
Simulation Tutorial
Anyssa Navrer-Agasson and Joe Bateman

10th LArTPC Software Workshop - 27th October 2025

What you will be learning?

1. What a FHiCL file is and some basic syntax.

2. How to write your first FHiCL file to begin simulating particles.

3. How you can use lar to run your simulation.

4. To use Geant4 and lar to propagate your particles.

5. To simulate the detector response.

By the end of this tutorial, you should have generated a sample of 10 1μ1p events
up to the detector simulation stage. This is a sample you’ll be using in subsequent
tutorials.

27 October 2025 10th LArTPC Software Workshop 2

This tutorial is heavily inspired by the previous tutorials of Rob
Derby, Luis Mora Lepin, Marina Reggiani-Guzzo and Aran Borkum.
Thank you!

What is a FHiCL?

27 October 2025 10th LArTPC Software Workshop 3

What is a FHiCL?

• FHiCL (pronounced “fickle”) stands for Fermilab Hierarchical Configuration
Language to configure software built on art, such as LArSoft.

• Hierarchical refers to how FHiCL files inherit variables from “parent” FHiCLs.

• Configuration describes how FHiCLs can modify the variables of your simulation tools
without needing to recompile.

• Language – FHiCLs have their own specific syntax, taking elements from JSON, C++ and
python.

• They appear across the simulation chain and are identified by the .fcl extension.

27 October 2025 10th LArTPC Software Workshop 4

Why FHiCLs?

• FHiCLs allow us to avoid hardcoded variables in
each LArSoft module you use.

• You can inherit and modify variables from parent
FHiCL files, without needing to recompile

• Parameters will persist across a chain of FHiCLs
and from simulation through reconstruction to
analysis code.

27 October 2025 10th LArTPC Software Workshop 5

Your beautiful FHiCL
BeamEnergy: 120 # GeV, NuMI

Your FHiCL’s parents
BeamEnergy: 8 # GeV, BNB

Your FHiCL’s child
BeamEnergy # 120 GeV

What will you need?

• This tutorial will require a workspace with sbndcode, and the workshop branch
uk_larsoft_workshop_2025 checked out and set up.

• Refer back to Rachel’s tutorial for more details!

• Starting from a fresh environment:
• Start the container using:

source /scratch/LAR25/useful/container.sh

• You likely made a setup script in the previous session (setup.sh) in your LArSoft directory. Use source
setup.sh to run the script , or use the following commands:

source /cvmfs/sbnd.opensciencegrid.org/products/sbnd/setup_sbnd.sh

source localProducts_*/setup

mrbsetenv

mrbslp

(a copy of this script can also be found here: /scratch/LAR25/setup/setup.sh)

27 October 2025 10th LArTPC Software Workshop 6

FHiCL Syntax

27 October 2025 10th LArTPC Software Workshop 7

• Parameters:
• You can define integers, floats and strings as

parameters.

• Both C++ (//) and pythonic (#) style comments can
be used to make your variables clearer.

• Sequences:
• Sequences can take the same and mixed types of

input, including other sequences!

• You can also override elements of a sequence.

pi: 3.14159 // This is a C++-style comment
beam: "BNB" # This is a python-style comment
output_name: "hello_world.root"

Seq1: [1, 2, 3]// Sequences can be single type
Seq2: [1, [2.3, “Gaussian”]] // Or mixed type

Seq1[2]: 3 // And elements can be overridden

FHiCL Syntax

27 October 2025 10th LArTPC Software Workshop 8

• Tables:

• We can define a table using curly braces and can
assign entries to a mix of types.

• Entries can be overwritten similarly to a
sequence.

• Splicing tables:

• Tables can be spliced together using
@table::name.

• Spliced tables inherit the entries each table
called, in addition to any newly defined entries.

// We can declare a table using curly brackets
tab1:{
pi: 3.14159
beam: "BNB"
seq1: [1, [2.3, "Gaussian"], 4]
}
// Entries can be overwritten by name
tab1.beam: "NuMI"
// Tables can also be spliced together
tab2: {
@table::tab1
n: 100
}
beam_name: tab2.beam // Inherited from tab1

FHiCL Syntax

27 October 2025 10th LArTPC Software Workshop 9

• Prologs:
• We can use prologs to define useful

configuration values that we may want
to reference later, or in subsequent
files.

• If these configurations are defined in
beam_config.fcl, we can use
#include to inherit the prolog.

• Then those configurations can be called
using @local::<var>.

BEGIN_PROLOG
bnb: 8 // 8 GeV beam
numi: 120 // 120 GeV beam

END_PROLOG

#include "beam_config.fcl"

BeamEnergy: @local::numi

beam_config.fcl

your_working_fhicl.fcl

BEGIN_PROLOG
bnb: 8 // 8 GeV beam
numi: 120 // 120 GeV beam

END_PROLOG
BeamEnergy: @local::numi

FHiCL Configurations

• You may be beginning to see why prologs are useful:

• Instead of repeatedly defining parameters, we can define everything in
higher level FHiCLs and inherit.

• This leaves us with tidier files and information/parameters unified between
workflows.

27 October 2025 10th LArTPC Software Workshop 10

Creating a FHiCL file

27 October 2025 10th LArTPC Software Workshop 11

Getting started

• Now we’ve reviewed some of the syntax,
we’ll learn how to write a FHiCL that can be
run by LArSoft.

• To begin, make a new working directory in
your home folder and use your preferred
text editor to create a new file called
sim_tutorial_gennon0_T0.fcl.

27 October 2025 10th LArTPC Software Workshop 12

cd $HOME
mkdir simulation_tutorial
emacs –nw sim_tutorial_gennon0_T0.fcl

Basic structure

• FHiCL files that run with LArSoft have the
same basic structure, with specific fields to
be filled out :
• Include: Import other FHiCLs you need.

• Process name: Name this set of modules.

• Services: Define the simulation-specific
services required.

• Source: Define your FHiCL inputs.

• Physics: Declare and configure the modules
that will be run.

• Outputs: Specify outputs of the FHiCL.

27 October 2025 10th LArTPC Software Workshop 13

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

Basic structure

• Include

• These behave as you have seen earlier,
telling your FHiCL what files to inherit from.

• For this example, we should include the
following FHiCLs:

27 October 2025 10th LArTPC Software Workshop 14

// experiment specific configurations
#include "simulationservices_sbnd.fcl"
#include "messages_sbnd.fcl"
// configuration files containing prologs
#include "singles_sbnd.fcl"
#include "rootoutput_sbnd.fcl"

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

Basic structure

• Process name

• This defines the name for the collection of
modules this FHiCL will run.

• This name should be unique, as the same
process cannot be run multiple times over
the same art-root file.

• The aim of this tutorial is to generate single
particles, so you should call this process
SingleGen

27 October 2025 10th LArTPC Software Workshop 15

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}
process_name: SingleGen

Basic structure

• Services

• The services table defines the simulation-
specific services that are generally needed.

• This could include detector geometry,
physical properties or file management.

• For this tutorial, we need SBND-specific
service configuration, and a root output:

27 October 2025 10th LArTPC Software Workshop 16

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

services:{
@table::sbnd_simulation_services
TFileService:{

fileName:"hist_prod_single_sbnd.root"
}

}

Basic structure

• Source

• This table contains all information
regarding the input that this FHiCL will take.

• module_type: EmptyEvent tells the
FHiCL to begin with an empty event, as we
are at the starting point of the simulation.

27 October 2025 10th LArTPC Software Workshop 17

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

source:{
module_type: EmptyEvent
timestampPlugin:{

plugin_type:
"GeneratedEventTimestamp"

}

Basic structure

• maxEvents: 10 sets the default number
of events to simulate. A value of -1 will
process every event in an input.
• This can be overwritten at execution.

• firstRun and firstEvent dasg set the
default start values for run and event.

27 October 2025 10th LArTPC Software Workshop 18

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

source:{
module_type: EmptyEvent
timestampPlugin:{

plugin_type:"GeneratedEventTimestamp"
}
maxEvents: 10
firstRun: 1
firstEvent: 1

}

Basic structure

• Physics

• This table declares and configures the
modules that will be run over the input.

• These are split into producers,
analyzers and filters.

• Producers: modules here add information
to the art-root file
• Modifies the input file.

27 October 2025 10th LArTPC Software Workshop 19

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

physics:{
producers:{

rns: { module_type:
"RandomNumberSaver"

}
generator: @local::sbnd_singlep

}

Basic structure

• Analyzers: Perform analysis using the
input file without modifying it.

• Filters: Removes files we aren’t
interested in.
• Modifies the input file.

27 October 2025 10th LArTPC Software Workshop 20

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

physics:{
producers:{

rns: { module_type:
"RandomNumberSaver"

}
generator: @local::sbnd_singlep

}
analyzers: { }
filters: { }

Basic structure

• Configuring modules:

• simulate: Declare the order to run
producers.

• Stream1: Define the art-root output
stream of the FHiCL

27 October 2025 10th LArTPC Software Workshop 21

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

physics:{
producers:{

rns: { module_type:
"RandomNumberSaver"

}
generator: @local::sbnd_singlep

}
analyzers: { }
filters: { }
simulate: [rns, generator]
stream1: [out1]

Basic structure

• Configuring modules:

• trigger_paths : lists everything that will
modify an event (producers & filters)

• end_paths: lists everything won’t modify
an event (analyzers and outputs).

27 October 2025 10th LArTPC Software Workshop 22

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

physics:{
producers:{

rns: { module_type:
"RandomNumberSaver"

}
generator: @local::sbnd_singlep

}
analyzers: { }
filters: { }
simulate: [rns, generator]
stream1: [out1]
trigger_paths: [simulate]
end_paths: [stream1]

}

Basic structure

• Outputs

• This table declares where the output of the
FHiCL should go.

• Notice that the output has the same name
(out1) as was defined in stream1.

• The lines in out1 inherit the rootoutput
table and define the name of the output
file (overwritable at execution).

27 October 2025 10th LArTPC Software Workshop 23

#include

process_name:

services: {

}
source: {

}
physics:{

}
outputs:{

}

outputs:{
out1:{

@table::sbnd_rootoutput
fileName:
"prodsingle_sbnd_%p-%tc.root"

}
}

Your first FHiCL
• With all these building blocks in place, your FHiCL file should look like

this:

27 October 2025 10th LArTPC Software Workshop 24

physics:{
producers:{

rns: { module_type:
"RandomNumberSaver"

}
generator: @local::sbnd_singlep

}
analyzers: { }
filters: { }
simulate: [rns, generator]
stream1: [out1]
trigger_paths: [simulate]
end_paths: [stream1]

}
outputs:{

out1:{
@table::sbnd_rootoutput
fileName:
"prodsingle_sbnd_%p-%tc.root"

}
}

// experiment specific configurations
#include "simulationservices_sbnd.fcl"
#include "messages_sbnd.fcl"
// configuration files containing prologs
#include "singles_sbnd.fcl"
#include "rootoutput_sbnd.fcl”
process_name: SingleGen
services:{

@table::sbnd_simulation_services
TFileService:{

fileName:"hist_prod_single_sbnd.root"
}

}
source:{

module_type: EmptyEvent
timestampPlugin:{

plugin_type:"GeneratedEventTimestamp"
}
maxEvents: 10
firstRun: 1
firstEvent: 1

}

Note: a copy of this file can be found here: $MRB_SOURCE/sbndcode/sbndcode/Workshop/TPCSimulation/sim_tutorial_gennon0_T0.fcl

Task 1: Running your first FHiCL

• Now you have a simple FHiCL to simulate, how do we run it? If you’ve setup
sbndcode in your container, you will have access to the lar command. To
use it with your FHiCL, using the –c (--config) option:

lar -c sim_tutorial_gennon0_T0.fcl

• If your FHiCL is formatted correctly, once the command has finished running
you will see an event summary and the “Art has completed and will exit with
status 0” message.

• You can also use options to override some of the parameters defined in your
FHiCL:

• -n (--nevts): specify the number of events to process.
• -o (--output): set the name of the output file.
• -s (--source): specify which file to take as an input.
• You can get a full list of options by using lar --help

27 October 2025 10th LArTPC Software Workshop 25

Modifying your FHiCL

27 October 2025 10th LArTPC Software Workshop 26

What is being simulated?

• This FHiCL can now be run by LArSoft, but what is it simulating?

• We can begin to work that out by looking at the FHiCLs we import into
sim_tutorial_gennon0_T0.fcl using find_fcl.sh

• A copy of the script that you can copy to your home directory lives here:
$MRB_SOURCE/sbndcode/sbndcode/Workshop/TPCSimulation/find_fcl.sh

• Copy the script into your working directory and use it to find
singles_sbnd.fcl:

source find_fcl.sh singles_sbnd.fcl

• This will return the path to the FHiCL in your LArSoft install directory, which
you can open using your preferred text editor.

• Take a look inside and see if you can spot what particle is being simulated
(you may need to identify another FHiCL to investigate!).

27 October 2025 10th LArTPC Software Workshop 27

singles_sbnd.fcl

• Opening the file, you’ll see a
prolog like this.

• In the FHiCL we can see some
of the parameters that we can
modify, such as:
• Initial energy: P0

• Initial time: T0

• Initial position: X0, Y0, Z0

• However, we still don’t know
what particle we’re simulating.

27 October 2025 10th LArTPC Software Workshop 28

#include "singles.fcl"

BEGIN_PROLOG

sbnd_singlep: @local::standard_singlep

Particle generated at this time will appear in main drift
window at trigger T0.
physics.producers.generator.T0: [1.7e3] # us

physics.producers.generator.P0: [-1.0] # GeV/c
physics.producers.generator.SigmaP: [0.0] # GeV/c
physics.producers.generator.PDist: 0
physics.producers.generator.X0: [150.0] # cm
physics.producers.generator.Y0: [150.0] # cm
physics.producers.generator.Z0: [-50.0] # cm
physics.producers.generator.Theta0XZ: [15.0] # degrees
physics.producers.generator.Theta0YZ: [-15.0] # degrees
physics.producers.generator.SigmaThetaXZ: [0.0] # degrees
physics.producers.generator.SigmaThetaYZ: [0.0] # degrees

END_PROLOG

singles.fcl

• We can look further back by opening singles.fcl:
source find_fcl.sh singles.fcl

• What we’re looking for is the Monte Carlo PDG code of the particle being
simulated:

• We can find the name of the particle the code corresponds to using the list outlined here:
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf

27 October 2025 10th LArTPC Software Workshop 29

https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-monte-carlo-numbering.pdf

singles.fcl

27 October 2025 10th LArTPC Software Workshop 30

singles.fcl

SigmaX: [0.] # variation in the starting x position
SigmaY: [0.] # variation in the starting y position
SigmaZ: [0.0] # variation in the starting z position
SigmaT: [0.0] # variation in the starting time
PosDist: "uniform" # 0 - uniform, 1 - gaussian
TDist: "uniform" # 0 - uniform, 1 - gaussian
Theta0XZ: [0.] # angle in XZ plane (degrees)
Theta0YZ: [3.3] # angle in YZ plane (degrees)
SigmaThetaXZ: [0.] #in degrees
SigmaThetaYZ: [0.] #in degrees
AngleDist: "Gaussian" # 0 - uniform, 1 - gaussian
}

random_singlep: @local::standard_singlep
random_singlep.ParticleSelectionMode: "singleRandom"
#randomly select one particle from the list
argoneut_singlep: @local::standard_singlep
microboone_singlep: @local::standard_singlep
microboone_singlep.Theta0YZ: [0.0] # beam is along the z axis
microboone_singlep.X0: [125] # in cm in world coordinates, ie x = 0
is at the wire plane
microboone_singlep.Z0: [50] # in cm in world
Coordinates
END_PROLOG

BEGIN_PROLOG

#no experiment specific configurations because SingleGen is
detector agnostic

standard_singlep:
{
module_type: "SingleGen"
ParticleSelectionMode: "all" # 0 = use full list, 1 = randomly
select a single listed particle
PadOutVectors: false
false: require all vectors to be same length
true: pad out if a vector is size one
PDG: [13] # list of pdg codes for particles to make
P0: [6.] # central value of momentum for each particle
SigmaP: [0.] # variation about the central value
PDist: "Gaussian" # 0 - uniform, 1 – gaussian distribution
X0: [25.] # in cm in world coordinates, ie x = 0 is at the wire
plane
and increases away from the wire plane
Y0: [0.] # in cm in world coordinates, ie y = 0 is at the center
of the TPC
Z0: [20.] # in cm in world coordinates, ie z = 0 is at the
upstream edge of the TPC and increases with the beam direction
T0: [0.] # starting time

singles.fcl

• We can learn a few other things from this file:
• module_type: SingleGen refers to a module in already in LArSoft, which this

FHiCL calls. The module is a C++ file with functions called over the input
event, and you can learn more about it here.

• We now have the full list of parameters defined in the standard_singlep
table, including the PDG sequence. By default, singles.fcl will produce
a single 6 GeV muon but, as you may recall, this can be overridden.

• Note: this isn’t the only way to get a list of parameters defined in a
FHiCL:
fhicl-dump sim_tutorial_gennon0_T0.fcl >
sim_tutorial_gen.txt
will write the full list of parameters to a text file.

27 October 2025 10th LArTPC Software Workshop 31

https://github.com/LArSoft/larsim/blob/develop/larsim/EventGenerator/SingleGen_module.cc

Modifying your output

• Example 1: If we want to replace the muon with an electron, leaving
everything else untouched:

27 October 2025 10th LArTPC Software Workshop 32

physics.producers.generator.PDG: [11] // overwriting the muon with an electron

sim_tutorial_gennon0_T0.fcl

• Example 2: What if we want to produce multiple particles in a single
event? We could try adding another PDG code to the sequence:

• But would that work as we might expect?

physics.producers.generator.PDG: [11, 13] // electron and muon

sim_tutorial_gennon0_T0.fcl

• We’re now missing entries
for several parameters.
We can fix this by:

1. Assigning a second
entry for each
parameter.

2. Setting
PadOutVectors:
True, repeating single
entries for all particles
defined in the PDG
sequence.

Modifying your output

27 October 2025 10th LArTPC Software Workshop 33

%MSG-s ArtException: SingleGen:generator@Construction 20-Oct-2025 07:40:40 CDT

ModuleConstruction
cet::exception caught in art

---- SingleGen BEGIN

The P0,
SigmaP,

X0,

Y0,
Z0,

SigmaX,

SigmaY,
SigmaZ,

Theta0XZ,

Theta0YZ,
SigmaThetaXZ,

SigmaThetaYZ

T0,
SigmaT,

vector(s) defined in the fhicl files has/have a different size than the PDG vector
and it has (they have) more than one value,

disallowing sensible padding and/or you have set fPadOutVectors to false.

---- SingleGen END
%MSG

Art has completed and will exit with status 65.

Running sim_tutorial_gennon0_T0.fcl currently:

• We can also combine these two solutions and only modify select
variables.

• Example 3: We want to produce two particles, a 0.7 GeV electron and a
0.8 GeV muon, that are otherwise identical. We could instead modify our
FHiCL to include:

• This will now run and produce the particles and energies that we expect.

Modifying your output

27 October 2025 10th LArTPC Software Workshop 34

physics.producers.generator.PadOutVectors: true
physics.producers.generator.PDG: [11, 13] // electron and muon
physics.producers.generator.P0: [0.7, 0.8]

sim_tutorial_gennon0_T0.fcl

Simulation workflow

27 October 2025 10th LArTPC Software Workshop 35

Simulation workflow

• The simulation chain in LArTPC experiments generally follows the same
three-stage structure:

1. Particle generation

Simulation of the primary particles being looked at.

2. Particle propagation

Handling of how these particles propagate through argon.

3. Detector simulation

Simulating how the detector responds to charge and light generated
inside the detector.

27 October 2025 10th LArTPC Software Workshop 36

Particle generation

• Typical LArSoft generators include:

• Single particle gun: Like the FHiCL we just created, this generator
simulates single particles by specifying time, position and kinematics.

• GENIE: Typical neutrino interaction generator, provided an input flux.

• CORSIKA: Cosmic ray simulations.

• MARLEY: Low energy neutrinos, such as supernova and solar neutrinos.

• TextFileGen: Simulate particles based on an input text file (ie. in the
hepevt format), typically the output of a BSM generator.

• After this stage, the ART-ROOT file will typically include a number of
simb::MCTruth objects.

27 October 2025 10th LArTPC Software Workshop 37

Particle propagation

• Output products of the generation stage are now propagated through
the detector volume using Geant4.

• This handles the simulation of ionization, decays, argon interactions and
showering that is seen as particles traverse a volume of argon.

• After this stage, the ART-ROOT file will typically include a large number
simb::MCParticle objects.

27 October 2025 10th LArTPC Software Workshop 38

Detector simulation

• This stage simulates the detector response:

• Wire response to charge across each plane.

• PMT response to light – more details tomorrow.

• We now have additional recob::wire and raw::OpDetWaveform objects
in our ART-ROOT file, the simulated detector response to our input.

27 October 2025 10th LArTPC Software Workshop 39

Simulation workflow

• These stages each have an associated FHiCLs to use. For this tutorial,
these will be:

1. Particle generation

sim_tutorial_gennon0_T0.fcl, the FHiCL you made earlier.

2. Particle propagation

g4_workshop.fcl, included in your LArSoft build.

3. Detector simulation

detsim_workshop.fcl, also included in your LArSoft build.

• Each experiment will have its own version of these simulation FHiCLs. In the case
of SBND, they are called standard_g4_sbnd.fcl and
standard_detsim_sbnd.fcl

27 October 2025 10th LArTPC Software Workshop 40

Checking your outputs

• Once you’ve run through the simulation chain, it can be useful to inspect your
generated events by eye:

lar -c evd_sbnd.fcl -s your_detsim_output_file.root

• There are three view options using evd_sbnd.fcl:

• If each stage has run correctly, you should be able to see the paths your particles traced
through the detector, each labelled by color.

27 October 2025 10th LArTPC Software Workshop 41

Time vs wire, charge view Ortho3D Display3D

Checking your outputs

• If you are working on a Fermilab GPVM in future and want to look at an
event display, it’s easiest to set up a VNC to view it.
• Useful instructions on how to do this are available on the SBN software wiki.

• Alternative event display tools are also available, such as TITUS, but are
beyond the scope of this tutorial.

27 October 2025 10th LArTPC Software Workshop 42

https://sbnsoftware.github.io/sbndcode_wiki/Viewing_events_remotely_with_VNC.html
https://sbnsoftware.github.io/sbndcode_wiki/TITUS_Event_Display.html

Running the simulation

27 October 2025 10th LArTPC Software Workshop 43

Task 2: Simulating 10 events

• Now we’ve gone through the simulation chain from generation to
detector response, it's your turn to simulate some events.

• To start, try simulating a single particle for each event.

• Remember that the output of each step will be the input of the next!

27 October 2025 10th LArTPC Software Workshop 44

Simulating 10 events

• Solution:

• In sim_tutorial_gennon0_T0.fcl:

• physics.producers.generator.* sequences should contain one entry
each.

• In the terminal:
lar -c sim_tutorial_gennon0_T0.fcl -n 10 -o output_gen.root

lar -c g4_workshop.fcl -s output_gen.root -o output_g4.root

lar -c detsim_workshop.fcl -s output_g4.root -o output_detsim.root

• Try using evd_sbnd.fcl and have a look at the events you’ve generated.

27 October 2025 10th LArTPC Software Workshop 45

Main Task: Simulating 1μ1p

• The goal of this tutorial is to simulate 10 events, each with 1 muon (13)
and 1 proton (2212). To do this, you’ll need to modify
sim_tutorial_gennon0_T0.fcl to meet the following
requirements:
• Muon: momentum = 0.7 GeV/c ; theta_xz = -10 deg ; theta_yz = 0 deg
• Proton: momentum = 0.7 GeV/c ; theta_xz = 35 deg ; theta_yz = 10 deg
• Start position for both particles (x,y,z) = (-100,0,150) cm

• Starting time T0 for both particles = 1600 ns
• Set all variations (vertex position, momentum, angles and time) to 0
• Set all distributions to “uniform” (vertex position, time and angle)

• Set particle being created from the same vertex: SingleVertex: True

27 October 2025 10th LArTPC Software Workshop 46

If you’re running low on time, a FHiCL meeting these requirements can be found here:
$MRB_SOURCE/sbndcode/Workshop/TPCSimulation/.solutions/sim_tutorial_gen_non0_T0_complete.fcl

Main Task: Particle gun

• Once you’ve modified sim_tutorial_gennon0_T0.fcl, use lar with
your FHiCL:

lar -c sim_tutorial_gennon0_T0.fcl -o output_gen.root -n 10

• You can quickly check the output file using:
lar -c eventdump.fcl-s output_gen.root -n 1

• Hopefully, you’ll see the expected simb::MCTruth object in the output.

27 October 2025 10th LArTPC Software Workshop 47

Main Task: G4 and DetSim

• The next stages will be the same as previously:
lar -c g4_workshop.fcl -s output_gen.root -o output_g4.root

lar -c detsim_workshop.fcl -s output_g4.root -o output_detsim.root

• Once again, you can use eventdump.fcl to check that you have the
products you expect in output_detsim.root.

27 October 2025 10th LArTPC Software Workshop 48

Main Task: Visualising events

• You can also check your sample using:

lar -c evd_sbnd.fcl -s
output_detsim.root -n 10

• If everything has gone correctly, you should
see something like this:

• Once you’re happy with your output,
simulate another 10 events, adding a
gaussian variation to theta_xz and theta_yz.

27 October 2025 10th LArTPC Software Workshop 49

Bonus Tasks

• If you manage to create a 10 event 1μ1p sample matching the
specifications outlined and gaussian angle variations, why not try the
following:
• Simulate 1e1p events:

• Repeat the steps of the main task, replacing the muon (13) with an electron (11).

• Can you distinguish the electron shower on the event display?

• Getting closer to a “real” event:

• Try generating a further 10 events with 1 muon and 1 proton, but now with 5
additional muons (cosmic rays) distributed randomly over the detector volume.

• After running up to the detsim stage, what does your event look like now?

27 October 2025 10th LArTPC Software Workshop 50

(Bonus) Bonus Tasks

• Rather than using a particle gun to create our cosmic rays, we can use
Corsika to generate muons for us.

• Generate 10 cosmic events using Corsika with this FHiCL:

prodcorsika_cosmics_proton_sbnd.fcl*

• After the geant4 and detsim stages, does the event display look different to
your previous tasks?

• Generate 10 neutrino and cosmic events using this FHiCL:
prodgenie_corsika_proton_nu_spill_tpc_sbnd.fcl

• How does this compare to your previous neutrino + cosmics sample?

27 October 2025 10th LArTPC Software Workshop 51

* If you want to use this sample with later tutorials, try using prodcorsika_proton_intime_sbnd.fcl – This filters out
cosmics that are not in time with a beam spill, so you’ll need to start with a larger number of events (ie n=50, 100)

Questions?

• Feel free to ask Joe or Anyssa questions in-person or via Slack.

• @Joe Bateman

• @A Navrer-Agasson

• There is also a dedicated TPC-Simulation Slack channel:

#tpc-simulation

27 October 2025 10th LArTPC Software Workshop 52

Back-up samples

• In case you didn’t manage to make a 1μ1p sample, there are premade
samples here:
/scratch/LAR25/simulation/

27 October 2025 10th LArTPC Software Workshop 53

References and Useful Links

• Previous tutorials:

• 9th Software Workshop

• 8th Software Workshop

• 7th Software Workshop

• 6th Software Workshop

• Other links:
• SBN Software Wiki

• SBND Newbie Material (may be slightly out of date)

27 October 2025 10th LArTPC Software Workshop 54

https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/268/contributions/2740/attachments/1451/2242/larsoft_sim_tutorial-1.pdf
https://indico.ph.ed.ac.uk/event/313/contributions/3425/attachments/1704/2680/edited_larsoft_sim_tutorial-1%20(1).pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/130/contributions/1737/attachments/1083/1506/Simulation_Tutorial_LArSoft_Workshop_2022.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1408/attachments/894/1211/LArSoft_Tutorial_2.pdf
https://sbnsoftware.github.io/
https://sbnsoftware.github.io/
https://cdcvs.fnal.gov/redmine/projects/sbndcode/wiki/Newbie_Material
https://cdcvs.fnal.gov/redmine/projects/sbndcode/wiki/Newbie_Material

	Slide 1: Simulation Tutorial
	Slide 2: What you will be learning?
	Slide 3: What is a FHiCL?
	Slide 4: What is a FHiCL?
	Slide 5: Why FHiCLs?
	Slide 6: What will you need?
	Slide 7: FHiCL Syntax
	Slide 8: FHiCL Syntax
	Slide 9: FHiCL Syntax
	Slide 10: FHiCL Configurations
	Slide 11: Creating a FHiCL file
	Slide 12: Getting started
	Slide 13: Basic structure
	Slide 14: Basic structure
	Slide 15: Basic structure
	Slide 16: Basic structure
	Slide 17: Basic structure
	Slide 18: Basic structure
	Slide 19: Basic structure
	Slide 20: Basic structure
	Slide 21: Basic structure
	Slide 22: Basic structure
	Slide 23: Basic structure
	Slide 24: Your first FHiCL
	Slide 25: Task 1: Running your first FHiCL
	Slide 26: Modifying your FHiCL
	Slide 27: What is being simulated?
	Slide 28: singles_sbnd.fcl
	Slide 29: singles.fcl
	Slide 30: singles.fcl
	Slide 31: singles.fcl
	Slide 32: Modifying your output
	Slide 33: Modifying your output
	Slide 34: Modifying your output
	Slide 35: Simulation workflow
	Slide 36: Simulation workflow
	Slide 37: Particle generation
	Slide 38: Particle propagation
	Slide 39: Detector simulation
	Slide 40: Simulation workflow
	Slide 41: Checking your outputs
	Slide 42: Checking your outputs
	Slide 43: Running the simulation
	Slide 44: Task 2: Simulating 10 events
	Slide 45: Simulating 10 events
	Slide 46: Main Task: Simulating 1mu1p
	Slide 47: Main Task: Particle gun
	Slide 48: Main Task: G4 and DetSim
	Slide 49: Main Task: Visualising events
	Slide 50: Bonus Tasks
	Slide 51: (Bonus) Bonus Tasks
	Slide 52: Questions?
	Slide 53: Back-up samples
	Slide 54: References and Useful Links

