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Overview

Brief introduction to (next-to-) soft divergences.

Applications in Collider Physics (mainly QCD).

Applications in high energy scattering (mainly gravity).

Outlook.
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Infrared divergences

In scattering amplitudes, get singularities due to soft or
collinear gauge bosons:

p

k

1

p · k
=

1

|p||k |(1− cos θ)
.

Formal divergences cancel
upon combining real and
virtual graphs (Block,
Nordsieck).

Both soft and collinear radiation is universal.

Physics: it has an infinite wavelength, so cannot resolve the
underlying amplitude.

3 / 40



Factorisation

Universality of soft / collinear radiation is expressed in
factorisation formulae.

Example: consider a tree-level amplitude An+1({pi}, k) where
momentum k becomes soft. We then get the soft theorems

lim
kµ→0

An+1({pi}, k) = S(0)({pi}, k)An({pi}),

where

S(0)
QED =

n∑
i=1

εµ(k)pµi
pi · k

, S(0)
grav. =

n∑
i=1

εµν(k)pµi p
ν
i

pi · k

(Yennie, Frautschi, Suura; Weinberg).

All dependence on the soft momentum k is in the overall
factor S.
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Next-to-soft theorems

It is also possible to write such formulae at one order higher in
the k expansion (Cachazo, Strominger; Casali):

An+1({pi}, k) =
[
S(0) + S(1)

]
An({pi}),

with

S(1)
QED =

n∑
i=1

εµkρJ
(i)µρ

pi · k
, S(1)

grav . =
n∑

i=1

εµkρJ
(i)µρ

pi · k
,

where J
(i)
µν is the total angular momentum of (hard) particle i .

Next-to-next-to-soft also possible for gravity.

These and similar results have a surprisingly long history...
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History of next-to-soft physics

Next-to-soft effects were first studied in gauge theory (QED)
by Low (1958).

He considered external scalars; generalised to fermions by
Burnett and Kroll (1968).

Both groups only considered massive particles (no collinear
effects).

Similar work in gravity by Gross, Jackiw (1968).

Del Duca (1990) generalised the Low-Burnett-Kroll result to
include collinear effects.
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Path integral approach

Next-to-soft effects for massive particles considered using
worldline methods by Laenen, Stavenga, White (2008).

Can replace propagators
for external legs by
quantum mechanics path
integrals.

Leading term in
perturbative expansion is
classical trajectory (soft
limit).

First-order wobbles give
next-to-soft behaviour.

Also works for gravity (White, 2011).
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Applications

The tree-level (next-to)-soft theorems can be obtained using
Ward identities associated with asymptotic symmetries.

This is the focus of much of this meeting!

However, the history of next-to-soft physics suggests that
there are many other applications of next-to-soft physics.

Indeed, these have been reinvigorated by the recent work on
next-to-soft theorems.

The aim of this talk is to review some of these applications.

Key message: next-to-soft physics connects hep-th, hep-ph,
hep-ex and gr-qc!
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Collider Physics

A major application of (next-to) soft physics is to collider
physics.

We saw earlier that IR singularities cancel when real and
virtual diagrams are combined.

However, the cancellation can leave behind large contributions
to perturbative quantities.

Consider e.g. the production of a vector boson at a collider
(“Drell-Yan production”):

Q

p

p
_

Let z = Q2/s be the fraction of
(squared) energy s carried by
the vector boson.

At LO, z = 1, and thus the
cross-section is

dσ(0)

dz
∝ δ(1− z).
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Drell-Yan production

At next-to-leading order (NLO), radiation can carry energy, so
that

0 ≤ z ≤ 1.

The NLO cross-section then turns out to be

dσ
(1)
qq̄

dz
∼ αs

2π

[
4(1 + z2)

(
ln(1− z)

1− z

)
+

− 2
1 + z2

1− z
ln(z)

+δ(1− z)

(
2π2

3
− 8

)]
.

It contains highly divergent terms as z → 1.

Looks like perturbation theory is in trouble!

Let’s go one order higher and see what happens...
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At NNLO the problem is even worse! One has

dσ
(2)
qq̄

dz
∼ C 2

F

(αs

2π

)2
[

128

(
ln3(1− z)

1− z

)
+

− 256

(
ln(1− z)

1− z

)
+

+ . . .

]
,

where . . . denotes terms suppressed by (1− z).

Logs get higher at higher orders in perturbation theory...

... which indeed breaks down as z → 1.

Precisely the regime where the vector boson is produced near
threshold, so that extra radiation is soft / collinear!

The problem terms are echoes of IR singularities having been
present.

Thus, this problem affects many different scattering
processes...
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General structure of threshold logarithms

For heavy particles produced near threshold, we can define a
ξ, where ξ → 0 at threshold (e.g. ξ = (1− z)).

Then the general structure of any such cross-section is:

dσ

dξ
=
∑
n,m

αn

[
c

(0)
nm

(
lnm ξ

ξ

)
+

+ c
(1)
nm lnm ξ + . . .

]
.

First set of terms correspond to (leading) threshold logs: pure
soft and / or collinear.

Second set of terms is next-to-leading power (NLP) threshold
logs: next-to-soft and / or collinear.

For ξ → 0, we need to rethink perturbation theory.
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Resummation

The solution to this problem is to somehow work out what the
large logs are to all orders in αs .

Then we can sum them up to get a function of αs that is
better behaved than any fixed order perturbation expansion.

Toy example: consider the function

e−αsx =
∞∑
n=0

αn
s (−x)n

n!
.

Each term diverges as x →∞, but the all-order result is
well-behaved.
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Resummation approaches

Many approaches exist for resumming leading threshold logs.

There are many (hundreds?) of observables at e.g. the LHC
for which this is relevant.

Original diagrammatic approaches by e.g. Sterman; Catani,
Trentadue),

Can also use Wilson lines (Korchemsky, Marchesini), or the
renormalisation group (Forte, Ridolfi).

A widely used approach is to treat soft and collinear gluons as
separate fields in an effective theory: soft-collinear effective
theory (SCET) (Becher, Neubert; Schwartz; Stewart).

All approaches have the factorisation of soft / collinear
physics at their heart.
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Soft-collinear factorisation

The general structure of an n-point amplitude is

An = Hn × S ×
∏

i Ji∏
i Ji

.

This is the virtual generalisation of the soft theorem.

Here Hn is the hard function, and is IR finite.

The soft and jet functions S and Ji collect soft / collinear
singularities respectively.

The eikonal jets Ji remove any double counting.

The soft and jet functions have universal definitions in terms
of Wilson line operators.
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Resummation from factorisation

The soft-collinear factorisation formula leads directly to
resummation of threshold effects.

Related ideas in other approaches (e.g. SCET).

Summing successive towers of threshold logs requires
calculating the soft and jet functions to a given order in
perturbation theory.

State of the art is two loops (Sterman, Aybat, Dixon,
Kidonakis, Mitov, Sung, Becher, Neubert, Beneke, Falgari,
Schwinn, Ferroglia, Pecjak, Yang).

Progress towards three-loops and beyond (Gardi, Laenen,
Stavenga, Smillie, White, Almelid, Duhr, Korchemsky, Henn,
Huber, Grozin, Marquard, Correa, Maldacena, Sever).
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Next-to-leading power logs

To date, much less has been known about NLP effects.

Known for a while to be numerically significant e.g. in Higgs
production (Kramer Laenen, Spira; Harlander, Kilgore; Catani,
de Florian, Grazzini, Nason).

This has been confirmed by recent N3LO Higgs results
(Anastasiou, Duhr, Dulat, Herzog, Mistlberger).

There are three good reasons to study NLP logs:
1 Resummation of them will improve precision.
2 Even without resummation, NLP logs may provide good

approximate NnLO cross-sections.
3 Can improve the stability of numerical codes.
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Next-to-soft effects in particular scattering processes classified
to all orders by (Almasy, Moch, Presti, Soar, Vermaseren,
Vogt).

Can also be classified using the method of regions (Beneke,
Smirnov, Pak, Jantzen) (see e.g. Bonocore, Laenen, Magnea,
Vernazza, White).

None of the previous approaches is fully general - but strong
hints of an underlying structure.

Can we predict NLP logs in an arbitrary process?

Can they be written in terms of universal functions (like LP
effects)?

Encouraging recent progress...
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SCET approach

It is well-known that LP effects can be described using
Soft-Collinear Effective Theory SCET (Stewart, Schwartz,
Bauer, Fleming; Becher, Neubert).

The same language can be extended to NLP level.

Originally explored in B physics (Beneke, Campanario,
Mannel, Pecjak).

Recent study for scattering amplitudes (Larkoski, Neill,
Stewart).

Phenomenology explored by Feige, Kolodrubetz, Moult,
Stewart, Rothen, Tackmann, Zhu; Boughezal, Liu, Petriello.

Recent resummation of leading NLP log for some observables
(Stewart et. al.).
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Factorisation approach

The soft-collinear factorisation formula can be generalised to
next-to-leading power level (Bonocore, Laenen, Magnea,
Melville, Vernazza, White).

This provides a loop-level generalisation of the next-to-soft
theorem.

A new quantity appears at nex-to-soft level: the jet emission
function.

Has been calculated at one-loop level for quarks.

Non-trivial check: reproduces all NLP terms up to NNLO in
Drell-Yan.

Observable loop-level corrections to the tree-level next-to-soft
theorem!
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Collider Physics - Summary

Next-to-soft physics has a large number of applications in
collider physics.

Typically this involves summing up large terms in perturbative
cross-sections...

... or finding approximate forms for fixed-order cross-sections.

Such calculations improve the precision of theory predictions
at the LHC.

Current data demands this precision!
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Next-to-soft gravity

Much of this conference focuses on relating (next-to) soft
physics with asymptotic symmetries in gravity.

However, (next)-to soft corrections have a different role to
play in understanding the conceptual structure of quantum
gravity...

...and may even have phenomenological consequences!

More specifically, they are relevant to high energy scattering.

Many papers from the 1990s onwards (Amati, Ciafaloni,
Veneziano, Colferai, Falcioni; ’t Hooft; Verlinde2; Jackiw,
Kabat, Ortiz).
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Transplanckian scattering

More specifically, we will focus on 2→ 2 scattering in the
high energy or Regge limit

s � |t|,

where s is the squared centre of mass energy, and |t| the
momentum transfer.

Corresponds to scattering above the Planck scale in gravity.

Näıvely, we might think that non-renormalisability is a
problem.

However, in this limit infinite numbers of soft gravitons are
exchanged, and the results are well-behaved!
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Can consider different regions in impact parameter b
(conjugate to |t|), and energy E ∼

√
s:

(see e.g. Giddings, Schmidt-Sommerfeld, Andersen).

Next-to-soft corrections probe unknown parts of this diagram.
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QCD meets gravity

Previous work on this topic focused on gravity only, including
possible string theory corrections.

Recent studies have used QCD methods to analyse gravity
scattering (Akhoury, Saotome, Sterman; Melville, Naculich,
Schnitzer, White).

Idea is to develop a common language, that makes the
structure of both theories clear.

Let us look first at QCD...
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Wilson lines and the Regge limit

The Regge limit can be described by two Wilson lines
separated by a transverse distance (Korchemsky,
Korchemskaya).

See also Balitsky; Caron-Huot.

1

2

3

4

b

Take particles of mass m,
such that

s � −t � m2.

b is the (2-d) impact
parameter (distance of
closest approach).
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In the asymptotic high energy limit, the incoming / outgoing
particles follow classical straight line trajectories i.e. they do
not recoil.

The only quantum behaviour they are allowed is to experience
a phase change.

However, gauge-covariance of the amplitude restricts this
phase to have the form (for each particle)

P exp

[
igs

∫
C
dxµAµ(x)

]
,

where C is the spacetime contour of the particle.

This is a Wilson line!
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Korchemsky & Korchemskaya approach

The momentum space amplitude is then given by

Ã =

∫
d2be−ib·q〈0|W(p1, 0)W(p2, z)|0〉,

where

W(p, z) = P exp

[
igsp

µ

∫ ∞
−∞

dsAµ(sp + z)

]
.

The momentum q is conjugate to the impact parameter, and
satisfies t ' −q2.

Can now calculate the position space amplitude at one-loop,
using dimensional regularisation.
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The answer is (in d = 4− 2ε dimensions)

A(1) =
g2
s Γ(1− ε)

4π2−ε
(µ2b2)ε

2ε

[
iπT2

s + T2
t log

(
s

−t

)
+

1

2

(
log
(
− t

m2

)
− iπ

) 4∑
i=1

Ci

]
+O(ε0),

where
T2

s = (T1 + T2)2, T2
t = (T1 + T3)2

are quadratic colour operators for pure s- and t-channel
exchanges; Ci the quadratic Casimir of particle i .

From the known properties of Wilson lines, we can
immediately exponentiate this!
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Position space amplitude

One then has

A = exp

{
K

[
iπT2

s + T2
t log

(
s

−t

)]
+ . . .

}
, K =

g2
s Γ(1− ε)

4π2−ε
(µ2b2)ε

2ε

There are two terms with non-trivial colour dependence:

(i) A t-channel term: ∝ T2
t log( s

−t ).

(ii) A pure eikonal phase: ∝ iπT2
s .

The former is responsible for Reggeisation of t-channel
exchanges:

− iηµν
q2
− > − iηµν

q2

(
s

−t

)α
The latter describes a spectrum of bound states (e.g.
positronium).

30 / 40



Eikonal phase and Regge trajectory

The eikonal phase comes from horizontal (crossed) ladder
diagrams, whereas the Regge trajectory comes from vertical
ladders.

(a) (b)

...
...

In QCD, the vertical ladders dominate.
It is known that horizontal ladders dominate in gravity: the
eikonal phase is enhanced by a factor s/(−t) w.r.t. the
Reggeisation term.
The Wilson line approach gives an elegant view on this.
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Wilson lines for gravity

First, we need to find appropriate Wilson lines for gravity.

Here, we mean specifically the operator describing soft
graviton emission.

The relevant quantity has appeared in various places
(Brandhuber, Heslop, Spence, Travalgini; Naculich, Schnitzer;
White):

exp

[
iκ

2

∫
C
ds ẋµ ẋνhµν(x)

]
.

For straight line contours xµ = xµ0 + pµs, this becomes

exp

[
iκ

2
pµ pν

∫
C
dshµν(x)

]
.

Closely related to its QCD counterpart!
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K& K approach for gravity

The Wilson line approach for the QCD Regge limit
(Korchemsky, Korchemskaya) can be ported directly to gravity.

The momentum space gravity amplitude is given by

M̃ =

∫
d2be−ib·q〈0|Wg (p1, 0)Wg (p2, z)|0〉,

where

Wg (p, z) = exp

[
iκ

2
pµ pν

∫ ∞
−∞

dshµν(sp + z)

]
.

Exponentiation of the one-loop calculation can be carried out
as before.
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Position space gravity amplitude

One finds

M = exp

{
−Kg (µ2b2)ε

[
iπs + t log

(
s

−t

)]
+O(ε0)

}
,

Kg =
(κ

2

)2 Γ(1− ε)
8π2−ε .

The eikonal phase wins as s
−t →∞, in contrast to QCD.

However, the structure of the result is basically the same, and
can be obtained by the procedure

gs →
κ

2
; T2

s,t → s, t; Ci → 0.

This is the BCJ double copy! (see also Akhoury, Saotome;
Sabio Vera, Campillo, Vazquez-Mozo, Johansson).
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Next-to-soft corrections

Diagrammatic study of Regge limit by Akhoury, Saotome,
Sterman.

Considered a light particle scattering on a black hole.

Next-to-soft corrections lead to a modifed eikonal phase:

χ→ χE + χNE,

where χNE ∝ Rs (Schwarzschild radius of black hole).

Correction corresponds to deflection angle of light particle
(see also D’Appollonio, Di Vecchia, Russo, Veneziano;
Bjerrum-Bohr, Donoghue, Holstein, Plante, Vanhove).
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Wilson line approach

Can also extend the Wilson line approach to next-to-soft level
(Lanen, Stavenga, White).

Has been applied to the Regge limit in both QCD and gravity
(Luna, Melville, Naculich, White).

General case of two massive particles.

In QCD, get a power-suppressed correction to the Regge
trajectory of the gluon.

In gravity, the correction to the NE phase corresponds to two
simultaneus deflection angles for the colliding particles (as
conjectured by Andersen, Schmidt-Sommerfeld, Giddings).

Previous results of Akhoury, Saotome, Sterman emerge as a
special case.

36 / 40



High energy scattering - summary

Next-to-soft corrections are relevant to transplanckian
scattering in gravity.

More generally, similar methods can be applied to understand
radiation from scattering black holes.

Full solutions for colliding shockwaves / black holes are not
always known.

The next-to-soft calculation allows us to build them up
perturbatively i.e. order-by-order in the deflection angle.

Methods exist for relating QCD and gravity results.
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Conclusion

(Next-to)-soft physics has a large number of applications, in
different areas of physics.

For hep-ph, hep-ex: increased precision for collider
observables.

For hep-th, gr-qc: transplanckian scattering in gravity,
radiation in black hole scattering.

Common languages for QCD and gravity (e.g. Wilson lines)
make underlying structures / common behaviour clearer.
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Open questions

Can we resum next-to-leading power (NLP) threshold logs?

Other applications in precision physics?

Do next-to-soft methods help in calculating radiation from
scattering black holes?

What are gravitational Wilson lines useful for?

What does anything in this talk have to do with BMS
symmetry?
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Thanks for listening!
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