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Motivation: Dilute-dense scattering

@ DIS (ep or eA) at small Bjorken x, pA (or pp) at forward rapidities ...

o dilute projectile (v*, dipole) & dense target (hadron probed at small x)

o semi-hard resolution scale: Q2 in DIS, p, for particle production in pA

Q% p% > Q7 (unitarization scale at low energy)
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@ At high energy, both processes admit a dipole factorization
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Motivation: QCD evolution at high energy

@ DIS at high energy/small-z in the hadron IMF (manifest parton picture)

@ The gluon distribution in the target is rapidly rising with decreasing x
o the (linear) BFKL equation in the dilute regime

o “dilute”: gluon occupation number n < -
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Motivation: QCD evolution at high energy

@ DIS at high energy/small-z in the hadron IMF (manifest parton picture)

@ The gluon distribution in the target is rapidly rising with decreasing x
o the (non-linear) BK/JIMWLK equations in the high density regime
e “non-linear”: gluon recombination leading to saturation: nmayx ~ —

o
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Y =In1/x

Dilute system

(@)

In A2 InQ?

@ Saturation line Q2(Y) ~ Q2 e*<Y: strong scattering: Tuipole ~ 1
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Dipole vs. proton evolution

@ The physical picture & the calculation details depend upon frame & gauge

@ Via a Lorentz boost, one can transfer the high-energy evolution from the
proton to the dipole (dipole frame)

Q)

e recombination (gg — g¢) gets mapped onto splitting (¢ — gg)

e gluon saturation gets mapped onto multiple scattering

@ At LO, both pictures for the evolution have been explicitly worked out
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Dipole vs. proton evolution

@ The physical picture & the calculation details depend upon frame & gauge

@ Via a Lorentz boost, one can transfer the high-energy evolution from the
proton to the dipole (dipole frame)

% Q)

E Boost

o dipole evolution: Balitsky hierarchy (96), Balitsky-Kovchegov eq. (99)

o target evolution: JIMWLK eq. (97-01), CGC effective theory
(Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner)

@ ... with results which are equivalent, as they should !

Towards accuracy at small x Collinear resummations for BK eq. Edmond lancu 4/26



Dipole vs. proton evolution

@ The physical picture & the calculation details depend upon frame & gauge

@ Via a Lorentz boost, one can transfer the high-energy evolution from the
proton to the dipole (dipole frame)
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@ At NLO, however, only the dipole evolution has been computed
(Balitsky and Chirilli, 2008-13; Kovner, Lublinsky and Mulian, 2013-16)

@ A priori different from the NLO evolution of the target ... and also
problematic
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Rapidities & Time-ordering

@ Strong ordering of successive emissions in longitudinal momenta

o kT for the projectile, k= for the target

@ Typical evolution: k is increasing from target to projectile: Q? > k% > Q2

@ Target evolution: strong ordering in k~

2 3 Q?
ok b B g P™>ky > >k >q =5+
6TT00T0 q
}z }z })L > —
P s
g 000aoEEe n=ln—=In— =In—
Kl ke ks q Q2 o
’m%ﬂfm“g B
J
o S - . _ -
IS =S 3 @ Lifetime of a gluon fluctuation: Az~ = 2
©TTO0TT0 k3
noB 3
e 9
PoQ @ Typical emissions are also ordered in lifetimes
S0

_ _ _ 1
Az, > Az, > > Ar] > prs

Towards accuracy at small x Collinear resummations for BK eq. Edmond lancu 5/ 26



Rapidities & Time-ordering

@ Strong ordering of successive emissions in longitudinal momenta

o kT for the projectile, k= for the target

@ Typical evolution: k is increasing from target to projectile: Q? > k% > Q2

@ Projectile evolution: strong ordering in k¥
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= @ Lifetime of a gluon fluctuation: Az™ = <5
Noe 1
P.Q o the correct time ordering can be
violated by the typical evolution at LO

v

@ This is restored via higher-order corrections, which are however large
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Rapidities & Time-ordering

@ Strong ordering of successive emissions in longitudinal momenta

o kT for the projectile, k= for the target

@ Typical evolution: k is increasing from target to projectile: Q? > k% > Q2

@ Projectile evolution: strong ordering in k¥
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LO evolution in Y

N
0, <1 = 2q

oz > P—l, . the dipole scatters off a shockwave

@ Multiple scattering can be resummed in the eikonal approximation

e transverse coordinates are “good quantum numbers”

@ Soft gluon emissions, which occur well before, or well after the shockwave

@ To construct the evolution equation, it is enough to look at the first emission
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BK equation at LO

@ Large N, : the original dipole splits into two new dipoles

y y y
x s‘Nr - 2
aS Yy Qg C d2Z (m y) [szszy o Smy]

oy — 2m2 (x—2)%(y — 2)?
e dipole kernel: probability for the dipole to emit a soft gluon at z

@ Non-linear completion of the BFKL equation for 7'=1 — S

My _ Qs 2 (x —y)?
oy 2 dz(a:fz)Q(yfz)Q[

Twz + sz - Twy _Tszzy]

@ Unitarity: the “black disk limit” 7" =1 is a fixed point
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BK equation at LO

@ Large N, : the original dipole splits into two new dipoles

asmy Ofch 2 ($ B y)2
- d xzPzy — Pz
oY 272 o (x—2)%(y — 2)? [S Szy = 5 y]

e dipole kernel: probability for the dipole to emit a soft gluon at z

@ Non-linear completion of the BFKL equation for 7'=1 — S

aTmy _ % d2z (m B y)2

)% 27 (x—2)%(y — 2)?

[Tmz + sz - Tmy *Tszzy]

@ Saturation momentum Q4(Y): T(r,Y) = 0.5 when r = 1/Q,(Y)
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The saturation front

@ T(Y,r) as a function of p = lnﬁ with increasing Y
0

LO, 64=0.25 speed, 6,=0.25
T T T T T 1.2 T T T
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dlog[Q%(Y))/dY

<< <<=
o noun

aFz22o®RrO

[21\V]

p=log(1/r?) Y

—_

for rQs(Y) = 1

T(Y,r)~
o (rPQIY))™  for rQs(Y) <« 1

L QAY) = Qi

@ Saturation exponent \; ~ 4.88a,, anomalous dimension 1 — ~, ~ 0.37
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Adding running coupling: rcBK

@ Saturation exponent: A\g ~ 4.88a ~ 1 for Y 2 5 : much too large

e phenomenology requires a much smaller valuer Ay ~ 0.2 +0.3

@ Including running coupling dramatically slows down the evolution

speed, G,=0.25
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@ Rather successful phenomenology based on rcBK

@ ... but what about the other NLO corrections ?
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Next-to-leading order

@ Any effect of O(a?Y) = O(ay,) correction to the r.h.s. of BK eq.

L - E
-
=) -
% 5000y
< 29 G LC;
I =] e
q g NGRS
¢ §< § Oy
Q0 ed 2N
i N
y N
t e g Y
Py
k' ~p —

@ The prototype: two successive, soft, emissions, with similar longitudinal
momentum fractions: p™ ~ kT < ¢*

@ Exact kinematics (full QCD vertices, as opposed to eikonal)
@ New color structures, up to 3 dipoles at large N,

@ NLO BFKL: Fadin, Lipatov, Camici, Ciafaloni ... 95-98
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BK equation at NLO
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@ green : leading-order (LO) terms
@ violet : running coupling corrections
@ blue : single collinear logarithm (DGLAP)

@ red : double anti-collinear logarithm : troublesome !
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The double anti-collinear logarithm

@ Important in the “hard-to-soft” evolution: very large daughter dipoles
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Unstable numerical solution

DLA at NLO, &.=0.25
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o Left: LO BK + the double collinear logarithm

@ Right: full NLO BK (Lappi, Mintysaari, arXiv:1502.02400)

@ The main source of instability: the double collinear logarithm
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Collinear resummations in Y (1)

@ Different pieces generated by time-ordering are included in different orders

e an infinite series of terms o (ap?)™, with n > 1 and alternating signs
@ This whole series can be resummed by enforcing TO within LO BK eq.

@ Two “collinearly improved” versions of BK equation: local & non-local (in Y)

@ Same kernel as at LO, but non-local in rapidity (G. Beuf, 2014)

OSay(Y) _ Qs (z—y)?

= 8 (Y=A02)S2y (Y=AL,) — Spy (Y
8Y 27T . (w_z)g(y_z)g [ ( ) y( y) y( )]
o rapidity shift important only if daughter dipole larger than the parent:

(x—2)
rz

Npz =0 ((@—2)*—r?) In r=|z—yl

e this shift is not unique beyond the double-log accuracy

_1
eré

e a boundary value problem: Y =n+4+p>p=1In
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Collinear resummations in Y (2)

@ Local equation, but with all-order resummed kernel & initial condition

(E.l., Madrigal, Mueller, Soyez, and Triantafyllopoulos, 2015)
0Szy(Y)  as (x—y)?
oy o /zmlcnm(ﬂwyz) [sz(Y)Szy(Y) Swy(Y)]
~ 2 ~ 2\2
JNEVALT) AP Jr(asp) oo
Jap? 2 12

o Initial value problem: Sgy (Y = Yp) = Sg"P™(x, y)

Koun(p) = 22V2)

o unphysical “initial condition” chosen such that S(Y = p) = SE™*(p)
o the physical S-matrix is reproduced for Y > p (where it should)

o SyPMYS s explicitly known only to double-log accuracy

@ N.B.: this is the strategy implicitly followed in standard pQCD for BFKL/BK
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Numerical solutions: saturation front

@ The resummation stabilizes and slows down the evolution

DLA at NLO, ¢,=0.25 DLA resum, ¢,=0.25
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o left: the NLO double-log alone

e right: double collinear logs resummed to all orders
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Resummations in Y: saturation exponent

@ Both strategies suffer from similar drawbacks:
e ambiguities beyond double log accuracy (powers of ap?)
o difficulties with formulating the initial condition

@ Saturation exponent in Y (left) and in n =Y — p (right)
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For the physical evolution in n = In =1-: strong scheme dependence
° phy n=lng- g p

e The resummed evolutions are stable but lack predictive power
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What about evolving in n ?

Enforcing time-ordering in the evolution with Y appears to be problematic

Why not work directly in 7 7 (TO would be automatic !)

A similar strategy proposed for NLO BFKL (Salam, Ciafaloni, Colferai, 98)
e “the choice of the energy scale” (in the definition of the rapidity)

o for DIS the proper scale is Q? = 7 =1In o

This choice is only the first step in the “collinear-improvement” program

o collinear resummations are still need (milder instabillites)
e w/o resummations: complex saddle point, oscillating amplitude

@ For the non-linear evolution, even this first step seems difficult to achieve
e evolution in 77 < evolution of the target wavefunction

e complicated in the presence of gluon saturation
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What about evolving in n ?

Enforcing time-ordering in the evolution with Y appears to be problematic

Why not work directly in 7 7 (TO would be automatic !)

A similar strategy proposed for NLO BFKL (Salam, Ciafaloni, Colferai, 98)
e “the choice of the energy scale” (in the definition of the rapidity)

o for DIS the proper scale is Q? = 7 =1In o

This choice is only the first step in the “collinear-improvement” program

o collinear resummations are still need (milder instabillites)
e w/o resummations: complex saddle point, oscillating amplitude

@ For the non-linear evolution, even this first step seems difficult to achieve
e evolution in 77 < evolution of the target wavefunction

e complicated in the presence of gluon saturation

@ Not fully right ! In pQCD, NLO corrections in 77 can be obtained from those
in Y via a simple change of variables !
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Projectile evolution in n at NLO (1)

@ Recall: NLO BK equation in Y (Balitsky and Chirilli, 2008)

OSzy _ Qs (x—y)* _
aT - 271—L (a:fz)2(z—y)2 [SCBZ(Y)SZ’H(Y) Smy<Y)]
_a; (z—y)?
o (@=2)*(z-y)*  (z-y)*  (z-y)’

_92 “ "
+ a; x “regular’.

@ Change of variable: n =Y —p, Spy(Y) = Sgy(n), with p=1n m
o the rapidity shift Y —p is formally of O(ay) :
g (x — Z)2> g (z — 2)? 9S22(n)
Sez(n+ —sz( +In—% ) > Se.(n) +1n
(n+p) NI e (n) @—v? on

e use the LO BK equation to evaluate 8537;(")

o replace S(Y) — S(n) in the NLO terms
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Projectile evolution in n at NLO (2)

@ NLO BK equation in n (Ducloué et al, arXiv:1902.06637)

on

a Tr— 2 _ _
0S4y  as / _ (z—y)” [Sz(1)S2y(0) — Sy ()]

~an ). o2 uP
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g (x—y)* (u—y)* 4 S (MG (G (s
173 ), e ™ (o ) [See)S0)=Su )

_92 “ "
+ a; x "regular”.

Towards accuracy at small x

@ The 3rd term, coming from the change of variables, cancels the double

anti-collinear log for large daughter dipoles: |z — x| ~ |z —y| > r

@ But it generates new, collinear, double logs when one of the daughter

dipolesis small : |z —x| < ror|z—y|<Kr

@ Such atypical configurations are allowed by BFKL diffusion
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NLO BK evolution in 7

@ Numerical solutions to “NLO BK in " (LO BK + the double collinear log)

10°

107

— =2
— =4
—— =6
— =8
102 ‘

-5 0 5 10 15

@ Although disfavoured by the typical “hard-to-soft” evolution, the collinear
double-logs do still entail a (mild) instability

e the instability develops only for sufficiently large n

e it first appears for relatively large dipole sizes, close to 1/Q

@ Fluctuations leading to large dipoles which then fragment into smaller ones
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Collinear resummation in 7

(Ducloué, E.I., Mueller, Soyez, Triantafyllopoulos, arXiv:1902.06637)

@ The whole series of double collinear logs can be resummed via an
appropriate rapidity shift = non-local evolution in n

0Szy(n) _ ds/ 2z (z-y)® (4 5 g
o 2n) (@—2)2(z—y)? [Swzm 022)Szy(N—02y) Smy(n)]
e rapidity shift if one daughter dipole is much smaller than its parent:

(x — 2)*

622 =0 (r’—(z—2)?) In 5

r
@ A genuine initial value problem: S(n,7) = So(r)

@ Linear level (NLO BFKL): equivalent to the “w-shift” prescription by Salam
@ As before, this prescription is not unique beyond double-log accuracy

@ Extension to full NLO accuracy possible (for a given prescription)
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Resummed BK evolution in 7: fixed coupling

— 2
o), =1 1;177@0: the speed of the saturation front in 1 (for a fixed coupling)

o recall: LO result \, ~ 4.88a, ~ O(1) (way too large)

As/as Ao/ s
" T T T T - 11 T T .
wl— non-local in ¥, A=max{0.In m’: ”(;‘“;)f’”) }7 wl— -local in 7, §=max {0, In *(—7 (Cape o= }
— non-local in Y, A=ln (e ep) — non-local in 5, 5 =1 M2 (e
9 fF— ColBKinY R 9 F— non-local in 7, §=In 2@=2"w-2"} “““;)ﬂw 27 g
sl i g [ — CollBKinn ]
71 4 7k i
6 B 6 |- i
5k 4 5L i
4 B 4+ 4
3| 4 3| i
2 | | | | ag 2 | | | | Ay
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 05

@ Left: resummations in Y: strong scheme dependence, no clear pattern

@ Right: resummations in 7: weak scheme dependence ~ O(a?)

e it would be even weaker after completing the equation to NLO accuracy
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Resummed BK evolution in 7: fixed coupling

— 2
o), =1 1;177@0: the speed of the saturation front in 1 (for a fixed coupling)

o recall: LO result \, ~ 4.88a, ~ O(1) (way too large)
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@ Left: resummations in Y: strong scheme dependence, no clear pattern

@ Right: resummations in 7): systematic reduction by 30 = 40 w.r.t. LO

e but this is not yet sufficient for the phenomenology !
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Resummed BK evolution in 7: running coupling

@ Recall: phenomenology requires A\, ~ 0.20 = 0.25

@ The main reduction comes from the use of a running coupling

o below: @4(rmin) where ryi, = min{lz—y|, |z —z|, |y—z|}

05 | — non-local in 5, §=1In maxle—z/ -’}

— non-local in 5, §=1n 22

04 | B

o Left: saturation fronts in n: collBK (full lines) vs. LO BK (dashed)

e Right: saturation exponent: \, ~ 0.2 at large ) ©®
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A fit to DIS at HERA

@ Excellent fit to the HERA data at small z: 2, < 0.01, Q% < 50 GeV?

o 4 free parameters, all encoded in the initial condition T'(no, )

e 2 prescriptions for the running of the coupling (equivalent to 1-loop)

o also resummation of the NLO single logs (DGLAP): essential
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@ Right: the saturation scale given by the fit on top of the data points
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A fit to DIS at HERA

@ Excellent fit to the HERA data at small z: 2, < 0.01, Q% < 50 GeV?

o 4 free parameters, all encoded in the initial condition T'(no, )
e 2 prescriptions for the running of the coupling (equivalent to 1-loop)

o also resummation of the NLO single logs (DGLAP): essential

+—— HERA data — -
102 L —— reMV, smallest 45 init RC double | single X*/npts for -

- O,
s reMV, fac 222735% cdt. schm | logs logs 50 | 100 | 200 | 400
18 -’*‘\-u\-\'\_\-\‘\k-;\- GBW | small | yes no 2.05 | 217 | 2.27 | 2.24
m% GBW | small | no ves | 1.26 | 1.26 | 1.35 | 1.46

oSS M‘“\\k—\&f\-\_\ GBW | small | yes yes 118 | 1.21 | 1.31 | 1.39
< 0| 3&% i GBW | fac | yes o 165 | 1.75 | 1.94 | 2.01
2 27, GBW | fac no yes 1.19 | 1.23 | 1.37 | 1.51
g A S i, GBW | fac | yes yes | 114 | 117 | 125 | 1.32
:E oser %1 rcMV | small | yes no 1.72 | 1.86 | 1.93 | 1.92
¢ [y e reMV | small | no yes | 1.07 [ 1.08 | 1.04 | 1.03
10° | 05 % 1 rcMV | small | yes yes 1.03 | 1.04 | 1.01 | 1.00
035% rcMV | fac yes no 1.31 | 1.34 | 1.35 | 1.33
00'225 ““—H—\?ﬁ rcMV | fac no yes 0.98 | 0.98 | 0.95 | 0.95
T —— reMV | fac | yes yes | 101 | 1.03 | 1.01 | 1.00

10—1 L 4
L L L Table 2: Evolution of the fit quality when increasing Q?m“( (in GCVZ).

10° 10° 10 10° 102
X
. . . . . 2 . 2

@ Right: the quality of the best fit remains constant up to @; ., = 400 GeV
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Conclusions

@ High-energy evolution in the presence of saturation is most conveniently
computed in terms of the rapidity Y of the dilute projectile

e double anticollinear logs associated with violations of time ordering

e unstable, no predictive power

@ Resummations in Y suffer from a series of problems
e not a simple initial condition problem
e strong scheme dependence
@ Perturbative series for the evolution in 7 (the target rapidity) can be
deduced via a change of variables

e double collinear logs which are large only for atypical evolution

@ Resummations in 77 are much better under control
e reasonably weak scheme dependence
e initial value problem
e can be promoted to full NLO accuracy
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