manage to create a 10 event 1ulp sample matching the
specifications outlined and gaussian angle variations, why not try the
following:

* Simulate 1elp events:
* Repeat the steps of the main task, replacing the muon (13) with an electron (11).
* Canyou distinguish the electron shower on the event display?

|”

e Getting closer to a “real” event:

* Try generating a further 10 events with 1 muon and 1 proton, but now with 5
additional muons (cosmic rays) distributed randomly over the detector volume.

e After running up to the detsim stage, what does your event look like now?

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

- (Bonus) Bonus Tasks

IMPERIAL

e Rather than using a particle gun to create our cosmic rays, we can use
Corsika to generate muons for us.

e Generate 10 cosmic events using Corsika with this FHiCL:

prodcorsika cosmics proton sbnd.fcl*
e After the geant4 and detsim stages, does the event display look different to

your previous tasks?
* Generate 10 neutrino and cosmic events using this FHiCL:
prodgenie corsika proton_nu spill tpc sbnd.fcl
 How does this compare to your previous neutrino + cosmics sample?

* If you want to use this sample with later tutorials, try using prodcorsika proton_intime_sbnd.fcl —This filters out
cosmics that are not in time with a beam spill, so you’ll need to start with a larger number of events (ie n=50, 100)

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

“WWWMWMWCIL"aSthDrng?

IMPERIAL

* Feel free to ask Joe or Anyssa questions in-person or via Slack.
* (@Joe Bateman
* (@A Navrer-Agasson

* There is also a dedicated TPC-Simulation Slack channel:

#tpc-simulation

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

T s— B ac k- u p sam p Ie S

IMPERIAL

* In case you didn’t manage to make a 1ulp sample, there are premade
samples here:

/scratch/LAR25/simulation/

27 October 2025 10th LArTPC Software Workshop

MANCHESTER

1824

s R@ferences and Useful Links

IMPERIAL

* Previous tutorials:
« 9th Software Workshop
« 8th Software Workshop
« 7th Software Workshop
« 6t Software Workshop

e Other links:
* SBN Software Wiki
 SBND Newbie Material (may be slightly out of date)

27 October 2025 10th LArTPC Software Workshop

https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/268/contributions/2740/attachments/1451/2242/larsoft_sim_tutorial-1.pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://sbnsoftware.github.io/
https://sbnsoftware.github.io/
https://cdcvs.fnal.gov/redmine/projects/sbndcode/wiki/Newbie_Material
https://cdcvs.fnal.gov/redmine/projects/sbndcode/wiki/Newbie_Material

	Slide 1: Simulation Tutorial
	Slide 2: What you will be learning?
	Slide 3: What is a FHiCL?
	Slide 4: What is a FHiCL?
	Slide 5: Why FHiCLs?
	Slide 6: What will you need?
	Slide 7: FHiCL Syntax
	Slide 8: FHiCL Syntax
	Slide 9: FHiCL Syntax
	Slide 10: FHiCL Configurations
	Slide 11: Creating a FHiCL file
	Slide 12: Getting started
	Slide 13: Basic structure
	Slide 14: Basic structure
	Slide 15: Basic structure
	Slide 16: Basic structure
	Slide 17: Basic structure
	Slide 18: Basic structure
	Slide 19: Basic structure
	Slide 20: Basic structure
	Slide 21: Basic structure
	Slide 22: Basic structure
	Slide 23: Basic structure
	Slide 24: Your first FHiCL
	Slide 25: Task 1: Running your first FHiCL
	Slide 26: Modifying your FHiCL
	Slide 27: What is being simulated?
	Slide 28: singles_sbnd.fcl
	Slide 29: singles.fcl
	Slide 30: singles.fcl
	Slide 31: singles.fcl
	Slide 32: Modifying your output
	Slide 33: Modifying your output
	Slide 34: Modifying your output
	Slide 35: Simulation workflow
	Slide 36: Simulation workflow
	Slide 37: Particle generation
	Slide 38: Particle propagation
	Slide 39: Detector simulation
	Slide 40: Simulation workflow
	Slide 41: Checking your outputs
	Slide 42: Checking your outputs
	Slide 43: Running the simulation
	Slide 44: Task 2: Simulating 10 events
	Slide 45: Simulating 10 events
	Slide 46: Main Task: Simulating 1mu1p
	Slide 47: Main Task: Particle gun
	Slide 48: Main Task: G4 and DetSim
	Slide 49: Main Task: Visualising events
	Slide 50: Bonus Tasks
	Slide 51: (Bonus) Bonus Tasks
	Slide 52: Questions?
	Slide 53: Back-up samples
	Slide 54: References and Useful Links

