Soft-theorem constraints on EFT's

Congkao Wen Queen Mary University of London

arXiv:1512.06801; arXiv:1605.08697; arXiv:1801.01496 + in progress

work with H. Luo; M. Bianchi, A. Guerrieri, Y.-t. Huang, C.-J. Lee; C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka

Symmetries of S-matrix and Infrared Physics Higgs centre, University of Edinburgh

- Applications of scattering amplitude program (here focus on soft theorems) to effective field theories:
 - Soft theorems are efficient tools to implement the symmetry constraints on EFT's. Systematical tools are the soft recursion relations.
 - Maybe more interestingly, soft theorems as first principle input to discover (new) EFT's.

- Amplitudes of Goldstone bosons or fermions satisfy soft theorems, reflecting the (spontaneously breaking) symmetries of theories.
 - Global internal symmetries: pions of chiral symmetry breaking, scalars in extended supergravity.
 - Spacetime symmetries: dilatons of conformal symmetry breaking, scalars of DBI for breaking of Poincare symmetry. Typically lead to soft theorems with higher orders.
 - EFT's of Goldstone bosons or fermions are highly constrained. For many well-known theories, the tree-level S-matrices are on-shell constructible.

Introduction Recursion relations from soft theorems	$\mathcal{N}=4$ SYM on Coulomb branch $\stackrel{\text{OO}}{_{\text{OOO}}}$	Born-Infeld theory 00000000 0	Conclusion and outlook
Outline			

- Soft recursion relations.
- Applications to the EFT of $\mathcal{N} = 4$ SYM on the Coulomb branch.
- New (multi) soft theorems, and the uniqueness of Born-Infeld theory.
- Conclusion and outlook.

Recursion relations from soft theorems

- The usual BCFW recursion relations cannot apply to EFT's, because of the bad large-z behavior.
- Soft theorems provide additional information, and lead to new on-shell recursion relations.
- Recursion relations will not only provide efficient computational tools, but also systematical ways of constraining EFT's.

Recursion relations from soft theorems

Soft BCFW shifts:

$$p_i \rightarrow (1-a_i z)p_i$$
, for all *i*.

- Preserves massless condition and momentum conservation, with constraints of $\sum_{i} a_i p_i = 0$.
- The limit $z \rightarrow 1/a_i$ probes the soft limits.

The residue theorems lead to on-shell recursion relations,

$$A_n(0) = \oint_{z=0} \frac{dz}{z} \frac{A(z)}{F_{\sigma}(z)} = \sum_i R_i$$

 $F_{\sigma}(z) = \prod_{i} (1 - a_i z)^{\sigma}.$

Recursion relations from soft theorems

- If all the residues are determined in terms of lower-point amplitudes, we have a recursion relation.
- Introducing $F_{\sigma}(z)$ is to kill the pole at $z \sim \infty$ if $A_n(z) \sim z^m$, with $m < n \sigma$.
- $F_{\sigma}(z)$ introduces additional poles, whose residues are known if A_n satisfies soft theorems,

$$A_n(\tau p_n)\big|_{\tau\to 0} = \sum_{i=q}^{\sigma-1} \tau^i(\mathcal{S}_i A_{n-1}),$$

where some soft factors S_i may just be 0.

Recursion relations from soft theorems

• With this setup, the reside theorems tell us

$$A_n = \sum_L A_L \frac{1}{P_L^2} A_R + \sum_i R_i^s \, .$$

Namely a higher-point amplitude is determined in terms of lower-point on-shell amplitudes from factorizations and soft limits.

- Many interesting EFT's are single-soft constructible: NLSM, special Galileon, DBI, conformal DBI, Volkov-Akulov theory, but not BI theory!
- Recursion relations are systematic ways of constraining EFT's: applications to $\mathcal{N} = 4$ SYM on the Coulomb branch.

non-renormalization from SUSY

• $\mathcal{N} = 4$ SYM on Coulomb branch: Consider the breaking $U(N+1) \rightarrow U(N) \times U(1)$, and focus on the low-energy EFT of U(1) sector,

$$\mathcal{L}_{\mathcal{N}=4\,\mathrm{SYM}} = -rac{1}{4}F^2 + f_4(g_{\mathrm{YM}}, N)rac{F_-^2F_+^2}{m_W^4} + f_6(g_{\mathrm{YM}}, N)rac{F_-^2F_+^4 + F_-^4F_+^2}{m_W^8} + \dots$$

- What are the functions $f_4(g_{\mathrm{YM}}, N), f_6(g_{\mathrm{YM}}, N), \ldots$
- SUSY constrains via amplitudes lead to non-renormalization: the "MHV" operators $F_{-}^2 F_{+}^{2\ell}$ are ℓ -loop exact.
- ℓ = 1 was a statement in [Dine, Sieberg, 97'], ℓ = 2, 3 were conjectured in [Buchbinder, Petrov, Tseytlin, 01'].

SUSY non-renormalization theorems

For this particular MHV sector of the EFT,

$$\mathcal{L}_{\rm MHV} = \sum_{q=1}^{\infty} 4^{q-1} \left(-\frac{\lambda}{2(4\pi)^2} \right)^q \frac{F_-^2 F_+^{2q}}{m_W^{4q}}.$$

It is an exact result, perturbatively and non-perturbatively.

- \blacksquare \mathcal{L}_{MHV} is in fact identical to BI theory for this particular sector.
- Beyond SUSY constraints? (Broken) Conformal symmetry and R-symmetry.

non-renormalization from soft theorems

- Coulomb branch N = 4 SYM has two kinds of Godestones: conformal symmetry and R-symmetry. Two soft theorems.
 - Conformal symmetry [Di Vecchia, Marotta, Mojaza, Nohle]

$$v A_n(\tau p_n) = \left(S_n^{(0)} + \tau S_n^{(1)}\right) A_{n-1} + \mathcal{O}(\tau^2),$$

soft factors $\mathcal{S}_n^{(0)}$ from scaling and $\mathcal{S}_n^{(1)}$ from special conformal transformation.

R-symmetry

$$v A_n(\ldots,\phi_n^I)\big|_{p_n\to 0} = A_{n-1}(\ldots,\delta_I\phi_i,\ldots) + \mathcal{O}(\tau)$$

 ϕ_i can be dilaton φ or R-symmetry Goldstone ϕ^J : $\delta^I \varphi = \phi^I$ and $\delta^I \phi^J = -\delta^{IJ} \phi^I$.

- - Explore the constraints systematically using soft recursion.
 - The EFT of N = 4 SYM on the Coulomb branch can be naturally separated:

$$\mathcal{L}_{\mathcal{N}=4\,\mathrm{SYM}} = \mathcal{L}_{\mathrm{CDBI}} + \mathcal{L}_{\mathrm{Quantum}}$$

 $\mathcal{L}_{\rm CDBI} \mbox{ is the conformal DBI (D-brane in AdS background), which is uniquely fixed by the soft theorems of (breaking) conformal symmetry$

$$\mathcal{L}_{ ext{CDBI}} = -rac{1}{\phi^4} \left(\sqrt{1 + \partial \phi \cdot \partial \phi} - 1
ight).$$

- Combine with the SUSY non-renormalization theorems:
 - Less than 8-derivative terms (with any number of fields) in $\mathcal{L}_{\rm Quantum} = 0.$
 - 8-derivative terms in L_{Quantum} are fixed up to one constant (which can be non-trivial function of coupling).
 - \blacksquare 10-derivative terms in $\mathcal{L}_{\rm Quantum}$ are fixed up to two constants.

 Born-Infeld theory is the effective theory of a single D-brane in flat space

$$\mathcal{L}_{\mathrm{BI}} = 1 - \sqrt{\mathrm{det}(\eta_{\mu
u} + \mathcal{F}_{\mu
u})}\,.$$

Low-energy expansion of string amplitudes.

- It is closely related to DBI theory and Volkov-Akulov theory.
- CHY formulas, or twistor-string-like formulas.

Introduction Recursion relations from soft theorems $\mathcal{N} = 4$ SYM on Coulomb branch Born-Infeld theory Conclusion and outlook Born-Infeld theory in 4D Born-Infeld theory in 4D

- - BI theory enjoys the U(1) duality symmetry. Satisfy Noether-Gaillard-Zumino (NGZ) identity,

$$\left((\partial_t L)^2 - (\partial_z L)^2 - 1\right)z - \left(2(\partial_z L)(\partial_t L)\right)t = 0$$

$$t = F^2/4$$
 and $z = F\tilde{F}/4$.

- In 4D, only helicity conserved amplitudes, A(++...+--...-)
- There are infinity many such kind duality-symmetric theories, such as Bossard-Nicolai model. All have only the helicity conserved amplitudes.
- What is special about BI theory? Soft theorems.

Introduction Recursion relations from soft theorems $\mathcal{N} = 4$ SYM on Coulomb branch Born-Infeld theory Conclusion and outlook Born-Infeld theory in 4D Born-Infeld theory in 4D

In the single-soft limit, the amplitudes go as

$$A(p_1,\ldots,p_{n-1},\tau p_n)\sim \mathcal{O}(\tau)$$

But $\mathcal{O}(\tau)$ behavior is trivial because one derivative per field.

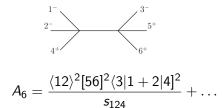
We find that in 4D, BI theory behaves non-trivially in the multi-chiral soft limits

$$\mathcal{A}^{\mathrm{BI}}(au\lambda_i, ilde{\lambda}_J)\sim\mathcal{A}^{\mathrm{BI}}(\lambda_i, au ilde{\lambda}_J)\sim\mathcal{O}(au),$$

for all $i \in P_+$ (positive photons) and $J \in P_-$ (negative photons).

The multi-chiral soft theorems uniquely fix the vector theory (with this power counting) to be BI theory. Introduction Recursion relations from soft theorems $\mathcal{N} = 4$ SYM on Coulomb branch Born-Infeld theory Conclusion and outlook Born-Infeld theory in 4D Born-Infeld theory in 4D

- 4pt amplitude: $\langle 12 \rangle^2 [34]^2$.
 - 6pt helicity-non-conserved amplitudes vanish.
 - 6pt helicity conserved amplitude from factorizations



A₆ already behaves as O(τ) in the multi-chiral soft limit. It is consistent with the fact that no contact term at 6pts, (12)(23)(31) + Perm. = 0.

Diagrams and amplitude of 8pts

Now there is an 8pt contact term with an unfixed coefficient,

$$k \langle 12 \rangle^2 \langle 34 \rangle^2 [56]^2 [78]^2 + \dots$$

• We find $A_8 \sim \mathcal{O}(\tau)$ in multi-chiral soft limits, iff k = -1.

 One can proceed similarly for higher points or systematically using recursion relations.

On-shell recursion relations from multi-chiral soft theorems:

$$\widetilde{\lambda}_i o \widetilde{\lambda}_i (1-z)$$
 and $\lambda_k o \lambda_k + z\eta_k$,

for $i = 1, \ldots, \frac{n}{2}$ and k = n - 1, n. To ensure momentum:

$$\eta_{n-1} = -\frac{1}{[n-1\,n]} \sum_{i=1}^{n/2} [i\,n]\lambda_i, \ \eta_n = \frac{1}{[n-1\,n]} \sum_{i=1}^{n/2} [i\,n-1]\lambda_i.$$

Then Cauchy residue theorems

$$\int \frac{dz A(z)}{z(1-z)} = 0,$$

leads to on-shell recursion relations.

- There is no direct symmetry understanding of the multi-chiral soft theorem yet.
- Bonus relations: in fact A_n ~ O(τ²) under multi-chiral soft limits!
- The multi-chiral soft theorem can be understood by the fact that BI is supersymmetrically related to Volkov-Akulov theory or DBI theory.

BI theory is the vector sector of breaking N = 2 to N = 1.
 SUSY Ward Identity:

$$\begin{split} \tilde{\lambda}_{1}^{\dot{\alpha}} A(1^{-}2^{-} \dots n/2^{-}(n/2+1)^{+} \dots n^{+}) \\ &= -\sum_{i=n/2+1}^{n} \tilde{\lambda}_{i}^{\dot{\alpha}} A(\psi_{1}^{-}2^{-} \dots n/2^{-}(n/2+1)^{+} \dots \psi_{i}^{+} \dots n^{+}). \end{split}$$

The amplitudes on the RHS go as $\mathcal{O}(\tau)$ term by term, as $\lambda_i \rightarrow \tau \lambda_i$ for $i = n/2 + 1, \dots, n$.

BI theory actually has bigger symmetry, as $\mathcal{N} = 4 \rightarrow \mathcal{N} = 2$. SUSY Ward Identity:

$$\begin{split} \tilde{\lambda}_{n}^{\dot{\alpha}}\tilde{\lambda}_{n}^{\dot{\beta}}\mathcal{A}_{n}(1^{+}\dots(\frac{n}{2})^{+}(\frac{n}{2}+1)^{-}\dots n^{-}) \\ &=\sum_{i=1}^{n/2}\tilde{\lambda}_{i}^{\dot{\alpha}}\tilde{\lambda}_{j}^{\dot{\beta}}\mathcal{A}_{n}(1^{+}\dots\bar{\phi}_{i}\dots(\frac{n}{2})^{+}(\frac{n}{2}+1)^{-}\dots\phi_{n}) \\ &+\sum_{i\neq j}^{n/2}\tilde{\lambda}_{i}^{\dot{\alpha}}\tilde{\lambda}_{j}^{\dot{\beta}}\mathcal{A}_{n}(1^{+}\dots\psi_{i}^{1}\dots\psi_{j}^{2}\dots(\frac{n}{2})^{+}(\frac{n}{2}+1)^{-}\dots\phi_{n}) \end{split}$$

It leads to $A_n \sim \mathcal{O}(\tau^2)$ behavior, for $\lambda_i \to \tau \lambda_i$ with $i = 1, \ldots, n/2$.

Introduction Recursion relations from soft theorems N = 4 SYM on Coulomb branch OO = 0 Conclusion and outlook OO = 0 Born-Infeld theory in general D

Born-Infeld theory in general D

Dimension reduction uniquely fixes the theory.

At 4 points

$$\mathcal{L}_4 = c_1 \langle FFFF \rangle + c_2 \langle FF \rangle^2,$$

Requiring dimension reduced scalars behaves as $\mathcal{O}(\tau^2)$, relates $c_2 = c_1/4$.

At 6 points

$$\mathcal{L}_6 = d_1 \langle \textit{FFFFF} \rangle + d_2 \langle \textit{FFFF} \rangle \langle \textit{FF} \rangle + d_3 \langle \textit{FF} \rangle^3.$$

All the coefficients are uniquely fixed by the requirement of $\mathcal{O}(\tau^2)$ behavior.

Introduction Recursion relations from soft theorems N = 4 SYM on Coulomb branch Born-Infeld theory Conclusion and outlook $00 \\ 0$

Conclusion and outlook

- On-shell recursion relations from soft theorems: soft bootstrap. [Elvang, Hadjiantonis, Jones, Paranjape, 18']
- Its application to EFT of $\mathcal{N} = 4$ SYM on the Coulomb branch.
- New soft theorems for BI theory, can be understood from SUSY breaking.
- Uniqueness of BI theory from dimension reduction.

Conclusion and outlook

- It would be interesting to understand the symmetry of multi-chiral soft theorem, without referring to SUSY.
- More new soft theorems, and search for and rule out new EFT's. Apply the ideas to fermionic theories, vector theories with higher derivatives, etc.
- Combining soft theorems with other constraints, such as SUSY.

		Conclusion and outlook
	00 000	

Thank you!