Debugging
reconstruction

(Exercise)

Andy Chappell and Matt Osbiston for the Pandora team
October 2025 10t UK LArTPC Software and Analysis Workshop

Reconstruction session

Talk

Introduction
to Pandora

Exercise Talk
Running the Pandora’s
reconstruction algorithms

!
Talk

Debugging the
reconstruction

Credit: These slides build on previous
LArSoft workshop slides by Andrew Smith-Jones

Exercise

Debugging the

reconstruction

Key references:

Pandora ProtoDUNE paper
Pandora MicroBooNE paper

https://arxiv.org/abs/2206.14521
https://arxiv.org/abs/2206.14521
https://arxiv.org/abs/2206.14521
https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6
https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6
https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6

Goals

This session scheduled for 1 hour 45 minutes

Main goal — Identify the source of reconstruction failures
* Add visualizations at key points of the reconstruction chain to understand how the reconstruction proceeds
* Investigate the behaviour of relevant algorithms to understand how they work

Secondary goal — Fix events
* |dentify algorithms that might address the issues and add those algorithms into the chain
* Attempt to tune key parameters in XML, as needed
e Continue to use intermediate visualization to understand what your changes have done

Please don’t worry if you don’t fix the issues
* Even if you fix an error in one place, your efforts might be undone later in the reconstruction chain
* The reconstruction algorithms interact with each other
* You may be able to fix parts of an event, but not others
* Reconstruction is hard

Investigate the baseline reconstruction output

An aside on enabling the Pandora event display

* In this session we’ll be using a custom configuration, but the typical top-level Pandora
configuration file will be called something like

* If all you want to do is enable the Pandora event display in an otherwise standard configuration
you can copy this file locally and enable Pandora Monitoring with the following modification:

<pandora>
<!-- GLOBAL SETTINGS -->

<IsMonitoringEnabled>true</IsMonitoringEnabled>

A new event

* WEe’'ll be using custom neutrino events for this task, rather than the 1 muon, 1 proton events

you’ve been looking at so far:

/scratch/LAR25/reconstruction/sbnd_nu_recol.root

* Make sure to be in the directory you’ve been working in so far for the reconstruction tutorials

and then copy the configuration files we’ll be using for this session:

$ cd $MRB_TOP/reco/config

$ cp /scratch/LAR25/reconstruction/PandoraSettings Master Simple.xml .

$ cp /scratch/LAR25/reconstruction/PandoraSettings Neutrino Simple.xml .

* These files contain a greatly simplified reconstruction workflow, where many Pandora algorithms

have been removed, to introduce reconstruction failures to these events

If you closed your terminal since
the last session, don’t forget to

set everything up again! You will
also need to export your
FHICL_FILE_PATH again!

Ensuring your custom files are found

* At the moment, Pandora won’t know about our custom configuration files, so we need to add
our config directory to the FW_SEARCH_PATH so Pandora knows where to look for it (you might
already have this in a setup script) and do the same for the FHICL_FILE_PATH:

$ export FW_SEARCH PATH=$MRB_TOP/reco/config:$FW_SEARCH PATH

$ export FHICL FILE PATH=$MRB_TOP/reco/config:$FHICL FILE PATH

* Now we need to set up a new FHiCL file to run our custom configuration...

Writing a FHICL file to run custom reconstruction

* Let’s make a new FHiCL file that just runs the reconstruction using our custom XML configuration

$ vim reco_driver.fcl

This is a very convenient way to

* Add the lines below to reco driver.fcl, save and close: customize FHiCL — inherit and
minimally modify

#include "standard_reco2_sbnd.fcl“ < Start from the standard reco chain

physics.reco2: [rns, pandora]) Only run Pandora pat. rec.

physics.end_paths: [] Produce no output

physics.producers.pandora.ConfigFile: "PandoraSettings Master_ Simple.xml" <+—— Point to our new XML settings file

* Run Pandora over the event and look at the reconstruction output

$ lar -c reco_driver.fcl -s /scratch/LAR25/sbnd nu_recol.root -n 1 --nskip 2

When copy-pasting commands there can be strange character conversions, particularly for hyphens, these often
show up as an inability to find a config file. Try deleting the hyphens and just typing them

A brief introduction to the Pandora event display

Understanding the Pandora event display

Every time the visual
monitoring algorithm runs,
we get a new event display
(enumerated from zero) —»

Try checking and /

unchecking the boxes to
turn on and off the hits
from each of the views
M CaloHitListU

M CaloHitListV

M CaloHitListW

The 2D hit coordinates are
stored in Pandora as 3D
coordinates (X, Y, Z)

X = drift time coordinate
Y=0
Z = wire number coordinate

Browser Eve ‘

| —
| Files | L Viewer 1 | IMulti-View ‘ 3D View ‘ W View ‘ U View | V View | 2D Views
[WindowNManager Hidl Viewer 1 ‘ ABT\DnS‘
LA Viewers
L1 Scenes

{29 7 Event Display 0
(£ [CalobitListl

Style | Gwdes| thpmg| Extras|
GLViewer [TGLSAViewer]

Update behaviour
" lgnore sizes
¥ Reseton update

Update Scene
Camera Home
Max HQ draw time: 5000 il
Max LQ draw time: 100 il
Clear Color [| |~

Light sources:
W Top ¥ Bottom
l' Left = anm

You can safely ignore these options from TEve we won’t use them here [~

Point-si

-] [CaloHilListV
(£ [CalobtListw \

N visualize is

\

()

In Viewer 1, all
information we

overlaid. Here we
see hits from all
three views on
top of each other :
+ the detector \
geometry
|\ Jr

Cammand |

wews FE€l free to shrink down these menus for more space

—

Bl

10

Wheel up - zoom out
Wheel down - zoom in
Wheel press + drag - pan viewport

(Or whatever the mapping of these
operations is for your laptop. Arrow
keys can move the view around as
well)

W - wireframe mode
R - return from wireframe mode

If you click in the terminal
window and press Return ¢
Pandora will continue
running

An example event

11

The underlying event (1)

* We’ll highlight several events that are available to
investigate in this session, but we’ll focus on one to
outline the process

* Depicted to the right is the MC truth for this resonant
pion production event in the U view (V and W on the
next two slides)

* The primary particles in this event are
* Muon (black)
* Proton (red)
* Leading photon (blue)
* Sub-leading photon (cyan)
* 5very low energy photons (not all visible in this image)

* Expect these to be very difficult to reconstruct under any circumstances

L R

12

The underlying event (2)

* We’ll highlight several events that are available to
investigate in this session, but we’ll focus on one to
outline the process

* Depicted to the right is the MC truth for this resonant
pion production event in the V view (U and W on the
preceding and following slides)

* The primary particles in this event are
* Muon (black)
* Proton (red)
* Leading photon (blue)
* Sub-leading photon (cyan)
* 5very low energy photons (not all visible in this image)

* Expect these to be very difficult to reconstruct under any circumstances

13

The underlying event (3)

* We’ll highlight several events that are available to
investigate in this session, but we’ll focus on one to
outline the process

* Depicted to the right is the MC truth for this resonant
pion production event in the W view (U and V on the
previous two slides)

* The primary particles in this event are
* Muon (black)
* Proton (red)
* Leading photon (blue)
* Sub-leading photon (cyan)
* 5very low energy photons (not all visible in this image)

* Expect these to be very difficult to reconstruct under any circumstances

14

Reconstructing the event (1)

* If we run our simplified reconstruction and consider the
clusters in the U view, a few things are evident:

* The proton and muon are well-reconstructed, with some minor
hit confusion between the tracks at the vertex

* The shower reconstruction is less successful
* There is notable shower fragmentation

* We'll ignore the remaining very low energy showers, albeit
they have largely been reconstructed in 2D

15

Reconstructing the event (2)

* In the V view, a similar picture is evident:

* The proton is well reconstructed with some minor hit
confusion at the vertex, where it steals a hit from the muon

* The muon is mostly well reconstructed, but for a small
fragments along the track

* The shower reconstruction is less successful
* The sub-leading shower is well reconstructed in this view
* But notable shower fragmentation exists in the leading shower

16

A few pointers (1)

* There are more than 100 algorithms available to Pandora’s pattern recognition process, so to
help narrow things down, we’ll highlight a few potentially interesting algorithms that might help
resolve some or all of these issues

* We won’t go through the details now, but in the backup section of these slides are brief
descriptions of what these algorithms do, with a focus on the 2D algorithms

* 2D clustering algorithms — these can be used after algorithms like LArTransverseExtension

* LArCrossGapsAssociation, LArCrossGapsExtension, LArOvershootSplitting, LArBranchSplitting, LArKinkSplitting,
LArTrackConsolidation, LArHitWidthClusterMerging

* Note these algorithms run for each of U, V and W, and so anything you add must be replicated in each of the
relevant sections
* 2D mop up algorithms — can be used after LArThreeDShowers
* LArBoundedClusterMopUp, LArConeClusterMopUp, LArNearbyClusterMopUp

17

A few pointers (2)

There are more than 100 algorithms available to Pandora’s pattern recognition process, so to
help narrow things down, we’ll highlight a few potentially interesting algorithms that might help
resolve some or all of these issues

We won’t go through the details now, but in the backup section of these slides are brief
descriptions of what these algorithms do, with a focus on the 3D algorithms

3D track algorithms — can be used after LArThreeDLongitudinalTracks
* LArThreeDTrackFragments

3D recovery algorithms - can be used after LArThreeDShowers
* LArVertexBasedPfoRecovery, LArParticleRecovery

3D mop up algorithms - can be used after LArThreeDHitCreation
* LArSlidingConePfoMopUp, LArSlidingConeClusterMopUp, LArlsolatedClusterMopUp

18

We're going to use Pandora’s event display to explore how the clustering proceeds in an effort to
understand where we might want to intervene

We’'ll start by focusing on the 2D clustering algorithms: After the W view algorithms in the <!--
TwoDReconstruction --> block, add the following instance of the LArVisualMonitoring algorithm

<!-- TwoDReconstruction -->

<algorithm type = "LArClusteringParent">
<algorithm type = "LArTrackClusterCreation" description = "ClusterFormation"/>
<InputCaloHitListName>CaloHitListW</InputCaloHitListName>

</algorithm>
<algorithm type = "LArTransverseExtension"/>
<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersU ClustersV ClustersW</ClusterListNames> _

<ShowDetector>true</ShowDetector>
</algorithm>

You may also want to set ShouldDisplayAlgorithminfo to true at the beginning of both the
master and neutrino XML, in order to keep track of where you are as you step through the
event displays

Understanding the reconstruction (2)

* Run Pandora and start to observe how
the clustering proceeds

* Focus on the W view to begin with by o
deselecting the other views in the tree

* Note how small many of the clusters are

i,

* Provisional clustering is track-centric and BN .S
quite strict '

* Ambiguity or sharp deviations in trajectory
limit the growth of clusters

* This means the tracks in this event, and this
view, are well reconstructed — there’s little
doubt about how the tracks should grow

* The showers are fragmented

Viewer 1 | Multi-View | 30 View | W View | U View | V View | 20 Views | Mult-View | 3D View | W View | U View | V View | 2D Views.

21

Understanding the reconstruction (3)

* Now add another instance of the LArVisualMonitoring algorithm, but this time just after the <!--
VertexAlgorithms --> block, shown below

* Here we’ll look at the clusters in the W view, along with the selected Neutrino interaction vertex
(which, being in 3D, only projects onto the W view)
* The vertex is an important reference point for the reconstruction, so errors here can have knock on effects
* In SBND, Pandora currently uses a BDT to select from a (potentially large) set of candidate vertices

* In DUNE, Pandora employs a deep neural network to determine the vertex location — this is being tested for
deployment at SBND

<!-- VertexAlgorithms -->

<algorithm type = "LArCutClusterCharacterisation">
<InputClusterListNames>ClustersU ClustersV ClustersW</InputClusterListNames>
<ZeroMode>true</ZeroMode>

</algorithm>

<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersW</ClusterListNames>
<VertexListNames>NeutrinoVertices3D</VertexListNames>
<ShowDetector>true</ShowDetector>

</algorithm>

* Re-run Pandora to see this new event display (if you haven’t removed it, you’ll need to skip past
the previous event display first)

Understanding the reconstruction (4)

* You’'ll see the same set of clusters, but
now the reconstructed neutrino
interaction vertex as well

* Pandora renders these vertices in yellow,
which can be tricky to spot

* If you expand the NeutrinoVertices3D node
in the tree and select Vertex, you’ll see
options to change the colour and size of the
marker, as we’ve done here

Viewer 1 | Multi-View | 30 View | W View | U View | V View | 20 Views | Mulll-View | 30 View | W View | U View | V View | 20 Views
Hide Viewer 1

* Here the vertex appears well placed

N -
L

Command
Command flocal):

Next we’ll add another instance of the LArVisualMonitoring algorithm, now just after the <!--
ThreeDTrackAlgorithms --> block, shown below

We’ll focus on the W view again here, but all three views are available in the full visualization,
because that’s typically most useful
<!-- ThreeDTrackAlgorithms -->

<algorithm type = "LArThreeDLongitudinalTracks">
<InputClusterListNameU>ClustersU</InputClusterListNameU>
<InputClusterListNameV>ClustersV</InputClusterListNameV>
<InputClusterListNameW>ClustersW</InputClusterListNameW>
<OutputPfolistName>TrackParticles3D</OutputPfolistName>
<TrackTools>
<tool type
<tool type
</TrackTools>
</algorithm>

"LArClearLongitudinalTracks"/>
"LArMatchedEndPoints"/>

<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersU ClustersV ClustersW</ClusterListNames>
<ShowDetector>true</ShowDetector>

</algorithm>

Re-run Pandora to see this new event display

Understanding the reconstruction (6)

* Given the track reconstruction already
looked quite complete before this point,
we wouldn’t expect to see much here

Style

—Vertex
x:-196.846 y: 175.463 :348.562 length

TEveElement
Show: [7 Sell |7 Chilaren
Marker

e[

1

Viewer 1 | Mult-View | 3D View | W View | U View | V View | 20 Views | Mult-View | 3D View | W View | U View | V View | 2D Views
Hide: Viewer 1
&
%
;
)
& T
T Ay,
j
uy
‘Command

Command (local):

24

Next, visualize just after the <!— ThreeDShowerAlgorithms --> block, shown below

We'll focus on the W view again here, but all three views are available in the full visualization,
because that’s typically most useful

<!-- ThreeDShowerAlgorithms -->

<algorithm type = "LArThreeDShowers">
<InputClusterListNameU>ClustersU</InputClusterListNameU>
<InputClusterListNameV>ClustersV</InputClusterListNameV>
<InputClusterListNameW>ClustersW</InputClusterListNameW>
<OutputPfoListName>ShowerParticles3D</OutputPfolistName>
<ShowerTools>
<tool type "LArClearShowers"/>

<tool type "LArSplitShowers"/>
<tool type "LArSimpleShowers" />
</ShowerTools>
</algorithm>

<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersU ClustersV ClustersW</ClusterListNames>
<ShowDetector>true</ShowDetector>

</algorithm>

Re-run Pandora to see this new event display

Understanding the reconstruction (8)

26

* Here we can see some merging of the
shower clusters has been undertaken,
but not as much as we’d like

x:-196.846 y: 175,463 z: 348 582 length:

TEveElement
Show: 7 Self [Children
Marker

-l 203

Viewer 1 | Multi-View | 3D View | W View | U View | V View | 2D Views | Mulli-View | 3D View | W View | U View | V View | 2D Views
Hide Viewer 1

Command

Command (local):

Fixing the reconstruction output

27

The nature of the problem

* You've seen what the final event looks like, and you’ve seen
how the reconstruction moves forward in a few key places

* Broadly, the tracks are pretty good (except in the V view), but the
showers are highly fragmented

* Now you need to see if you can modify the reconstruction
algorithm chain to improve the outcome to something
closer to the image on the right

* Choose from among the suggestions on the “pointers”
slides in the previous section and the guide to those
algorithms in the next section to try to improve the
reconstruction

* You may need to undertake some tuning of algorithm parameters
for the best results — but don’t over-tune!

* If you make good progress on this event, feel free to
explore other events in this file and fix those too!

28

29

A very brief guide to adding algorithms to the XML (1)

* Let’s say you want to add the HitWidthClusterMerging algorithm to the end of the 2D
clustering (we’ll look at just one of the views here, but remember the initial clustering runs

for each view)

* The simplest addition is to add a single line which includes an algorithm with type
LArHitWidthClusterMerging, that uses default parameters

<!-- TwoDReconstruction -->

<algorithm type = "LArClusteringParent">
<algorithm type = "LArTrackClusterCreation" description = "ClusterFormation"/>
<InputCaloHitListName>CaloHitListW</InputCaloHitListName>

</algorithm>

<algorithm type = "LArTransverseExtension"/>
<algorithm type = "LArHitWidthClusterMerging"/>

* Note that while the class is called HitWidthClusterMergingAlgorithm, the algorithm name is
LArHitWidthClusterMerging

* This is a common mapping of class to algorithm name, but you can find the full set of mappings here, where
you can search for the class name to find the corresponding XML algorithm type.

* If you want to modify parameters of the algorithm the update is slightly different...

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArContent.cc#L226

A very brief guide to adding algorithms to the XML (2)

* Let’s say you want to add the HitWidthClusterMerging algorithm, but this time with a
custom value for MinClusterSparseness

* Here the update now looks like this

<!-- TwoDReconstruction -->

<algorithm type = "LArClusteringParent">
<algorithm type = "LArTrackClusterCreation" description = "ClusterFormation"/
<InputCaloHitListName>CaloHitListW</InputCaloHitListName>

</algorithm>

<algorithm type = "LArTransverseExtension"/>
<algorithm type = "LArHitWidthClusterMerging">

<MinClusterSparseness>0.2</MinClusterSparseness>
</algorithm>

* Any parameters you want to modify are contained within the algorithm block

* As will be noted in the next section, the collection of modifiable parameters can be found in each
algorithm’s ReadSettings function

30

A Brief Guide to the Algorithms of Interest

31

2D clustering algorithms

32

33

LArCrossGapsAssociation

* This algorithm attempts to connect trajectories that may span gaps in the detector readout (e.g.
dead channels, or gaps between APAs)

* As with many of the 2D algorithms, the clusters are first filtered according to selection criteria to
determine if they should participate in the algorithm

* A cluster must have a minimum number of hits and layers (you can think of a layer and a wire as synonymous)
* The selection criteria and other parameters can be tuned in XML. The ReadSettings function is a useful resource

The resultant selected clusters are sorted by the starting layer

* Selected clusters are considered pairwise

Clusters are checked to see if they point in an approximately common direction and have start and end positions
that could be consistent with belong to the same trajectory

Trajectories are then projected beyond a cluster in the direction of the target cluster and the target cluster is
sampled to see if it is consistent with the projected trajectory

If enough points match (within a tolerance) the clusters can be associated
Clusters association must be bidirectional, it’s not enough for one cluster to point to the other

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterAssociation/CrossGapsAssociationAlgorithm.cc#L211

34

LArCrossGapsExtension

* This algorithm attempts to connect trajectories that may span gaps in the detector readout (e.g.
dead channels, or gaps between APAs), taking a different approach to the previous algorithm

* Clusters are first filtered according to selection criteria
* A cluster must have a minimum length
* See the ReadSettings function for more tunable parameters
* The resultant selected clusters are sorted by the number of hits
* Clusters are then checked for proximity to a gap

* Selected clusters are considered pairwise

* In this algorithm, a pointing cluster is created from each cluster, which considers the local trajectory more strongly
than the overall cluster trajectory

* |f each pointing cluster is close enough to the position of the target pointing cluster across the gap and the angle
across the gap is not too large, the clusters are associated

* As before, associations must be bidirectional

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterAssociation/CrossGapsExtensionAlgorithm.cc#L333

LArOvershootSplitting

* This algorithm attempts to identify cases where hit clustering
may have been overzealous, and continued to add hits where
an alternative clustering was available

* Clusters are first filtered according to selection criteria
* A cluster must have a minimum length
* See the ReadSettings function for more tunable parameters
* The resultant selected clusters are sorted by the number of hits

* Selected clusters are considered pairwise

* The algorithm looks for locations where projections of one cluster
intersect the other

* If these distance between the clusters is not too large, the intersection of
the projections is determined

* |If this intersection is sufficiently far along a cluster (i.e. we’re not too
close to a possible, legitimate, vertex), the cluster is considered for
splitting

35

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/OvershootSplittingAlgorithm.cc#L296

LArBranchSplitting

* This algorithm attempts to identify instances where the continuation and
branching of two clusters may have been wrong

* Clusters are first filtered according to selection criteria
* A cluster must have a minimum length

36

* See the ReadSettings function for more tunable parameters

* Selected clusters are considered pairwise
* The algorithm looks for locations where one cluster appears to emerge from another
* The angle shouldn’t be too big (i.e. the clusters propagate in similar directions

* If a redistribution of the hits leads to more consistent trajectories, the clusters are
split

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/BranchSplittingAlgorithm.cc#L153

LArKinkSplitting

* As the name suggests, this algorithm attempts to identify sharp direction changes within a
cluster that may indicate a need to split the cluster

* Clusters are first filtered according to selection criteria
* A cluster must have a minimum length
* See the ReadSettings function for more tunable parameters

* Selected clusters are considered individually
* The algorithm performs sliding fits along the cluster trajectory
* The angle between fits that cover adjacent sliding windows is determined
* The maximum angle across all fit comparisons is identified
* If the angle is too large, the cluster is split at the midpoint of relevant fits

37

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/KinkSplittingAlgorithm.cc#L88

LArTrackConsolidation

* This algorithm attempts to identify instances where shower-like clusters have stolen hits from
track-like clusters

* Clusters are first filtered according to selection criteria
* A track cluster must have a minimum length
* A shower cluster must have a maximum length
* See the ReadSettings function for more tunable parameters

* Selected clusters are considered pairwise
* The algorithm checks to ensure the shower-like cluster is at most half the size of the track-like cluster
* The algorithm then looks for shower hits that appear to fill gaps in the track-like trajectory
* If such hits are found, they are removed from the shower-like cluster and added to the track-like cluster

38

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/TrackConsolidationAlgorithm.cc#L140

39
LArHitWidthClusterMerging

* This algorithm attempts to merge clusters involving wide hits
* Wide hits are liable to occur when many drift electrons arrive at a small number of wires in quick succession
* This produces a very wide signal from which a small number of hits are created
* Such hits can be difficult to merge because the infinitesimal position of hits can be widely separated

* Clusters are first filtered according to selection criteria
* A cluster must have a sufficiently large average hit width
* See the ReadSettings function for more tunable parameters

* Selected clusters are considered pairwise

* The algorithm looks for a potential merge point for the clusters (not necessarily end-to-end as wide hits can
lead to overlap)

* The individual clusters are checked for a sufficiently similar direction

The direction of a potential merged cluster is also compared to those original directions to ensure it does not
change too much

* |f everything is consistent, the clusters are merged

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterAssociation/HitWidthClusterMergingAlgorithm.cc#L445

LArBoundedClusterMopUp

* This algorithm attempts to grow (by default) shower clusters

* Clusters are first filtered according to selection criteria
* A cluster must have a minimum length
* See the ReadSettings* function for more tunable parameters

* Selected clusters are considered pairwise
* The algorithm finds particles produced by inter-plane matching and extracts their clusters (particle clusters)
* The algorithm identifies clusters that did not produce particles by inter-plane matching (remnant clusters)

* The edges of the shower are identified for the particle clusters by constructing bins along a track-like fit of the
shower that span the perpendicular extent of the shower at that point

* |f a sufficiently large fraction of the hits in remnant clusters are bounded by the particle cluster edges, the
clusters are merged

* Most algorithms in Pandora derive directly from the Algorithm class, but some, like this one, inherit from other classes. In this case, it
can be useful to check if this base class has its own parameters (which you can then override in this algorithm’s XML parameters),
which are set in its own ReadSettings function. To see what extra parameters are available, you can look at its corresponding header file
and see which class it inherits from. You can find the location of the corresponding base class by searching for the class in the
LArContent class includes list.

40

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/BoundedClusterMopUpAlgorithm.cc#L170
https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/BoundedClusterMopUpAlgorithm.h#L24
https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArContent.cc#L11

41

LArConeClusterMopUp

* This algorithm attempts to grow (by default) shower clusters

See the ReadSettings function for more tunable parameters

* Selected clusters are considered pairwise

The algorithm finds particles produced by inter-plane matching and extracts their clusters (particle clusters)
The algorithm identifies clusters that did not produce particles by inter-plane matching (remnant clusters)
A fit is performed through the hits in the particle cluster

Walking along that fit, the positive maximally transverse coordinate are collected and a fit performed
Walking along that fit, the negative maximally transverse coordinate are collected and a fit performed
These two “edges” about the overall fit define a search cone

If a sufficiently large fraction of the hits in remnant clusters are bounded by the particle cluster edges, the
clusters are merged

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/ConeClusterMopUpAlgorithm.cc#L175

LArNearbyClusterMopUp

* This algorithm attempts to grow (by default) shower clusters
* See the ReadSettings function for more tunable parameters

* Selected clusters are considered pairwise
* The algorithm finds particles produced by inter-plane matching and extracts their clusters (particle clusters)
* The algorithm identifies clusters that did not produce particles by inter-plane matching (remnant clusters)
* The remnant clusters must have a minimum number of hits
* If a remnant cluster is sufficiently close to a particle cluster, it can be merged

42

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/NearbyClusterMopUpAlgorithm.cc#L92

3D track algorithms

43

44

LArThreeDTrackFragments

This algorithm attempts to create particles in instances in which we have two
well-reconstructed views, and a third fragmented view

* See the ReadSettings function for more tunable parameters

The algorithm ONLY considers clusters that are not owned by an existing particle

It identifies pairs of clusters (in different views) with significant overlap in the drift coordinate
(and thus likely to belong to the same particle)

Starting from the ‘best pair’:
* The clusters are used to create projected positions in the ‘missing’ view
* For each projected position, the closest ‘available’ hit is sought
* The clusters to which these hits belonged are together postulated to for the third cluster of the particle
* If the, now, three-cluster match presents a consistent 3D image a particle is created

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArTrackFragments/ThreeViewTrackFragmentsAlgorithm.cc#L647

3D recovery algorithms

45

46

LArVertexBasedPfoRecovery

This algorithm attempts to recover any ‘tiny’ particles coming out of the neutrino vertex e.g.
tiny proton stubs

* See the ReadSettings function for more tunable parameters
It first identifies all ‘available’ clusters ‘close-to’ the neutrino vertex

It then attempts to ‘match’ found clusters across the views — to do this we refer to the overlap
of the clusters in the drift coordinate and a ‘pseudo chi-squared’ metric that measures the
extent to which a consistent 3D image can be formed

First, three cluster matches are sought and particles are created in order of the best ‘chi-
squared’

Next, two cluster matches are sought, and again particle creation is prioritised by the ‘chi-
squared’ metric

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArPfoRecovery/VertexBasedPfoRecoveryAlgorithm.cc#L543

47

LArParticleRecovery

This algorithm attempts to reconstructed hitherto ‘missed’ particles
* See the ReadSettings function for more tunable parameters

First, it identifies all ‘available’ clusters above a user defined ‘size’

If the algorithm is running in ‘vertex mode’, tiny stub-like clusters originating from clusters
coming out of the vertex are also identified

Pairs of matches across the three views are sought (a cluster can exist in multiple pairs) —to do
this we refer to the overlap of the clusters in the drift coordinate

These pairs are then examined to identify groups of clusters that exist within the same drift
region

If the group corresponds to a triplet or doublet of clusters (each belonging to a different view)
a particle is created

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArPfoRecovery/ParticleRecoveryAlgorithm.cc#L484

3D mop up algorithms

48

LArSlidingConePfoMopUp

This algorithm attempts to optimise shower completeness by merging shower fragments into
their parent shower
* See the ReadSettings function for more tunable parameters

First, all 3D showers and ‘small’ tracks are identified (these are the only particles considered in
the algorithm)

For each ‘large’ 3D shower:

* we walk along it’s central axis, drawing a 3D cone at each point with an opening angle and length that increases
with distance along the shower

* any particles that are ‘significantly’ contained within a cone are recorded, alongside their potential parent

After this process, a particle may have multiple potential parents, and ambiguities are resolved
by picking the parent that most contained the particle

Merges are then performed, and recursive merging is allowed (if running in vertex mode,
which is the default, particles in ‘close’ proximity to the neutrino vertex cannot be merged)

This whole process runs recursively, until no more merges can be made

49

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArPfoMopUp/SlidingConePfoMopUpAlgorithm.cc#L330

LArSlidingConeClusterMopUp

This algorithm attempts to optimise shower completeness by merging ‘lost’ 2D clusters into
their parent shower

* See the ReadSettings function for more tunable parameters

‘Significant’ 3D showers and ‘small’ 3D tracks are collected and are the seed particles the
algorithm will look to grow

‘Small’ 2D clusters, that do not yet belong to any particles, are identified and are the clusters
the algorithm will use to grow the showers with

For each seed particle:
* we walk along it’s central axis, drawing a 3D cone at each point

* the cone is projected in each 2D view, and any clusters that are ‘significantly’ contained within a cone are
recorded, alongside their potential parent

After this process, a particle may have multiple potential parents, and ambiguities are resolved
by picking the parent that most contained the particle

Merges are then performed, and recursive merging is allowed

50

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/SlidingConeClusterMopUpAlgorithm.cc#L265

51

LArlsolatedClusterMopUp

* This algorithm is one of the final algorithms to run in Pandora

* Its job is to make sure that as many of the input hits as is possible are included in the
reconstruction output

= limiting the missing energy in downstream energy estimations
* See the ReadSettings function for more tunable parameters

* It first finds the ‘seed’ 3D particles to grow — this is configurable and is either all shower
particles (default) or all showers and tracks

* It then identifies all remaining ‘small’ 2D clusters and ‘dissolves’ them into their 2D hits

* Each, now free, 2D hit is added to the closest cluster — only if the cluster is within some
proximity

* The hits are added as ‘isolated hits’

* |solated hits do not contribute to trajectory fits but do contribute to energy calculations

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/IsolatedClusterMopUpAlgorithm.cc#L123

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

