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Hadrons are successfully classified in terms of the properties of non-relativistic qq̄ and qqq bound
states. This is remarkable, since relativistic states do not have a fixed number of constituents, nor
are the quark spins and orbital angular momenta separately conserved. For heavy quarkonia even
the spectra are strikingly similar to those of atoms. Motivated by these and related observations
we recall in these lectures the physics of QED bound states and the derivation of atoms from first
principles in QED. The aim is to scrutinize whether any possibility exists to apply analogous and
rigorous methods to relativistic hadrons, taking into account their novel features of confinement and
chiral symmetry breaking.
Bound state poles in QED amplitudes are generated by the divergence of an infinite sum of Feynman
diagrams. The sum is required because one perturbs around free (in and out) electrons, unaccom-
panied by their electromagnetic fields. In effect, the sum of ladder diagrams builds the atomic −α/r
potential required by the field equations of motion. In QCD, without the guidance of an expansion
in αs, we do not know how to perform such a summation. However, any sum should give a field
that is consistent with the equations of motion and Poincaré invariance. This allows the addition
of a linear Coulomb field for neutral states, which could be relevant for QCD.
After a brief review of high precision calculations of atomic spectra I show explicitly how the
Schrödinger equation is obtained at lowest order in the atomic rest frame. This is then generalized
to a frame where the atom is in relativistic CM motion. Equal time wave functions have a dynami-
cal frame dependence, which provides a quantum analog of classical Lorentz contraction. From the
sum of Feynman diagrams that generate the Dirac equation we see that Dirac bound states of an
electron include Fock states with any number of e+e− pairs. The meaning of the apparently single
electron Dirac wave function is illuminated by considering the bound state as an eigenstate of the
Hamiltonian. This also helps to understand why the solutions of the Dirac equation in a linear
potential cannot be normalized, a fact that has been known for a long time but largely ignored.
...
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I. INTRODUCTION

Bound state physics is omitted from many textbooks on relativistic field theory. Introductory courses in quantum
mechanics, on the other hand, typically begin by postulating the Schrödinger equation, and then solve it for atomic
wave functions and binding energies. The wave functions depend exponentially on the fine structure constant α, the
small parameter of QED perturbation theory. While scattering amplitudes typically are calculated from Feynman
diagrams order by order in α, we need to sum an infinite series of diagrams to find bound states. One of the aims of
these lectures is to clarify the physical reason for this feature of bound state calculations.

The Schrödinger equation gives only the lowest order (in α) approximation of atomic binding energies. In 1951
Salpeter and Bethe [1] derived a formally exact and Poincaré covariant bound state equation, which has formed the
basis of many calculations of atomic spectra [2]. The Bethe-Salpeter wave function of, e.g., a positronium bound state
|e+e−, P 〉 that has CM momentum P is defined as

ΦPαβ(x1 − x2)e−iP ·(x1+x2)/2 ≡ 〈Ω| T
{
ψ̄β(x2)ψα(x1)

} ∣∣e+e−, P
〉

(1.1)

where ψ(x) is the electron field operator and |Ω〉 is the vacuum state. The trivial dependence on x1 + x2 is specified

by translation invariance since the bound state is a momentum eigenstate, P = (
√
M2 + P 2,P ). The positronium

state can be expanded in terms of its complete set of Fock states

|P 〉 =

∫
d3x1 d

3x2 φ
P
e+e−(x1,x2)

∣∣e+e−, P
〉

+

∫
d(· · · )φPe+e−γ(· · · )

∣∣e+e−γ, P
〉

+ . . . (1.2)

Since the Heisenberg and Schrödinger pictures merge at t = 0 the Fock wave functions φ are equal-time wave
functions. Correspondingly, the Bethe-Salpeter wave function (1.1) equals the e+e− Fock state wave function φPe+e−
when x0

1 = x0
2.

The Bethe-Salpeter equation (BSeq) is in momentum space of the form

Φ(p) ≡
∫
d4xΦ(x)eip·x = S(p)

∫
d4q

(2π)4
K(p, q) Φ(q) (1.3)

where S(p) is a two-particle propagator and K is the interaction kernel. By iterating this equation one obtains
contributions with higher powers of K and thus of α. At lowest order the kernel K is given by single photon
exchange.

It turned out to be difficult in practice to calculate higher order corrections to bound state energies from the BSeq
(1.3). The wave function cannot be expressed in closed form even when only the lowest order kernel is used. However,
because the equation involves two functions S and K, there is a freedom in choosing either one, without affecting the
validity of the equation [3]. This is seen as follows.

LetGT be the Green function for a 2→ 2 scattering process with the external propagators truncated. The perturbative
expansion of GT in α may be calculated using the standard Feynman rules. We then define a Dyson-Schwinger type
equation by

GT = K +K SGT (1.4)

where the products imply convolutions over four-momenta similar to that in (1.3). This equation is valid provided
the kernel satisfies

K = GT (1 + S GT )−1 = GT −GT S GT + ... (1.5)

Thus the “propagator” S may in fact be chosen freely. The expansion of K in α follows from the expansions of S and
GT . The non-truncated Green function G is given by

G ≡ S + S GT S = S + S K G (1.6)

P G
P 

0  En n
n n

_

FIG. 1: Bound states appear as poles in scattering amplitudes.
Unitarity requires that the residue factorizes into a product of
incoming and outgoing wavefunctions.

As a consequence of unitarity the residues of the bound
state poles of G factorize into a product of wave func-
tions for the initial and final state (Fig. 1),

G→ ΦnΦ̄n
P 0 − En

as P 0 → En (1.7)

where P is the CM momentum of the bound state and
En its energy. Substituting (1.7) into (1.6) the BSeq
(1.3) follows. With a suitable choice of the propagator S analytic expressions for the wave functions are obtained
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when the lowest order kernel is used in the BSeq. These solutions facilitate calculations of higher order corrections to
the binding energies [2].

The wide range of possibilities in the choice of a BSeq motivated a search for an optimal approach selected by
physical arguments. The perturbative expansion relies on the non-relativistic nature of atoms, v/c ' α � 1. This
suggested the use of an effective QED Lagrangian called NRQED [4], which is essentially an expansion of the standard
Lagrangian in powers of p/me. At the expense of introducing more interactions the NRQED Lagrangian allows to
use non-relativistic dynamics, which is of great help in high order calculations [5]. The probability of finding high
relative momenta, p ∼ me, in positronium was estimated to be α5 ∼ 10−11, making NRQED very efficient.

The continuous development of theoretical and experimental techniques have allowed precision tests of QED using
bound states. For example, the energy difference ∆E between orthopositronium (JPC = 1−−) and parapositronium
(JPC = 0−+), expressed in terms of ∆ν ≡ ∆E/2π~, is calculated using NRQED methods to be [6]

∆νQED = meα
4

{
7

12
− α

π

(
8

9
+

ln 2

2

)
+
α2

π2

[
− 5

24
π2 lnα+

1367

648
− 5197

3456
π2 +

(
221

144
π2 +

1

2

)
ln 2− 53

32
ζ(3)

]
−7α3

8π
ln2 α+O

(
α3 lnα

)}
= 203 392.01± 0.46 MHz. (1.8)

which is about 3σ from the experimental value, ∆νEXP = 203 389.10± 0.74 MHz [7]. The appearance of lnα in (1.8)
demonstrates that bound state perturbation theory indeed differs from the usual expansions of scattering amplitudes.

The successes of QED have inspired the use of analogous methods for the other interactions. In particular, Bethe-
Salpeter and Dyson-Schwinger equations have been extensively applied in QCD [8]. Viewed as non-perturbative
equations they give exact relations between Green functions but do not close – an infinite set of functions are coupled
to each other. Models based on judicious truncations have allowed studies of spontaneous chiral symmetry breaking
and been successfully compared to hadron properties deduced from data and lattice calculations.

Effective theories analogous to NRQED have been formulated for heavy quarks with mass mQ � ΛQCD, and used
to describe QQ̄ bound states [9]. These methods are applicable in the limit where the quarkonia have small enough
radius for perturbative gluon exchange to dominate over the confining interaction.

The aim of these lectures is foremost to gain a basic understanding of bound state physics through QED: Why do we
need to sum an infinite set of Feynman diagrams? Which diagrams sum to the Schrödinger equation, and how do we
get the Dirac equation? Is it conceivable that we could apply analogous methods to hadrons, the relativistic bound
states of QCD? Our only first-principles (model independent) approach to hadrons is presently provided by numerical
lattice gauge theory. As shown in Fig. 2 [10], lattice calculations have been very successful, demonstrating that QCD
also describes soft hadronic phenomena.
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Fig. 1. Pion mass dependence of the nucleon (N ) and ! for all three values of the lattice spacing. Left panel:
masses normalized by M", evaluated at the corresponding simulation points. Right panel: masses in physi-
cal units. The scale in this case is set by M" at the physical point. Triangles on dotted lines correspond to
a ≈ 0.125 fm, squares on dashed lines to a ≈ 0.085 fm, and circles on solid lines to a ≈ 0.065 fm. The points
were obtained by interpolating the lattice results to the physical ms (defined by setting 2M2

K − M2
π to its phys-

ical value). The curves are the corresponding fits. The crosses are the continuum extrapolated values in the
physical pion mass limit. The lattice-spacing dependence of the results is barely significant statistically, despite
the factor of 3.7 separating the squares of the largest (a ≈ 0.125 fm) and smallest (a ≈ 0.065 fm) lattice spac-
ings. The χ2/degrees of freedom values of the fits in the left panel are 9.46/14 (!) and 7.10/14 (N ), whereas
those of the fits in the right panel are 10.6/14 (!) and 9.33/14 (N ), respectively.
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Fig. 2. The light hadron spectrum of QCD. Horizontal lines and bands are the experimental values with their
decay widths. Our results are shown by solid circles. Vertical error bars represent our combined statistical and
systematic error estimates. π , K , and " have no error bars, because they are used to set the light quark mass,
the strange quark mass, and the overall scale, respectively.

As already mentioned, we performed two separate analyses, setting the scale with M" and M!. The
results of these two sets are in perfect agreement. The " set is shown in Fig. 2. With both scale-setting
procedures we find that the masses agree with the hadron spectrum observed in nature [38].

2.2. The ratio of FK /Fπ

We used the same 2008 data set (which was used to determine the light hadron spectrum) to determine
FK /Fπ in the physical limit (extrapolated to physical quark masses and into the continuum limit).
The details of the calculation can be found in Ref. [39].
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FIG. 2: The light hadron spectrum of QCD. Horizontal lines
and bands are the experimental values with their decay widths.
The QCD lattice results [10] are shown by solid circles. Verti-
cal error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ have no error bars, because they
are used to set the light quark mass, the strange quark mass,
and the overall scale, respectively.

Color confinement and the emergence of the physical
scale ΛQCD in QCD are novel features which do not ap-
pear in QED atoms. Nevertheless, the observed hadron
spectrum has remarkable similarities with atoms, as
shown for charmonia in Fig. 3. The quark model gives a
quantitative description of charmonia and bottomonia
using the non-relativistic Schrödinger equation with
the potential

V (r) = c r − 4

3

αs
r

(1.9)

The linear term should arise from non-perturbative
physics, while the 1/r potential corresponds to single
gluon (perturbative) exchange. Also light hadrons can
be classified in terms of just their valence (qq̄ or qqq)
degrees of freedom, despite their relativistic nature and
sea quark constituents.1.

Comparisons like that of Fig. 3 as well as a number of
other striking properties of hadrons, including duality
and the OZI rule (to be discussed below), motivate a
careful analysis of bound states in QED. Is there any

1 Hadrons also bind to form nuclei and other molecular-type states, in analogy to the molecules of QED.
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way that a confining potential like that in (1.9) could
arise in a less ad hoc way, consistently with the rules
of field theory?

We begin by reviewing how bound state poles in scattering amplitudes arise through the divergence of the perturbative
series. “Ladder diagrams” of any order in α must be taken into account, no matter how small is α. This is because
perturbation theory expands around states with free electrons, unaccompanied by an electromagnetic field. Such
states are unphysical in the sense that they do not satisfy the field equations of motion. The sum of ladder diagrams
in effect rebuilds the missing classical −α/r potential. On the other hand, the Schrödinger equation follows directly
when the Hamiltonian operates on an e+e− state with an A0 field that satisfies Gauss’ law.

The binding energy of positronium is at lowest order EB = − 1
2µα

2 ' 6.8 eV (µ = me/2 is the reduced mass). This is
a tiny fraction of 2me, the approximate mass of positronium. QED calculations such as that of (1.8) make use of the
weak atomic binding (α� 1). By contrast, hadron binding energies are characterized by the scale ΛQCD ∼ 200 MeV
which is much larger than the light quark masses (mu, md ∼ O (10) MeV). The excitation energies of light hadrons
are therefore commensurate with the hadron masses2.

How can we obtain information on strongly bound (relativistic) bound states from QED, given that α � 1? We
discuss two instructive cases below:

(i) We consider positronium in a frame where its CM momentum is relativistic. Even though the relative (transverse)
momentum of the electron and positron remains of O (αm) (the Bohr momentum), they move relativistically
together along the positronium line of flight. Surprisingly, the equal-time wave function of positronium in motion
was derived only recently [12]. This question is of more general interest as it demonstrates how the Lorentz
contraction familiar from classical relativity manifests itself (non-trivially) in quantum physics.

(ii) The Dirac equation determines the binding energies of a relativistic electron in an external field, generated by a
fixed charge Ze. Dirac bound states are given by the sum of all Feynman diagrams that are of leading power in
Zα, in the infinite mass limit of the particle with charge Ze. In contrast to the non-relativistic case, all crossed
ladders must be included [13]. This implies that the Dirac state has Fock components with any number of e+e−

pairs. Consequently the Dirac wave function does not describe just a single electron, even though it has a single
argument. As was realized already in the 1930’s [14] but is now largely forgotten, for a linear potential the Dirac
wave function is not normalizable and the spectrum is continuous.

The Hamiltonian formulation of positronium and Dirac bound states can be generalized to translation-invariant,
relativistic bound states. We study their properties in D = 1 + 1 dimensions, where the QED Coulomb potential
V (x) is linear. The spectrum is discrete and has a novel type of boost covariance. The energy E depends on theSimilarity of atomic and hadronic spectra

V (r) = −α
r

V (r) = c r − 4

3

αs

r
PQED: PQCD?

Adapted from presentation by J. Ritman (2005)
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FIG. 3: Comparison of atomic (positronium) and hadronic (charmonium) spectra [11]. Their similarity, despite the O
(
109
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difference in energy scale, suggests to study whether QCD hadrons might be described analogously to QED atoms.

2 The excitation energies are large compared to mu, md also for the charmonia of Fig. 3. Nevertheless, the light quark degrees of freedom
do not appear to be important for the description of charmonia.
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momentum P as imposed by Lorentz invariance, E =
√
M2 + P 2, and the wave function Lorentz contracts according

to the kinetic (as opposed to canonical) energy, ∝ 1/(E − V ). The Poincaré invariance allows to determine bound
state scattering amplitudes. The parton distribution determined from Deep Inelastic Scattering has a “sea-quark”
type enhancement at small xBj .

There is no obvious, first-principles method of summing Feynman diagrams to obtain relativistic bound states like
hadrons. In the absence of a hierarchy in the magnitudes of the diagrams a model-dependent truncation is required.
However, an indirect method appears possible: The instantaneous A0 field associated with a given charge config-
uration should satisfy Gauss’ law. In addition to the usual 1/r potential In D = 3 + 1 dimensions there are also
homogeneous solutions corresponding to a non-vanishing field strength at spatial infinity. The only such potential
which is compatible with Poincaré invariance is linear, and requires the bound state to be neutral. This type of
solution can be applied to qq̄ mesons and qqq baryons of QCD. Its possible relevance to the experimentally observed
hadrons is a tantalizing possibility.

II. POSITRONIUM FROM FEYNMAN DIAGRAMS

A. The divergence of the perturbative expansion caused by bound states

On general grounds we know that bound states appear as poles in scattering amplitudes. The poles are on the real
axis of the complex energy plane for stable bound states (like protons) and below the real axis in case of unstable
states. It is perhaps worthwhile to illustrate this using the free scalar propagator

D(p0,p) =
i

p2 −m2 + iε
(2.1)

Fourier transforming p0 → t,

D(t,p) ≡
∫
dp0

2π
D(p0,p) exp[−ip0t] =

1

2Ep

[
θ(t)e−iEpt + θ(−t)eiEpt

]
(2.2)

where Ep =
√
p2 +m2. We see that in the reverse transformation t→ p0 the poles of (2.1) in p0 are created by the

infinite range of the t-integration.

By definition, bound states are stationary in time,

H |P, t〉 = P 0 |P, t〉 =⇒ |P, t〉 = e−iP
0t |P, 0〉 (2.3)

with P 0 =
√
P 2 +M2. The bound state contribution to a completeness sum in an amplitude 〈f, tf |i, ti〉 with

Ei = Ef = P 0 will then be

〈f, tf | |P, t〉 〈P, t|i, ti〉 = 〈f |P 〉e−i(tf−ti)P 0〈P |i〉 (2.4)

The Fourier transform tf − ti → p0 will generate a pole at p0 = P 0, with residue equal to a product of the initial 〈P |i〉
and final state wave functions, as already indicated in (1.7) and Fig. 1. This holds for any bound state, no matter
how complicated.

The rest frame (P = 0) energies of positronium bound states are

P 0 = 2me + EB (2.5)

with binding energies EB = − 1
4meα

2/n2 ' −6.8 eV/n2 (at lowest order in α, with n = 1, 2, . . .). Hence the elastic

e+e− amplitude G(e+e− → e+e−) has an infinite set of positronium poles just below threshold (s = E2
CM = 4m2

e),
and slightly below the real s-axis due to the finite life-times. How are these poles generated by the Feynman diagrams
describing G?

We may regard the positions of the bound state poles at s = (2me + EB)2 as functions of EB , i.e., of α. It is then
clear that no Feynman diagram of finite order in α can have such a pole. The only way to generate a bound state
pole in G is for the perturbative expansion to diverge!3 This sounds surprising at first, since we are used to trusting
QED perturbation theory, and the poles exist for any α, however small. Thus some higher order diagrams, such as
those in Fig. 4, must contribute at the same level as the Born term (a).

3 This divergence is distinct from that due to perturbative expansions being generally asympototic [15].
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FIG. 4: Feynman diagrams contributing to elastic e+(p1)e−(p2) scattering. The arrows indicate the fermion direction. The
momentum of the upper line is in the antifermion (e+) direction, thus p01 > 0.

The breakdown of the perturbative expansion is actually familiar from classical physics, where phenomena involving
many photons dominate. For example, the notion that opposite charges attract while like charges repel cannot be
explained by just the Born term in Fig. 4. This diagram only changes sign if e+ → e−, so its absolute square is invariant.
The product of diagrams (a) and (b), on the other hand, contributes with opposite signs to σ(e±e− → e±e−). Thus
our everyday experience of attraction and repulsion originates from quantum interference effects.

Higher order diagrams have not only more vertices ∝ e but also more propagators, which are enhanced at low
momenta. In atoms the momentum exchanges are of the order of the Bohr momentum, and energy differences follow
from non-relativistic dynamics:

|q| ∼ αme q0 ∼ q2/2me ∼ 1
2α

2me (2.6)

The Born diagram in Fig. 4 scales with α as

G[4(a)] ∼ α/q2 ∼ α/q2 ∼ 1/α (2.7)

The box diagram 4(b) has two photon exchanges, each of O
(
α−2

)
. The electron and positron propagators are off-

shell on the order q0 ∼ k0, each propagator being of O
(
α−2

)
. The relevant region of loop momentum is

∫
dk0 d3k ∼

α2 (α)3 ∼ α5. Together with the four vertices this gives

G[4(b)] ∼ α2 α5 (α−2)2 (α−2)2 ∼ 1/α (2.8)

A similar analysis shows that “ladder” diagrams with any number of photon exchanges are of O (1/α) and thus of the
same order in α as the Born diagram (2.7). This allows the perturbative series to diverge for any α. Note that the
above counting requires the initial and final momenta p1, . . . p4 of the scattering to themselves satisfy the scaling (2.6):
If α→ 0 the external momenta need to be correspondingly adjusted. Conversely, in a “hard” scattering process where
the momentum exchange |q| � αme the initial and final states do not couple to the bound states, 〈P |i〉 ∼ 〈f |P 〉 ' 0
in (2.4), and bound state contributions can be ignored. In the following we shall see more such analogies to “hard” and
“soft” processes in QCD. In QED we know how to deal with “soft” scattering, which may be helpful for understanding
the properties of QCD.

All except the ladder diagrams scale with a higher power of α than the Born term, and can thus be ignored in a lowest
order calculation of non-relativistic bound states. We shall not prove this, but just illustrate by the crossed ladder (c)
and the vertex correction (d) in Fig. 4. Both have the same number of propagators and vertices as the straight ladder
(b), and would give the same estimate as in (2.8). However, their leading contributions cancel in the loop integration.
Since −p0

1 = −me + O
(
α2
)

whereas p0
3 = +me + O

(
α2
)
, the leading contribution comes from the negative energy

pole in the (−p1 + k) propagator, and from the positive energy pole in the (p3 − k) propagator. The Feynman iε
prescription implies that both poles are in the Imk0 > 0 hemisphere. Closing the k0 contour in the Imk0 < 0 plane
these poles do not contribute. The situation is similar for the vertex diagram (d), whereas for the straight ladder (b)
the integration contour is pinched by the two poles.

B. Bound state Born terms

The concept of “Born term” is useful for scattering amplitudes: It is the lowest order contribution, given by one or
several tree diagrams. Born terms are unique and semi-classical in the sense that they are of lowest order in ~, they
are Poincaré covariant and typically give a good first approximation of the scattering amplitude. Each loop correction
brings an additional power of ~ [16]. The Schrödinger equation gives the lowest order approximation to atoms, so in
this sense its solutions are the Born terms of atomic bound states. Whether they may also be regarded as of lowest
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order in ~ requires further discussion, since bound states are generated by loop (ladder) diagrams. We shall briefly
review the arguments of [17] here, since the Born term concept may allow an objective definition of a lowest order
approximation to relativistic bound states.

We usually expect to recover classical physics in the ~→ 0 limit. This would exclude bound states, which are quantum
phenomena. The outcome turns out to depend on how the limit is defined: Which other variables are held fixed in
the limit? The situation is similar to what we found in (2.7) and (2.8) for the α→ 0 limit of ladder diagrams, which
had a leading behavior ∼ 1/α provided the external momenta scaled with α.

The standard harmonic oscillator with potential V (x) = 1
2mω

2x2 illustrates how the result depends on the definition
of the ~ → 0 limit. The amplitude for the propagation of a particle from (ti, xi) to (tf , xf ) is given by the path
integral

A(xi, xf ; tf − ti) =

∫
[Dx(t)] exp

[
im

2~

∫ tf

ti

dt(ẋ2 − ω2x2)

]
=

∫
[Dξ(t)] exp

[
im

2

∫ tf

ti

dt(ξ̇2 − ω2ξ2)

]
(2.9)

In the second equality the explicit dependence on ~ was removed by scaling the coordinates as ξ ≡ x/
√
~. The

full quantum mechanical structure of the harmonic oscillator model persists as ~ → 0 provided the variables ξ are
held fixed. In other words, there is a domain of positions x ∝

√
~ and momenta mẋ ∝

√
~ where the action S is

proportional to ~ and the system stays quantum mechanical even in the ~ → 0 limit. If alternatively the positions
xi, xf are considered to be independent of ~ then ξi, ξf ∝ 1/

√
~ grow large, and the transitions between highly excited

levels is described by classical dynamics.

Consider now QED, which has the dimensionless coupling α = e2/(4π~). Curiously, if we keep the classical charge e
fixed as ~→ 0 we find α ∝ 1/~→∞. Such a scaling does not give a factor ~ for each loop, as was demonstrated by
Holstein and Donoghue [18]).

Let us do a standard dimensional analysis of the QED fields, keeping explicitly the powers of ~. The dimension of the
action is [S] ∼ ~ ∼ E L , where E is a unit of energy (or momentum, since c = 1) and L is a unit of length (or time).
From the kinetic part of the QED action

∫
d4xψ̄ i/∂ ψ follows that the fermion field has dimension [ψ] ∼ E1/2 L−1.

The gauge field action − 1
2

∫
d4xFµνF

µν requires that [Aµ] ∼ E1/2 L−1/2. The mass term in the QED action must

then be written
∫
d4xψ̄(m/~)ψ since [m] ∼ E. Finally, the interaction term

∫
d4xψ̄(e/~) /Aψ also needs a factor 1/~.

In order to eliminate the factor ~ in the weight exp(iS/~) of the functional integral we may rescale the fields, similarly
as for the Harmonic Oscillator in (2.9):

ψ̃ = ψ/
√
~ Ãµ = Aµ/

√
~ (2.10)

Then provided

m̃ = m/~ ẽ = e/~ (2.11)

are kept fixed as ~→ 0 only the interaction term retains an ~. The functional integral becomes

Z =

∫
[D ¯̃
ψ][Dψ̃][DÃ] exp

{
i

∫
d4x
[

¯̃
ψ(i/∂ − ẽ

√
~ /̃A− m̃)ψ̃ − 1

4 F̃µν F̃
µν
]}

(2.12)

Since the ẽ and ~ appear only in the combination ẽ
√
~ there is a strict correspondence between the powers of ẽ (or

α) and the powers of ~ in any Green function: The loop and ~ expansions are equivalent.

Note that due to the rescaling of the fields the number of external legs affects the overall power of ~. Thus the free
electron and photon propagators are of O (~):

〈ψ̄ψ〉 ∼ ~〈 ¯̃ψψ̃〉 ∼ ~ 〈AA〉 ∼ ~〈ÃÃ〉 ∼ ~ (2.13)

In Section II A we found that ladder diagrams were of the same order in α as the Born term. Since the powers of α
and ~ are strictly related in the limit we consider here, the ladder diagrams are also of the same order in ~ as the Born
term: The concept of Born term for non-relativistic bound states makes sense, and is represented by the Schrödinger
equation. The parts of the ladder diagrams where the loop momenta do not scale as in (2.6) contribute to bound
states with a higher power of α and ~. Thus we see that the same Feynman diagram can contribute to scattering
amplitudes at several powers of ~. In the following we return to the standard convention with ~ = 1.

C. Evaluating ladder diagrams

The standard Feynman rules give for the Born diagram Fig. 4(a),

L1(p1, p2 → p1 − q, p2 + q) = v̄(p1)(−ieγµ)v(p4)Dµν(q)ū(p3)(−ieγν)u(p2) (2.14)
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The double ladder Fig. 4(b) is similarly

L2(p1, p2 → p1 − q, p2 + q) =

∫
d4k

(2π)4
v̄(p1)(−ieγµ)i

−/p1
+ /k +m

(−p1 + k)2 −m2 + iε
(−ieγρ)v(p4)

× Dµν(k)Dρσ(k − q)

× ū(p3)(−ieγσ)i
/p2

+ /k +m

(p2 + k)2 −m2 + iε
(−ieγν)u(p2) (2.15)

The positive and negative energy poles of a fermion propagator may be separated using the identity

/p+m

p2 −m2 + iε
=

1

2Ep

∑
λ

[u(p, λ)ū(p, λ)

p0 − Ep + iε
+
v(−p, λ)v̄(−p, λ)

p0 + Ep − iε
(2.16)

where Ep =
√
p2 +m2 and λ = ± 1

2 is the helicity. Note that on the rhs. p0 appears only in the numerator. In the

region (2.6) relevant for bound states at lowest order, k0 in (2.15) is small compared to the fermion energy so that

(−p1 + k)0 ' −E1k ≡ −
√

(p1 − k)2 +m2 =⇒ keep only the vv̄ term

(p2 + k)0 ' +E2k ≡
√

(p2 + k)2 +m2 =⇒ keep only the uū term (2.17)

With this approximation we find

L2(p1, p2 → p1 − q, p2 + q) =
∑
λint

∫
d4k

(2π)4
L1(p1, p2 → p1 − k, p2 + k)

× S(p1 − k, p2 + k)L1(p1 − k, p2 + k → p1 − q, p2 + q)

≡ L1 S L1 (2.18)

where the convolution is over the helicities λint and momenta k of the intermediate state with propagator S,

S(p1 − k, p2 + k) =
i

−p0
1 + k0 + E1k − iε

i

p0
2 + k0 − E2k + iε

1

2E1k 2E2k
(2.19)

with Eik defined in (2.17).

The same procedure will show that a ladder Ln with n rungs is obtained from the one with n− 1 rungs as

Ln = Ln−1SL1 (2.20)

P

P+q

P–q
 (P,q) (P0 – Eq+ – Eq–)

½

½

FIG. 5: A factor P 0 − Eq+ − Eq− is included in the definition

of the wave function, with Eq± =
√

( 1
2
P ± q)2 +m2.

Summing over n and defining L0 ≡ S we get the Dyson-
Schwinger equation

L ≡
∞∑
n=0

Ln = S + LS L1 (2.21)

with a convolution on the rhs. as in (2.18). This is the
Dyson-Schwinger equation for L with the lowest-order
kernel L1. Note that we did not need to specify the
frame, the equation is valid for any e+e− momentum
P = p1 + p2.

If the ladder sum L has a pole at P 0 =
√
P 2 +M2, with M the rest mass of the bound state, the residue will factorize

as shown in Fig. 1 and (2.4). Canceling common factors on the two sides of (2.21) and expressing the wave function
as indicated in Fig. 5 we find the Bethe-Salpeter equation (BSeq)

Φ(P , q)(P 0 − Eq+ − Eq−) =∑
λint

∫
d4k

(2π)4
Φ(P , k)(P 0 − Ek+ − Ek−)S( 1

2P − k, 1
2P + k)L1( 1

2P − k, 1
2P + k → 1

2P − q, 1
2P + q) (2.22)

where S is given by (2.19) and P 0 =
√

P 2 +M2 (bound states are always “on-shell”).
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D. P = 0: The Schrödinger equation

The Bethe-Salpeter equation (2.22) reduces to the Schrödinger equation in the rest frame, P = 0. Using (2.6) the
photon propagator of L1 (2.14) is in Feynman gauge

Dµν(q) =
igµν
q2

(2.23)

Due to the non-relativistic kinematics the upper (lower) components of the u (v) spinors dominate, hence the main
contribution to L1 is from the diagonal γ-matrix, i.e., µ = ν = 0. The kernel of the BSeq (2.22)

L1( 1
2P − k, 1

2P + k → 1
2P − q, 1

2P + q) = −ie2 4m2

(k − q)2
(2.24)

is then independent of q0 (and preserves helicities). The other factors on the rhs. of the BSeq also do not depend
on q0, consequently the wave function Φ(P = 0, q) is independent of q0. This implies that the wave function is an
equal-time wave function: Doing the Fourier transform we find

Φ(0, q; t1, t2) ≡
∫
dq0

2π
e−i(

1
2M+q0)t1−i( 1

2M−q0)t2Φ(0, q) = δ(t1 − t2)e−iMtΦ(0, q) (2.25)

with t = t1 = t2 the common time. This is a direct consequence of the fact that instantaneous Coulomb exchange
dominates in the atomic rest frame. As we shall see, the situation is different for atoms with P 6= 0.

In the integrand of the BSeq (2.22) only the propagator S depends on k0,

Φ(0, q)(M − 2Eq) =

∫
d4k

(2π)4
Φ(0,k)(M − 2Ek)

i

− 1
2M + k0 + Ek − iε

i
1
2M + k0 − Ek + iε

−ie2

(k − q)2

= −e2

∫
d3k

(2π)3

Φ(0,k)

(k − q)2
(2.26)

According to (2.6), Eq ≡
√
q2 +m2 ' m+ q2/2m to leading order in α. Defining the binding energy EB as in (2.5)

we get the Schrödinger equation in momentum space,(
EB −

q2

2mR

)
Φ(0, q) = −4πα

∫
d3k

(2π)3

Φ(0,k)

(k − q)2
(2.27)

where mR = 1
2m is the reduced mass. In coordinate space,

Φ(x) ≡
∫

d3q

(2π)3
Φ(0, q) eiq·x (2.28)

the bound state equation (2.27) reads (
− ∇2

2mR
− α

|x|
)

Φ(x) = EBΦ(x) (2.29)

E. P 6= 0: Atoms in motion

The derivation of the bound state equation (2.22) in Section II C was based on summing Feynman diagrams. The
Lorentz covariance of these diagrams allows to consider the frame dependence of atomic wave functions. The following
discussion is based on the work by Matti Järvinen [12], and is instructive for understanding how bound states transform
under Lorentz boosts. It is frequently assumed that bound states Lorentz contract similarly to the length of rods
in classical relativity, therefore high-momentum protons and nuclei are depicted as ovals. We now learn that the
situation is more involved in quantum physics.

1. Classical Lorentz contraction

Classical Lorentz contraction refers to a length measurement by two observers who are in relative motion. Each
observer defines the length of a rod as the distance between its endpoints at an instant of time. The contraction arises
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because the concept of simultaneity is frame dependent. We may assume that Observer A is at rest with the rod and
that the frame of Observer B is reached by a boost ζ in the x-direction. If the endpoints of the rod are at (0, 0) and
(t, LA) in the rest frame they transform under the boost as

(0, 0) → (0, 0)

(t, LA) → (t cosh ζ + LA sinh ζ, t sinh ζ + LA cosh ζ) (2.30)

Observer A measures the length of the rod at rest to be LA, independently of the time t of his measurement. Observer
B makes his measurement at time zero on his clock, i.e., when

t cosh ζ + LA sinh ζ = 0 (2.31)

He thus finds the contracted length

LB = t sinh ζ + LA cosh ζ =
LA

cosh ζ
(2.32)

2. Equal-time wave functions

In atoms the ends of the rod correspond to the positions x1 and x2 of the electron and positron in the wave function
(1.1). To study Lorentz contraction we need to consider equal-time wave functions, x0

1 = x0
2 in all frames. Such wave

functions have a non-trivial, dynamic frame dependence – the relation was derived for the first time in [12]. The
explicit covariance of the Bethe-Salpeter wave function in boosting the fermion fields relates wave functions defined
at unequal times of the constituents (x0

1 6= x0
2 in at least one of the frames).

States are defined by equal-time Fock state wave functions also in standard equal-time quantization, as given in (1.2).
For positronium at rest only the φe+e−(x1,x2) wave function is non-vanishing at lowest order in α, and satisfies the
Schrödinger equation (2.29) with x = x1 − x2. As we shall see, also φe+e−γ is non-vanishing at lowest order when
P 6= 0.

3. Contribution from transversely polarized photon exchange

Let us then return to the lowest order bound state equation (2.22). In the rest frame P = 0 analysis of the previous
Section we made use of two simplifications:

1. The electrons moved non-relativistically, hence the upper (lower) components of the u (v) spinors were dominant.
This allowed us to keep only Coulomb photon exchange (µ = ν = 0) in the kernel L1 of (2.14) and Fig. 4(a).

2. According to (2.6) the exchanged energy q0 could be neglected compared to the three-momentum q.

Neither of these assumptions is valid for a general bound state momentum P . The vertex factors v̄γµv and ūγµu in
(2.14) transform as 4-vectors and reduce to 2mgµ0 ' Pµ in the rest frame. Hence helicity is conserved in any frame
and

ū( 1
2P + q)γµu( 1

2P + k) = v̄( 1
2P − k)γµv( 1

2P − q) ' Pµ (2.33)

In Coulomb gauge the photon propagator is,

D00(q) =
i

q2
D0j(q) = Dj0(q) = 0 Djk(q) =

i

q2

(
δjk − qjqk

q2

)
(2.34)

The transverse part Djk(q0, q) depends on q0, and hence (after a Fourier transform) Djk(t, q) depends on t: Transverse
photons propagate in time. When the transverse photon is in flight the equal-time Fock state will thus be |e+e−γ〉,
and will be described by the separate wave function φe+e−γ .

q–k

P+k

P–q

P+q

P–k

FIG. 6: Single photon exchange
amplitude A. The charged par-
ticles are taken to be scalars.

It is perhaps worthwhile to convince ourselves with the help of a simple example
that the transverse photon contribution cannot be neglected. Let us compare the
rest frame expression for the 2→ 2 amplitude (Fig. 6) with that in a general frame.
For simplicity we may assume the charged particles to be scalars, and assume 90◦

scattering in the CM:

1
2P = (m

√
1 + α2,0) k = (0, 0, 0, αm) q = (0, αm, 0, 0) (2.35)
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Using Feynman gauge the Lorentz invariant full amplitude is easily found to be

A = 4π
2 + 3α2

α
(2.36)

After a boost ζ in the z-direction the momenta (2.35) are

1
2P = m

√
1 + α2(cosh ζ, 0, 0, sinh ζ) k = αm(sinh ζ, 0, 0, cosh ζ) q = (0, αm, 0, 0) (2.37)

The propagator (2.34) contributes a Coulomb (C) and transverse (T ) part to the scattering amplitude,

AC =
4π

α

(4 + 3α2) cosh2 ζ + α2

cosh2 ζ + 1
AT = −8π

α

sinh2 ζ − α2

cosh2 ζ + 1)
(2.38)

which together form the full amplitude of (2.36), A = AC + AT . In the CM (ζ = 0) the leading contribution to A is
from AC for small α, but in a general frame AC and AT are comparable.

The q0-dependence of the transverse propagator in the kernel L1 of the bound state equation (2.22) implies that
Φ(P , q) depends on q0, i.e., Φ(P , k) depends on k0. Hence in this form the integral equation cannot be easily reduced
to a time-independent equation, as was the case in the rest frame. This reflects the fact that there are intermediate
states with propagating, transverse photons.

4. Time ordering

In a time-ordered description the “life-time” of each intermediate state is inversely proportional to its difference
in energy compared to the initial state. The energies of |e+e−〉 Fock states differ from the positronium energy by
approximately the binding energy, and thus are of O

(
α2
)

(in any frame). The energy of a transverse photon with

bound state momentum q of O (αm) in the rest frame is Eq = |q| and remains of O (α) in any frame4. At small
α the positronium atom propagates most of the time as an |e+e−〉 Fock state, with only an O (α) probability to
find a transverse photon in flight. While the scattering amplitude (2.38) showed that this contribution nevertheless
cannot be neglected, the probability that two transverse photons are in flight simultaneously is of O (α). Similarly
the contribution where an instantaneous Coulomb photon is exchanged during the flight of a transverse photon can
be neglected at lowest order.

∆ E F ∆ E F

∆ E I

∆ E F

∆ E I

∆ E F

FIG. 7: Positronium propagates mostly as
an e+e− state (time slices are indicated by
the short dashed lines). Transverse photons
are exchanged only O (α) of the time, since
∆EF ∝ α2 while ∆EI ∝ α. Contributions
with overlapping photon exchanges may be
neglected at lowest order. Figure from [19].

Multiple, overlapping photon exchanges do contribute at higher orders.
This is one of the aspects that complicate bound state perturbation
theory. For example, the vertex correction in Fig. 4(d) contributes to the
Lamb shift at O

(
α5
)
. At this order any number of Coulomb exchanges

may be exchanged while the transverse photon is in flight. To find the
Dirac equation by summing Feynman diagrams we must likewise include
diagrams with any number of overlapping photon exchanges.

We now take advantage of the non-overlapping photon exchanges for
positronium by time-ordering the bound state equation (2.22). The
equal-time e+e− wave function φe+e− ≡ Φ(P , q) is defined by the Fourier
transform,

Φ(P , t, q) =

∫
dq0

2π
Φ(P , q0, q) e−it(

1
2P

0+q0)−it( 1
2P

0−q0)

= e−itP
0

∫
dq0

2π
Φ(P , q0, q) ≡ e−itP 0

Φ(P , q) (2.39)

(t)P

t

t

−∞
dt1

t 1

−∞
dt0= (t0)

t0 t1

+ +

t

FIG. 8: Time-ordered version of the bound state equation (2.22): Φ = ΦS L1.

4 Recall that in a time ordered picture all particles are treated as “on-shell”.
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The time ordering of the propagators S in (2.19) is, for t > 0 and with

Ek± =
√

( 1
2P ± k)2 +m2,

Sf (t, 1
2P + k) =

∫
dk0

2π

ie−it(
1
2P

0+k0)

1
2P

0 + k0 − Ek+ + iε
= e−itEk+

Sf̄ (t, 1
2P − k) =

∫
dk0

2π

ie−it(
1
2P

0−k0)

− 1
2P

0 + k0 + Ek− − iε
= −e−itEk−(2.40)

The time-ordered then takes the form indicated in Fig. 8,

Φ(P , t, q) =

∫ t

−∞
dt1

∫ t1

−∞
dt0

∫
d3k

(2π)3
Φ(P , t0,k)S(t1 − t0)L1(t− t1) (2.41)

The time-ordered kernel L1(t− t1) has contributions from instantaneous Coulomb exchange ∝ δ(t− t1) and from the
transverse photon propagator in (2.34). The Fourier transform of the factor 1/q2 in the transverse photon propagator
has as, in (2.2), two contributions, depending on whether the photon propagates forward or backward in time. Using
(2.33) for the vertex factors the bound state equation becomes

e−itP
0

Φ(P , q)(P 0 − Eq+ − Eq−) =

∫
d3k

(2π)3

∫ t

−∞
dt1

∫ t1

−∞
dt0 e

−it0P 0

Φ(P ,k)(P 0 − Ek+ − Ek−)

× −1

2Ek+2Ek−
e−i(t1−t0)(Ek++Ek−) (2.42)

×(−ie2)

{
i

(P 0)2

(q − k)2
δ(t− t1) +

[
P 2 −

(
P · (q − k)

)2
(q − k)2

]
e−i(t−t1)(Ek−+Eq++|q−k|) + e−i(t−t1)(Ek++Eq−+|q−k|)

2|q − k|

}

When the time integrals are done we have a bound state equation for the equal-time wave function of the |e+e−〉 Fock
state,

Φ(P , q)(P 0 − Eq+ − Eq−) = −e2

∫
d3k

(2π)3
Φ(P ,k)

1

2Ek+2Ek−
(2.43)

×
{

(P 0)2

(q − k)2
+

1

2|q − k|

[
1

P 0 − Ek− − Eq+ − |q − k| +
1

P 0 − Ek+ − Eq− − |q − k|

][
P 2 −

(
P · (q − k)

)2
(q − k)2

]}

This equation has no obvious Lorentz covariance. Thus it is not clear that the energy eigenvalue P 0 has the frame
dependence required by Lorentz symmetry, nor whether the wave function Lorentz contracts. We shall now verify
these properties in the range of validity of the equation, i.e., at lowest order in α.

5. Reduction to the Schrödinger equation

Let us first identify the leading power of α on both sides of the equation. On the lhs. P 0 − Eq+ − Eq− is of the
order of the binding energy, hence of O

(
α2
)
. On the rhs. the (boosted) Bohr momenta |k|, |q| ∝ α. Hence in the

numerator e2
∫
d3k ∝ α4 while in the denominator (q − k)2 ∝ α2. The leading powers of α agree, and subleading

powers may be ignored.

We denote the electron energy at zeroth order in α by E,

E =
√

( 1
2P )2 +m2 (2.44)

The binding energy EB is defined in accordance with (2.5),

P 0 =

√
P 2 + (2m+ EB)2 = 2E +

m

E
EB +O

(
α2
)
≡ 2E +

1

γ
EB γ =

E

m
(2.45)

where γ is the usual Lorentz factor at zeroth order in α. The electron energy up to O
(
α2
)

is

Eq+ =
√

( 1
2P + q)2 +m2 = E +

1

2E
q · (P + q)− 1

8E3
(q · P )2 +O

(
α3
)

(2.46)
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The factor on the lhs. of (2.43) is then

(P 0 − Eq+ − Eq−) =
1

E

(
mEB − q2

⊥ −
1

γ2
q2
‖

)
+O

(
α3
)

P · q ≡ |P | q‖ (2.47)

where we defined the ‖ and ⊥ directions wrt. P . The energy denominators in (2.43) are

P 0 − Ek− − Eq+ − |q − k| =
1

P 0
P · (k − q)− |q − k|+O

(
α2
)

P 0 − Ek+ − Eq− − |q − k| = − 1

P 0
P · (k − q)− |q − k|+O

(
α2
)

(2.48)

so that

1

P 0 − Ek− − Eq+ − |q − k| +
1

P 0 − Ek+ − Eq− − |q − k| =
(P 0)2

(q − k)2

−2|q − k|

P 2 −
(
P ·(q−k)

)2
(q−k)2 + 4m2

[
1 +O

(
α2
) ]

(2.49)

Substituting this in (2.43) and noting that 2Ek+2Ek− ' (P 0)2 the bound state equation becomes

Φ(P , q)

(
mEB − q2

⊥ −
1

γ2
q2
‖

)
= −e

2m

γ

∫
d3k

(2π)3

Φ(P ,k)

(q − k)2
⊥ − 1

γ2 (q − k)2
‖

(2.50)

This is the same as the rest frame equation (2.27) when the longitudinal components of q and k are scaled by γ.
We conclude that the binding energy EB is independent of P , so that the energy (2.45) of the bound state has the
correct frame dependence. The wave function Lorentz contracts classically in coordinate space since the longitudinal
component of all relative momenta scale with the Lorentz factor γ.

The wave function φe+e−γ of the |e+e−γ〉 Fock component is given by the sum of the amplitudes for the radiation of
the photon from the electron and the positron [12]. With increasing bound state momentum P the photon is emitted
preferentially in the forward direction (and hence does not simply contract). In the infinite momentum frame the
result agrees with the wave function of Light-Front quantization.

An equal-time formulation thus allows to study bound states both in the rest frame (with rotational symmetry) and
in the infinite momentum frame (where the momentum gives a preferred direction). When the Coulomb field of the
rest frame is boosted it generates a transverse field component. The underlying Poincaré invariance of QED ensures
that all physical quantities have the correct frame dependence, even though equal-time wave functions transform
non-trivially under boosts.
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