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Hadron spectrum from QCD Lattice
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Fig. 2. The light hadron spectrum of QCD. Horizontal lines and bands are the experimental values with their
decay widths. Our results are shown by solid circles. Vertical error bars represent our combined statistical and
systematic error estimates. r, K, and E have no error bars, because they are used to set the light quark mass,
the strange quark mass, and the overall scale, respectively.
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Similarity of atomic and hadronic spectra

= Positronium = Charmonium
o Mass [MeV
Binding energy QED [A ] QCD
[meV] 41001~ y'"'(4040)
4 lonisationsenergie Py~ 3940)
e e e e e g'e 3900 3P (~ 3880) D, (~3800)
25 22, 3D, L% P (~3800) D
= - 33D1 " . 0 - 2 3
_1000 218 238 \PL1-‘ ;z% _?’ST _____ z'_;;;% 21 ________ o _Dz_
55— | ~ 600 meV 3700~ o = DD
¢
e 10eV h(3525) Z((335515(f))
3500 —
74(3415)
-5000
3300
1S,
-7000F 3100k v (3097)
17(2980)
29001
_ & 4 g
V(r)=—— Vir)=cr— -—

3 r

Paul HoyerECT* 2013



PQCD even in soft phenomena?
- KK 8%  m(p)—2m(K)=30MeV
¢(1020)

7T 15% m(¢)—3 m(x) =610 MeV

S u

Are soft gluons

—> (ZI suppression of:
weakly coupled ¢

S u

ingle gluon exchange explains the spin nden A.De Rujula, H. Georgi,
Single gluon exchange explains the spin dependence of S'L Glashow, PRD 12

baryons, in particular the A - £ mass difference. (1975) 147

4 o

Vir)=cr— -—

Quarkonium models: 3T
O (ozso)/ ™ O (as)

Is it conceivable that g (0) is small enough to make PQCD meaningful?
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Freezing of os in the infrared
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Pinch Technique
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J. Rodriguez-Quintero,
PRD 80 (2009) 085018
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T. Gehrmann, M. Jaquier,
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G. Luisoni,

Eur. Phys. J. C 67 (2010) 57
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Atoms from QED: (Should be) Textbook stuff

Bound state poles do not appear in any single Feynman diagram

— they are generated by the divergence of the perturbative sum

i

G IR T o B

— 4+ ...
(p1 + p2)? — M?

e Which diagrams should be included 1n the infinite sum?

e How come the QED series diverges for arbitrarily small o ?

®* What 1s the wave function of moving atom? A0 Al

Y - o
M. Jarvinen, arXiv:hep-ph/0411208 % :
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Dichotomy of
Proton structure

8o
@

Parton Picture Quark Model
DIS and QFT require an The hadron spectrum reflects only
infinite # of constituents qq or Qqq degrees of freedom

How can QCD combine
multiparton, relativistic
Fock states
with a
valence quark spectrum?

—> Consider the Dirac equation
Paul HoyerECT* 2013



The Dirac equation from Feynman diagrams

As m> — oo the Dirac equation for particle 1 emerges from the sum of all
uncrossed + crossed ladder diagrams:

m2

Note: The kernel of a Bethe-Salpeter equation
would have to be of infinite order!

time
e

Since Coulomb exchange ¢ /é

1S Instantaneous, crossed
diagrams correspond to =
Intermediate states with

particle pairs.

Dirac bound states have an infinite number of pairs,

— but the spectrum reflects a single particle dof.
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Features of the Dirac wf in D=1+1

In D=1+1 the Dirac matrices may be represented as 2x2 Pauli matrices:

| — 010, + Le?|x| + mos] { Zigg } - M{ igg }

The wi’s ¢@(x), x(x) are given by 1F1-functions. For large m, they approach
the Schrodinger wi’s when V(x) << m.

Pair contributions are
manifest for V' (z) = %ezm > 2m

W{‘ v (2) We were not taught that:
075 | mmm=  Dirac ¢(x) For polynomial potentials the
T = =  Schrodinger p(x) Dirac wave function is not
0.5} normalizable, and the mass
0.25} spectrum M is continuous.

: Its normalizability for the
-0.25} V(r) = 1/r potential in D=3+1
05 1S an exception.

Paul HoyerECT* 2013 V=2m Plesset, Phys. Rev. 41 (1932) 278
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The Dirac Electron in Simple Fields*

By MiLtoN S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polynomial of any degree
in x, a continuous energy spectrum characterizes the solutions. 1f the potential is a
polynomial ot any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energy numerically less than the rest-energy are barred. When the potential
i1s a polynomial of any degree in 7, all values of the energy are allowed. For poten-
tials which are polynomials 1n 1/7 ot degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.
J. Math. Oxford (2), 12 (1961), 227.
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Oscillations as x — « : The Klein-Gordon case
(10, — eA,)(i0" — eA*) —m?] p(z)e ™Mt =0

eA’(x) =V (z) = 1€’z Al =0

M? —m? =2V ()M + V()] p(z) + ¢"(z) = 0

r00: (@) ox exp(ics? /4)
NR reduction:  V(z) < m and M =m+¢

2me — 2mV (z) + 02] onr(z) =0

Normalizable (Airy function) N B % 1/2_3/2
~ solution of the Schrédinger equation p(x) ~ exp ( g Mt
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Hamiltonian approach to the Dirac equation

Consider the QED Hamiltonian with a fixed external field 4°(x)

Ht) = / Pad(t,2)| — iV -y +m+ " Aa)] b(t, z)

In terms of its vacuum eigenstate H |0) 4 = 0

/ﬁeld operator
construct the Dirac state M, t) = / d?’mw:& (t, ) pq(x)]0) 4
This is an eigenstate of H, c-numbered spinor

HIMLG) = [, [ #2060 o(@)]0.a = M1
provided ¢(x) satisfies the Dirac equation:

=iV -y +my” 4 eAl(x)] p(x) = Mp(x)

Paul HoyerECT* 2013
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Field theory: QED in D=1+1
Action of QED; in A' = 0 gauge:
S = / x|~ §(014°) (9" A%) + vt (2)1° (i — m — er° A) ()|
Equation of motion for 4° (Gauss’ law):  —92 A% (z) = eypTy)(x)
allows to express A9 in terms of the fermion field:

AP (z) = — Q/dyl\x —y' T (2, yh)

Eliminating A° in the QED; action gives

2

S = / Pzt ()7 (i — m) () + = / e d?y6(z° —y")ip(e)lat —ytlvTe(y)

From this we may determine the Poincare generators of QED»:
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Poincaré generators of QED in D=1+1

P”(:L'O) _ /dmlp“(ajo :1:1) Generators of time (u=0)
’ and space (u=1) translations
M (2Y) = /da:lf\/lm(:vo,xl) Boost generator
_ . AN (32
P = d(~ i o+ m)y = % [y T, ahla! - g oty
_ <
Pl = (- 3ir"01)y

The boost density has the expected form: AP = 0Pl — 1PV

:PO,M()l: ZPl

The Lie algebra 1s satisfied [ PO pl} —0
(only for the linear potential): ’ pl 7 MO —

Paul HoyerECT* 2013
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f f bound states in D=1+1

A state with two fermions of energy £ and 1-momentum P! =P :

|E, P) = /dwldxg U(t, 1) exp | 2iP(x1 4+ x2) | ®(z1 — 22)Y(, 22)|0)

In analogy to the Dirac case take ~ P° 0) = H|0) =0

This is a crucial approximation which allows a simple bound state solution.

Later I shall motivate it as being correct at O(e), whereas perturbative pair
production is of O(é&?).

Bound state has

It 1s now easy to check that Pl \E , P > = P ‘E , P > momentum P

Stationarity in time f)o‘ E,P)=FE|FE, P)

defines the bound state equation for ®(x; — x2). With x = x| — x2 it reads:

Paul HoyerECT* 2013
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E—V(x)]o(x)

7/83; {0'1, CID(:L‘)} -+ [—%P(fl -+ Mmos, (I)(Qf)]

where V(z) = 2e’|z| and 7’ =03, ' =ioa, AV =0y

Here the CM momentum P 1s a parameter, thus £ and ® depend on P.

It 1s a welcome surprise that the state 1s covariant under boosts:

|E +déP, P+ déE) = (1 — idéMOY)|E, P)

This holds only for a linear potential and ensures that F/ (P ) = \/ P2 + M?
The P-dependence of the wave function @ can be expressed as:
@P(S) — 60‘1C/2q)(P:O) (S>6—O'1C/2

ds P

dr = 2 -
where x E—V(z) and tanh ¢ v

Paul HoyerECT* 2013
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Solutions of the bound state equation (D=1+1, mi=my)

e(s
The “invariant length” can be expressed as s = % (M? —11%)
e

where the “kinetic 2-momentum”is [l(z) = (F — V (x), P)
and thus [° = g = (F — V)2 — P?=M?—-2EV 4+V?

Expanding the 2x2 wave function as ® = Oyt+c1D+c,Dr+0303 the bound
state equation reduces to two coupled, frame-independent equations:

210, ®,(0) = Do) 210, By (0) — [1 - 4_7”2] 5, (o)

o
with the general solution

D1(0) = oe /2 a1 Fi(1—im?®,2,i0) + bU(1 —im?,2,i0))]

If b # 0 the full wt @ 1s singular at 6 = 0. Requiring b = 0 the spectrum 1s discrete.

C.f. the Dirac equation: All solutions are regular, hence the continuous spectrum.

Paul HoyerECT* 2013
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Properties of the bound state solutions (D=1+1, mi=m)

Wy
ffbar wf ®@1(x) in 08 o) (=)
nearly NR case, 00 "o e (=)
cf. Schr. wf. p(x). -

No parity degeneracy in m — 0 limit

Mass spectra for m = 0.1, 4.0 Wits. for M=0 solutions

19 ¢ (M=0)

10 20 30 40 50 60
M} — (2m)?
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Solutions of the bound state equation (D=1+1, mizmy)

Comparisons of ground and excited state wave functions

in the CM and in a moving frame.

Moves away in IMF (P — oo limit)

D |+ [
1.2 '|
0.8 l ,\\l
0.6
o4l | m=3.15 |
0.2} \ ’
7 5 10 20 25y 30

15
(b)

mi=1.0 my=1.5
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Quark - Hadron duality (D=1+1, mi=m3)

The wave functions of highly excited bound states can be normalized by
comparison with free parton loop contributions to current propagators.
All currents give consistent results.

L ~

kP -

—  |[Do(x=0)]2 = |D1(x=0)2= /2

Consistency with the parton model: At large M, and for separations x

such that V(x) << M, the Fock states reduce to an ff pair with positive
energy and momenta k = +M/2 (in the CM).

Paul HoyerECT* 2013



Electromagnetic form factors

Taking the bound states as external states we may define as usual
Fhy(x) = (B(Py), outlj* (x) |A(P,), in) = &P =Pw (B(By), out|j*(0) |A(P,), in)

where in (out) implies t = — oo (t = + ).

Using the BSE we may verify gauge invariance:

Optp(x) =0

Paul HoyerECT* 2013
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Parton distributions (D=1+1, mi=m)

Consider DIS in the Bj limit through transition form factor for y"'+ A — B
2 o 1
L Bj

Hence can use asymptotic expression for Op

Parton distribution:

1 1 2 2\ 12
) — F
f () 8rm?2 1y, Q°Fap(Q7)
lim Q*Fap =
o Q" Fap
. > . % ; 1 v 2m2
—8V 27‘(’/0 dv sin v [Cos ( n )Z(I)OA(Ua)_Sln (szj)q)m(Ua) (1+IBjO'a)j|

(Y
where 0, = M? — —/—
Paul HoyerECT* 2013 L B
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Numerical result for the parton distribution

The parton distribution of the ground state has a sea component at low m/e :

m/e =10.1
xg;if (xg;j) xg;f (xp;)
10 (a) L (b)
St 12¢
10}
6.
4}
2“&
x x x x ° .. . M M " . a Xp;
02 04 o6 _os 1o0°® 0.001 00l 00501 ™

(log scale in x5))

The red curve 1s an analytic approximation, valid in the xz; — 0 limit.

Paul HoyerECT* 2013
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Atomic binding by the classical Coulomb field

At lowest order in o the Schrodinger eq. :

A
)
for an atom can be obtained also inserting ~ ,—;f\
the classical EM field in the Hamiltonian: \ g//“ x
x \\//
b@%/
AL

~ViA @) = e [0°(x — @1) — 0% (x — @2)]

N
0 Qo Q
eA ($;$1,w2) — |CE—CU1‘ o |CI3—CU2| AY depends on xi, x>
The potential in the BSE = Schrodinger equation 1s then
Qo
V(e —xg) = L[eA(x = x1) — eA(z = x2)| = —
T — T

Pair production 1s suppressed due to the NR limit.

Paul HoyerECT* 2013
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Non-vanishing boundary condition for classical field

Gauss’ law —V2A0(:1:) =e [53(:15 —x) — 8 (x — :1:2)}

has also homogeneous solutions (specified by the boundary condition)

“ ° - eA%l - x

A2 = o] e

where A 1s a constant and the unit vector / may depend on x1, x> . This adds a
term to the potential

VA(wl — .CBQ) — %6A2€ y (331 — 332)
Choosing I || x1 — x2 gives the linear confining potential

VA(ZBl — 2132) — %6/\2 ‘331 — 332|
which is of O(e) and thus leading compared to the O(a) perturbative potential.

Note: Neutral state (e1 = — e2) required for space translation invariance!

Paul HoyerECT* 2013
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Pair production effects

The Hamiltonian can create neutral, pointlike pairs. For these, VA = 0, hence

H |0) =0 This was used in the BSE derivation above (D = 1+1).

The bound states derived similarly in D=3+1 appear to be boost covariant,

again only for a purely linear potential.
A u
S u
K T
S u *0
& T

The general picture seems to fit
with dual diagram phenomenology:

Paul HoyerECT* 2013
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ud meson states in in QCD

Locp = —3FMFL, + 30760 — gATi g — my)yy

FIY = ML= 0" AL — g Al AL

Bt =0)= [ @dua v (= 0,905 1, v)0 (= 000

Under time-independent gauge transformations ¥ (¢, ) — U(x)y(t, )
the wave function transforms as

X(Y1,92) — Uy)x(y1,92) U (ys)

_ 5AB

In a gauge where XAB (Y1, Y2) X(Y1,Ys)

only the diagonal color fields AY with a = 3,8 can be nonzero.

Since f,38 = 0 the commutator terms do not contribute at O(g).

Paul HoyerECT* 2013
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Fock states with quarks of color C give the EOM for Ag

~ViA(x) = 9T, [0°(x — @1) — 8 (2 — @2)]

A TEC 1 1
Ag(w;w17w27c):A2€a'w+g . ( ) (CL:3,8)

“ A7 z— x| |z — o

1 5w 1., [ 5 L o co; 2
—4%:/d LUFMVFC'? — Z [§Aa/dw+§gAaTa ga($1—$2)+0(g)

a=3,8

A = Z Ai must be independent of x1, x2 , and ¢, | 1 — a2
a=3,8

Determining As/Ag from stationarity it turns out that
the potential 1s independent of the quark color C,

2gA?
3v/3

and the bound state equation for the color singlet wave function

has the same form as in QED.
Paul HoyerECT* 2013
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uds baryon states in in QCD

£t =0) /H d?’y] ua1 (t=0 yl)@b (t =0 92)%043 (t=0,93)XaBE " (Y1, Y2, ¥3)[0)R

In a gauge where

o120 . 1090
XABC 3(3317332,333) = eABCX ©° 3(1‘1,%‘2,3@3)

the relevant gauge fields are, for quark colors ABC = 123

A 1 1 1
Az {w;}, ABC =123) = A205 z+ L — =
A 1 1 1 1
Ad(x; {x;}, ABC =123) = AZ/l5-x+ J ( + — 2 >
(@ {2} ) e A7 24/3 \ | — 1| | — a2 lx — 3|
and the interference term of O(g) in the action 1s

A? A2
5123—96323 ( 1—332) - J 8£8 (331—|—332—2£133)

int |6\/§

and 1s stationary for

Paul HoyerECT* 2013



U3 || @1 — o, ls || &1 + T2 — 23

S R
A3 lx1 + oy — 23]

For different colors ABC = 213, etc., the result 1s given by x1 <= x2 , efc.

When expressed in terms of the universal strength A4 = § : A4
the potential obtained for stationary action is a

the same for all color choices ABC, a=3,8

V2gA?

V(z1, 2, T3) = 33 \/($1 —x2)? + (T2 — x3)? + (T3 — x1)?
and the bound state equation for the color singlet wave function 1s

VP (=iV-y;+my)] x = (E—V)x

3
]:

Paul HoyerECT* 2013
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Absence of gluon distribution at low Q? ?

1.2

QZ =10 Gevz i A M Cooper-Sarkar 2 )
6 —  Lxiv09014001 Q=1 GeV
MSTW2008 (NNLO) — - -

T fp(T) - — ZEUS NLO QCD fit

ol vl i sl
10~ 103 102 10-! 1
X
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Summary

e Hadron phenomenology encourages the search for an analytic approach.

e Relativistic states with an co number of constituents can be described by
inclusive, “valence” wave functions. Cf: Dirac wave function.

e Need a perturbative expansion: os = 0.5 should freeze in the infrared.

e A non-vanishing boundary condition in Gauss‘ law for AY provides an
O(as") linear potential.

e The O(0s?) states are Poincaré covariant (probably also in D = 3+1).

e Pertubatively expand around the O(as”) gqgbar, qqq “in” and “out” states.
e Form factors are gauge invariant, and duality is OK.
e Parton distributions have a sea component.

e Standard color neutral mesons and baryons emerge. ’

AA

Much exploring remains!
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