

- 1) Where does HERA leave us?
- 2) Future DIS facilities
- 3) LHC observables v low x sea quarks and gluons
- 4) Diffractive observables
- 5) Other observables sensitive to novel low x effects

...birth of experimental low x physics

- The only ever collider of electron beams with proton beams:

 $\int s_{ep} \sim 300 \text{ GeV}$

- Still publishing papers, though main results are now out

Low x Physics is Driven by the Gluon

... knowledge comes mainly from inclusive NC HERA data

Final HERA Picture of Proton (HERAPDF2.0)

- ~2% precision on gluon for $10^{-3} < x < 10^{-1}$
- Gluon uncertainty explodes between $x=10^{-3}$ and $x=10^{-4}$
- Gluon itself is rising in a seemingly non-sustainable way ...
- Note the 'Standard' presentation is at $Q^2 = 10 \text{ GeV}^2$

Evolution to Other Scales

• Gluon in DGLAP approach is close to zero in region where e.g. saturation models are applied

• Electroweak scale ~ M_Z^2 (LHC precision physics) ... gluon rise gets sharper, error band shrinks

• Parameter scale ~ 1.9 GeV² (where lowest x data exist)

The "Pathological" Gluon: Implications

- Fast growth of low x gluon appears unsustainable → new low x gluon-driven dynamics?
- Recombine $(gg \rightarrow g)$, non-linear / saturation / (density effects)?
- Log(1/x) resummation (energy effects)?
- Just DGLAP (+ Higher twists)?

→ The implications of the high density, small coupling, regime of parton dynamics are not well understood

→ Is there any evidence for novel low x effects in HERA data?...

Looking for Changes in patterns in HERA Data

HERA inclusive data well described by $F_2 = Ax^{-\lambda(Q^2)}$ with fixed A~0.2 for all $Q^2 > \sim 1 \text{ GeV}^2$

From 2D local x-derivatives: Q^2/GeV^2 no evidence here for deviation from monatonic rise of structure functions towards low x in perturbative region.

... no smoking guns are directly available from the HERA data → effects are subtle

New Low x effects at HERA?

Final HERA-2 Combined PDF Paper:

"some tension in fit between low & medium Q² data... not attributable to particular x region" (though there is a kinematic correlation)

Including ln(1/x) resummation in fits improves χ^2 and describes difficult low x, low Q2 corner of kinematic plane

Q² < 1 GeV² data → Best description with Dipole Model, including saturation

All data ($Q^2 > ~ 0.05 \text{ GeV}^2$) are well fitted in (dipole) models that include saturation effects - x dependent "saturation scale", $Q^2_s(x)$

 $\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$

Q² < 1 GeV² data → Best description with Dipole Model, including saturation

... at HERA, Q_s^2 doesn't get above about 0.5 GeV² \rightarrow Saturation may have been observed at HERA ... but not in a region where quarks and gluons are reliable degrees of freedom

HERA's Limitations

- Limited lumi \rightarrow restricts searches and precision at high x, Q²
- Lack of Q² lever-arm at low $x \rightarrow$ restricts low x gluon precision
- No deuterons \rightarrow limited quark flavour decomposition
- No nuclei \rightarrow insensitive to nuclear effects
- No polarised targets (except HERMES) → limited access to spin, transverse structure
- ALL addressed by complementary proposed future DIS projects

11

Electron Ion Collider

- Planned US ep and eA DIS facility
- 20 < \sqrt{s} < ~ 140 GeV is lower than HERA

 Ion beams and polarised protons

 → physics programme focused on understanding gluons at medium-high x
 eg through TMDs / GPDs and approaching low x in eA

Approximate EIC coverage is shaded area.

12

LHeC / FCC-eh Design: Electron "Linac"

LHeC CDR, July 2012 [arXiv:1206.2913]

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures

- LHeC ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- e-nucleon Lumi estimates ~ 10^{31} (3.10³²) cm⁻² s⁻¹ for eD (ePb)
- Similar schemes in collision with protons of 7 TeV (LHeC),
 13 TeV (HE-LHeC) and 50 TeV (FCC-eh)

Low x at LHeC: 2 orders of magnitude extension for ep, 4 for eA ...

Testing saturation models at perturbative Q²

- Low x, Q^2 corner of phase space accesses expected saturated region in both ep & eA at perturbative Q^2 according to models

Potential of LHeC and FCC-eh

 $x \rightarrow 10^{-7}$ at Q² > 3 GeV² for FCC-eh

Very large predicted effects from LL(1/x) resummation

- Future high energy DIS is decades away
- Meantime ...

Low x and the LHC

- LHC will run for another two decades
- Will remain the energy frontier for (a lot) longer
- Has capability to be a much better low-x facility than generally acknowledged

Long Term LHC Schedule

From HERA to LHC

Assuming collinear factorisation and a full understanding of low x dynamics ...

→ Need precise PDFs for
 10⁴
 10⁴

Why low x might cause dangers at the LHC

- Use of PDFs based purely on DGLAP Q^2 evolution at low(ish) x, high Q^2 at the LHC will give incorrect results if there are novel effects in the low x, low Q^2 data ...

- Convergence of solutions after DGLAP evolution may already be misleading at the LHC if there are novel evolution dynamics $^{^{18}}$

Uniquely Favourable Low x Kinematics at LHCb

- "Fixed target-like" forward instrumentation favours processes with asymmetric incoming x values, giving 'mainstream' sensitivity down to $x \sim 10^{-5}$

- Even more pronounced in genuine fixed target mode (SMOG at LHCb, AFTER ...)

Theory v Data: inclusive variables at LHC

- PDFs are a vital ingredient in almost all predictions
- Factorisation between ep and pp works well overall!
- From LHC point of view, low-x is a small corner

High / Medium x: PDFs Limit LHC Physics

Projected Higgs Coupling Experimental Uncertainties

[Dashed regions = scale & PDF contributions₂₁

Δμ

ū

Current PDF Sets \rightarrow LHC Kinematics & Low x

... e.g. two x=10⁻⁴ partons produce $M_X = 1.7$ GeV at mid-rapidity

- ... low x not very fashionable in LHC collider communnit y^{22}

There are at Least Some Low-x Sensitive Data

- Global fit ingredients include LHC W, Z, jets, top
- Eg NNPDF 3.1 \rightarrow some low-x sensitive observables

→ ATLAS low mass Drell-Yan

 \rightarrow LHCb forward W & Z

- But which PDFs are they sensitive to?...

- And what impact do they have?

QUARK SENSITIVE LHC OBSERVABLES

- Electroweak gauge boson production
- Drell Yan below the Z pole
- W + charm

Differential W, Z Cross Sections

- Normalisation (~2% precision) already distinguishes PDF sets

- Differential distributions give added sensitivity, particularly to flavour decomposition ...

- Z p_T dist's also in NNPDF3.1 \rightarrow consistency, but limited impact

LHCb W and Z

- Forward kinematics (2 < η < 4.5) promising
- Full Run 1 data (7TeV and 8TeV) included in PDF fits
- Run 2 data also now published

LHCb W and Z data

- Ratios W/Z (or ratios of ratios 8TeV/7TeV) look powerful!
- The data have an impact (see shifts in central values) and reductions in uncertainties

x10-1

x^{10⁻¹}

0.6

10-2

Strange Density

Z differential rapidity distribution at central rapidity sensitive to s+sbar
Suggested strange not suppressed relative to u,d

Final states with W + charm more directly sensitive to strange

Measurements using fully reconstructed D(*) or leptons associated with jets.

Cross section comparisons at NLO ...

Latest ATLAS / CMS Word on Strange PDFs Including W+jet data

29

- Marginal agreement between ATLAS and CMS
- Plots extend to genuinely low x 😳

- Low x "parameterisation uncertainty" indicative of lack of direct constraints

Drell-Yan Below Z Pole

- Lowest x direct constraints come from DY q qbar \rightarrow l+l- at low m_{ll} \rightarrow eg ATLAS dedicated sample down to m_{ll} = 12 GeV

- Significant improvement in data description when NLO \rightarrow NNLO
- MSTW2008 PDFs adequate to describe \rightarrow well understood?...
- Now included in NNPDF3.1

Drell Yan at low mass in LHCb

- CONF note 2012 ... still yet to be published?...

- Data extend to m_{ll} = 5 GeV at forward rapidities!
- (NLO) comparisons with previous generations of PDF sets don't show much distinguishing power

31

- Improved experimental precision may be possible?

SUMMARY OF LHC IMPACT ON QUARKS

- LHC has contributed, mainly through low mass Drell-Yan, particularly to down density
- Primary constraints still come from HERA

GLUON SENSITIVE LHC OBSERVABLES

- Jet production

- Direct Photons

- Top Quarks

- Charm Production

- Rates very high
- Limited experimentally by jet Energy Scale Uncertainty and non-perturbative corrections to the jets
- Recent availability of NNLO calculations increases interest

e.g. ATLAS Dijet Data

- Remarkable kinematic range
- ~2% jet energy scale uncertainty

- QCD does impressive job of describing data extending to dijet invariant masses 5 TeV

- BUT kinematic region of mainstream jet analyses is high p_T and large invariant masses \rightarrow not generally well suited to low x physics Dedicated analysis
 in low pile-up sample
 leads to data at
 low(er) p_T and large |η|,
 with improved low-x
 sensitivity

- Also brings bigger non-perturbative corrections and associated uncertainties (hadronization, underlying event)

36
CMS 8 TeV Dijet Data

- In highest rapidity bins, low p_T data appear to deviate from all (NLO) predictions

- However, deviations are within the (large) experimental and theory uncertainties 37

CMS (NLO) QCD Analysis including jet data

- Some impact at lowest x and parameterization scale, in terms of addressing HERA param'n uncertainty

- Low x influence washes out with DGLAP evolution to large scales
- High x influence survives

ATLAS Direct Photons and NNLO

NNLO scale variation uncertainties much reduced and agreement with data improves

- Extend to lower values? - Issues with isolation / γ from frag?)

SUMMARY OF LHC IMPACT ON GLUONS

- (Mainstream) LHC data don't extend (much) below 10-3
- Current knowledge basically still comes from HERA
- Is there really no direct probe of gluon at lower x with well-controlled theory?... 41

Can we Expect More from Mainstream LHC? - With pile-up ever increasing (\rightarrow 200 at HL-LHC), systematics on 'standard candle' measurements unlikely to improve dramatically

- Kinematic range issues could be addressed with dedicated low p_T running and forward focus, but requires lots of work to reach good level of understanding and change of culture (always tensioned against loss of luminosity for searches etc)

- HL-LHC projections in optimistic scenarios suggest some limited further improvement down to $x \sim 10^{-4}$ by end of LHC era

New Observables? - Gluons from Charm

- Exclusive production of D mesons is dominated by gg \rightarrow ccbar

- Scale set by charm mass / $p_T \rightarrow$ LHC data at large rapidity are potentially highly sensitive to gluon

43

- Limited by charm cross section precision (exclusive D-meson reconstruction or inclusive secondary vertex tagging)

- Theory is NLO and subject to fragmentation uncertatinty \rightarrow Partially offset by use of normalized distributions and ratios of results from different CMS energies

- Hard to do in ATLAS and CMS due to trigger thresholds, but fairly mainstream at LHCb

Study of Impact of Published LHCb D mesons

- N5 + N7 + N13 is normalised data from $\sqrt{s} = 5$, 7 & 13 TeV

- Remarkable impact!
- Reasonable stability w.r.t. theory parameter variation
- "A future analysis at NNLO would be desirable"
- Are experimental issues fully under control?

Ultra-peripheral J/ Ψ (Photo)-Production

- [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon (at least for exclusives)
- Long studied in ep at HERA including unfolding $\sigma_{\rm T}\!\!,\,\sigma_{\rm L}$...
- LHC contributes via ultraperipheral collisions, which are also driven by photon exchange
- pA collisions are best-suited
 due to massively enhanced
 γ coupling to high Z nucleus

Attractions of J/Y Photoproduction

- Clean experimental signature (just 2 leptons)
 → good data from HERA and LHC!
- Scale $Q^2 \sim (Q^2 + M_V^2) / 4 > \sim 3 \text{ GeV}^2$ ideally suited to reaching lowest possible x whilst remaining in perturbative regime

... eg LHC reach extends to: $x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 10^{-5}$

Difficulties with J/Y Photoproduction

- Vector meson wavefuction
- Process requires GPDs (OK for x' << x << 1, but theoretically not at same level)
- Large scale uncertainties in collinear factorization approach (NLO v LO convergence)

Ultraperipheral J/¥ Latest from LHC

JMRT NLO gives excellent 'out-of-box' prediction (k_T facⁿ)
 There is power to add to these data 47

Interpretation in JMRT

- Remarkable sensitivity to choice of PDF
- Not well established theoretically, but surely worth pursuing!

- JMRT k_T factorization model (attempts to) overcome scale problems etc \rightarrow see recent Flett et al. paper

- Data uncertainties much smaller than PDF theory uncert's (band)

Any evidence for Saturation?

- No clear evidence in exclusive J/Ψ photoproduction for deviation from monatomic rise with increasing W (decreasing x).
- Additional variable t gives access to impact parameter (b) dependent amplitudes

... can in principle be studied at LHC ...

 $F_2^D = \sum_q e_q^2 \beta (q + \overline{q})$

р

$$\frac{\mathrm{d}\sigma_{r}^{D}}{\mathrm{d}\ln Q^{2}} \sim \frac{\alpha_{s}}{2\pi} \left[P_{qg} \otimes g \right]$$

 $+ P_{aa} \otimes q$

Diffractive Parton Densities (DPDFs)

- ... DPDFs extracted from HERA inclusive (F_2^{D}) data are PDFs, subject to constraint of leading proton (semi-inclusive facⁿ)

52

- Recently also extracted at NNLO (Khanpour, H1-prelim)

Testing Factorisation; HERA Jets & Charm

LHeC and FCC-eh would be Transformational

- Quark density directly constrained \rightarrow 2% precision
- Gluon uncertainty propagated from experimental data few %
- Param'n and other theory uncertainties not yet included

- Fits to simulated LHeC and FCC-eh Neutral Current inclusive diffraction data lead to well-constrained DPDFs down to β =10⁻⁴ - 10⁻⁵

... but in pp(bar)

- Spectacular failure in comparison of Tevatron proton-tagged diffractive dijets with HERA DPDFs [PRL 84 (2000) 5043]
- ... rescattering (absorptive corrections / related to Multi Parton Interactions ...) breaks factorisation ...

`rapidity gap survival probability' ~ 0.1

Gap survival probability needs to be understood to interpret all LHC hard diffraction data.

Diffraction at LHC: Proton Spectrometers Come of Age

LHC experiments (TOTEM, ALFA@ATLAS) have shown that it's possible to make precision measurements and cover wide kinematic range with Roman pots.

e.g. TOTEM operated 14 pots in 2017, with several at full LHC

lumi (~50ps timing and precision tracking detectors) \rightarrow Sensitivity to subtle new effects eg non-exponential t dep ...

Proton-tagged LHC Diffractive Jets

- Proton tagging removes the double dissociation and non-diffractive backgrounds that limited understanding with previous LHC rapidity gap measurements
- Predictions based on HERA DPDFs require <S²> ~7.4%
- Dynamic Gap Survival Model in PYTHIA (based on Simultaneous description of MPI) reproduces data
 → Lots more potential here!

Future Diffraction at LHC

- Most of the future diffractive programme will involve Roman Pot tagging in normal running conditions
- In practice this means we will study double tags (pp→ppX), suppressing pile-up background by constraining interaction vertex using precision timing of protons

- Inclusive central production

pomeron-pomeron hard scattering with jets, HF, W, Z signatures

- <u>Central Exclusive QCD Production</u> of dijets, γ-jet and other strongly produced high mass systems ... Higgs?...

 $W/Z/\gamma$ - <u>Two photon physics</u> \rightarrow exclusive dileptons, dibosons & anomalous $W/Z/\gamma$ multiple gauge couplings ... [Dominates at large masses]

First P-tagged yy Results

- CT-PPS fully installed from 2016, AFP from 2017
- Total of 110 fb⁻¹ accumulated by CT-PPS, 81 fb⁻¹ by AFP.
 - \rightarrow Transformational lumi compared with previous Roman pots
 - ightarrow Commissioning and data understanding ongoing
 - \rightarrow First results obtained (with single tags so far)

LHC Searches for BFKL Dynamics: Jet-gap_jet events

- Gaps between jets are a classic Signature for BFKL dynamics

- Complicated experimentally by difficulty of defining signal, theoretically by rapidity gap survival probability

Jet-gap-jet events and BFKL

Clear signal in case where there is no (visible) radiation in gap

- Comparison with Tevatron shows that gap survival falls with CMS energy
- BFKL-based calculations (EEI and MT) broadly successful with $<S^2> ~ 1\%$, including Dynamic model in PYTHIA
- Not yet a precision activity ...

Observables Sensitive to Novel Dynamics

- (Very) forward jet, particle production and energy flow
- Mueller-Navelet forward-backward jet pairs
- Azimuthal decorrelations between jets
- Jet broadening
- Correlations / p_T ordering of hadrons

LHC Example combining different signatures: Azimuthal Decorrelations between M-N jets

 Choice of Forward-backward highest E_T jets with comparable energy suppresses phase-space for DGLAP evolution

 Sensitivity enhanced at large azimuthal decorrelation due to
 Aq_{dije} = π

- Jets separated by up to $\Delta y = 9.4$ units!
- DGLAP-based models with appropriate tuning (LL parton showers and colour-coherence) can describe data
- LL BFKL model (HEJ) overestimates decorrelations
- Analytic NLL BFKL calculation agrees well with data

\rightarrow Will be increasingly interesting at higher CMS energy

Summary

- HERA leaves us with many questions about low x physics
 - Implications of fast-rising gluon?
 - Novel dynamics?
- While we wait for the next energy frontier DIS facility, can we exploit LHC?
- Current mainstream LHC data have some impact on low x quarks, but little on low x gluon
 - Dedicated (big!) effort could address this in some areas
 - New observables (charm-related) may be key?
- Diffraction at LHC bearing fruit \rightarrow opens up new CEP topics?...

Sooner or later, (FCC-hh), 'mainstream' will have to move to lower x ...

[Sincere apologies for the many topics that I omitted and for the lack of accreditation ⁶⁴ of work taken from elsewhere ... if only there were more time!]

Back-Ups Follow

Inclusive W, Z Cross Sections

Inclusive data show some discriminatory power
between PDF sets → tighten low(ish) x decompositon
W⁺ / W⁻ plane sensitive to u / d in sea quark region
W / Z plane sensitive to sea flavour asymmetries

bb

e.g. Strong Interactions v Photon-photon

... extensive programme of probing $\gamma\gamma$ vertex ... \rightarrow ZZ, WW, $\gamma\gamma$ final states ... \rightarrow Competitive sensitivity to anomalous quartic gauge cou

- QCD production dominates at low central system masses
- QED production (light-by-light) takes over at larger central system masses

anomalous quartic gauge couplings in large mass region

Asking the Question the Other Way Around

A more philosophical point ...

 → You can't use the same data to constrain parton densities and to discover new physics through deviations from predictions using those PDFs
 → New physics likely to be seen in tension between predictions with non-LHC PDFs and LHC data ⁶⁸

Parton Saturation after HERA?

e.g. Forshaw, Sandapen, Shaw hep-ph/0411337,0608161 ... used for illustrations here

Fit inclusive HERA data using dipole models with and without parton saturation effects

FS04 Regge (~FKS): 2 pomeron model, no saturationFS04 Satn: Simple implementation of saturationCGC: Colour Glass Condensate version of saturation

All three models can describe data with Q² > 1GeV², x < 0.01
Only versions with saturation work for 0.045 < Q² < 1 GeV²
... any saturation at HERA not easily interpreted partonically

Some models of low x F₂ with LHeC Data With 1 fb⁻¹ (1 year at 10³³ cm⁻² s⁻¹), 1° detector: stat. precision < 0.1%, syst, 1-3%

[Forshaw, Klein, PN, Soyez]

Precise data in LHeC region, $x > -10^{-6}$

Extrapolated HERA
 dipole models ...
 FS04, CGC models
 including saturation
 suppressed at low x &
 Q² relative to non-sat
 FS04-Regge

... new effects may not be easy to see and will certainly need low Q² ($\theta \rightarrow 179^{\circ}$) region ... ⁷⁰

Current Low x Understanding in LHC Ion Data

η dependence of pPb charged
particle spectra best described
by shadowing-only models
(saturation models too steep?)
... progress with pPb, but
uncertainties still large, detailed
situation far from clear

Uncertainties in low-x nuclear PDFs preclude precision statements on medium produced in AA (e.g. extent of screening of c-cbar potential)

Minimum Bias pA data

Low x Gluon with LHC, with and without LHeC

Standard LHC channels do not help much:

- ATLAS and CMS constraints as currently included in PDF fits (jets, top) don't extend below $x \sim 10^{-3}$.
- Other channels may help if theoretical issues can be overcome (LHCb c,b, maybe even exclusive $J/\Psi)$
- Current knowledge basically comes from HERA: stops at x~5.10⁻⁴
- LHeC gives constraints to $x \sim 10^{-6}$ from scaling violations and F_L
Low x Sea with LHC, with and without LHeC

LHC channels help, but not on same level as LHeC:

- ATLAS and CMS low mass Drell-Yan data have an impact
- Also potentially LHCb Drell-Yan
- Other channels may help (see eg ALICE direct photon / FOCAL)
- LHeC goes to x~10⁻⁶, directly from F₂

... this is what DIS does best ...

Closer look at Quality of LHC Predictions...

- Pretty good at electroweak scales (intermediate x)
- Still some differences (~5%) between global fits
- More limited at low and high x

Different Approaches and improved data in Perturbative region

e.g. NNPDF: NLO DGLAP description deteriorates when adding data in lines $Q^2 > Ax^{-0.3}$ parallel to 'saturation' curve in x/Q².

Final HERA-2 Combined PDF Paper:

"some tension in fit between low & medium Q^2 data... not attributable to particular x region" (though kinematic correlation)

... something happens ... interpretation?

LHeC: Accessing low x at large Q²

 Extending Q² range vital to fully unravel complex low x region
 Comparing eA and ep allows energy and density effects to be disentangled

... LHeC reaches saturated region in both ep & eA ₇₆ at perturbative Q2 according to models

THIS MIGHT BE HANDY (CTEQ PG28)

Figure 3.5: Comparison between NNPDF3.1, CT14 and MMHT2014 NNLO PDFs. The comparison is performed at Q = 100 GeV, and results are shown normalized to the central value of NNPDF3.1; the PDFs are as in Fig. 3.3.

Describing Vector Mesons in terms of Partons

Factorisation theorem

Dipole Models

step 1. γ fluctuation into
$$q \overline{q}$$
 dipole
step 2. dipole – proton interaction $A = \int dr^2 dz \Psi_{\gamma} \sigma(dip - p) \Psi_{V}$
step 3. pair recombination into VM

1. γ wave function

well known : Ψ(z, k_t) however : large |t| studies -> chiral odd contributions

3. pair recombination into VM

- VM wave function description ?
- role on $\sigma_{\!\mathsf{L}}\,/\,\sigma_{\!\mathsf{T}}\,$ and helicity amplitudes

- Basically known

- Limits theoretical precision 79

The Dipole-Proton Interaction

2. dipole – proton interaction - The interesting physics

In principle, VM production is a promising candidate to learn about the gluon distribution in the proton

Many models on the details of $\sigma(r)$!

What is the relevant scale?... r depends on Q^2 and M_v^2

$$Q_{eff}^2 = z (1-z) (Q^2 + M_v^2) \sim (Q^2 + M_v^2) / 4$$
 [MRT...]

Advantage of Diffractive DIS: Dipole Language

Inclusive Cross Section

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}(\alpha,\mathbf{r})|^2 \hat{\sigma}(x,r^2)$$

Diffractive DIS

 $\frac{d\sigma_{T,L}^D}{dt}\Big|_{t=0} = \frac{1}{16\pi} \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}\left(\alpha,\mathbf{r}\right)|^2 \hat{\sigma}^2\left(x,r^2\right)$

3) Extra factor of dipole cross section weights DDIS cross section towards larger dipole sizes \rightarrow enhanced sensitivity to saturation effects.

Signatures and Selection Methods

Scattered proton in Leading Proton Spectrometers (LPS)

Limited by statistics and p-tagging systematics

`Large Rapidity Gap' <u>(LRG)</u> adjacent to outgoing (untagged) proton

Limited by p-diss systematics

• The 2 methods have very different systematics

Diffractive : Inclusive Ratio

- Famous HERA plot ... Rather flat diffractive/inclusive ratio v x at fixed Q2, taken as evidence for saturation

Rather flat diffractive/inclusive ratio and failure of diffractive PDF fits to data below $Q^2 \sim 5 \text{ GeV}^2$ best described by 180 200 220 lipole models incorporating saturation ...

BOTTOM LINE ... HERA not conclusive on location or dynamics of onset and LHC has not given greater clarity

Diffractive DIS & Dipole Models

 $-\chi^2$ / ndf increases systematically in H1 DPDF fits when data of Q² < 8.5 GeV² are included (slightly lower in ZEUS) ... low Q² breakdown of pure Leading Twist DGLAP approach

- Not yet describing fine detail
- Unravelling this rich phenomonology can yield big rewards?

New Generation of Roman Pots

Future LHC diffractive Physics based on CT-PPS (CMS/TOTEM) & AFP (ATLAS) - Operated in Run 2 and will

remain in Run 3 (and possibly be upgraded for HL-LHC)

Precision (fairly) radiation hard silicon pixel spatial detectors
 Time of Flight detectors with ~ 25ps timing precision from
 Cerenkov light in diamond (CT-PPS) and quartz (AFP)

 \rightarrow Operate in normal LHC runnning conditions

→ Optimised for double proton-tagged processes, where vertex can be located to ~1mm from proton ToF, suppressing pile-up

AFP Observation of Single Diffractive Dijet Signal

- Single proton tagged sample with ξ measured in main ATLAS calorimeter

Strong enhancement in low ξ_{Cal}
 diffractive region for AFP triggered data over MBTS data
 + common pile-up contribution

Low ξ data exhibit expected x-y correlation in AFP pixels and correlation between pixel x position and ξ_{Cal}

 \rightarrow Clear diffractive signature

First High Lumi Study @ CT-PPS (9.4 fb⁻¹)

 $\gamma\gamma \rightarrow ee \text{ or } \mu\mu$

- Single proton tagged (so far)
- Dileptons required to be back to back
- Study correlation between ξ from proton and from l^+l^- pair $^{\dots}$

12 $\mu\mu$ events match in ξ (1.5±0.5 background) 8 ee events match in ξ (2.4±0.5 background)

ATLAS JET VETO and decorrelations ETC

Fig. 3 The measured gap fraction (*black dots*) as a function of a Δy and b $\overline{p_T}$. The *inner error bars* represent statistical uncertainty while the *outer error bars* represent the quadrature sum of the systematic and statistical uncertainties. For comparison, the predictions

from parton-level HEJ (*light-shaded cross-hatched band*), HEJ+ARIADNE (*mid-shaded dotted band*), POWHEG+PYTHIA8 (*dark-shaded hatched band*) and POWHEG+HERWIG (*dotted line*) are also included. The ratio of the theory predictions to the data is shown in the *bottom panel*

LHC Example combining different signatures: Azimuthal Decorrelations between M-N jets

LHC Example combining different signatures: Azimuthal Decorrelations between M-N jets

- Jets separated by up to $\Delta y = 9.4$ units

- DGLAP-based models with appropriate tuning (LL parton showers and colour-coherence) can describe data
- LL BFKL model (HEJ) overestimates decorrelations
- Analytic NLL BFKL calculation agrees well with data
 → Will be increasingly interestin at higher CMS energies

Inclusive Diffraction, Semi-Inclusive PDFs and Rapidity Gap Survival Probabilities

Vector meson production is a 'higher twist' (Q² suppressed) process

There are 'leading twist' diffractive processes with same Q² dependence as the bulk DIS cross section ...

~10% of DIS events have no forward ₉₁ energy flow

Measurements and Observables

Main observable is the Diffractive `reduced cross section' ...

$$\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) = F_2^{D(3)} - \frac{y^2}{Y_+} F_L^{D(3)} \approx F_2^{D(3)}$$

... cross section (or structure fn.) dependent on 3 variables ... 4 if you also include t $\rightarrow \sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t)$

... can only realistically study 1 (maybe 2) variables at a time!

A deeper factorisation?

'Proton vertex' factorisation ... completely separate (x_{IP}, t) from (β, Q^2) dependences.

$$f_i^D(x,Q^2,x_{IP},t) = f_{IP/P}(x_{IP},t) \cdot f_i^{IP}(\beta = x/x_{IP},Q^2)$$

No firm QCD basis, but consistent with all experimental data

... Regge-based parameterisation works well \rightarrow Ingelman-Schlein

SD Cross Section with Tagged Protons

- Reconstruct scattered protons in ALFA, X system in inner tracker
 - ND and DD backgrounds negligible
 - New: 'overlay' background
 - ... uncorrelated ALFA, ID signals
 - Also signigificant `Central

MERGE WITH NEXT OR DROP Piffraction' background

SD Cross Section v |t| and ξ

- Data consistent with expected exponential $\frac{d\sigma}{dt} = Ae^{Bt}$
- B = 7.60 ± 0.23(stat.) ± 0.22(syst.) GeV⁻²
- High precision, consistent with expectations:
- B(PYTHIA8 A2) = 7.82 GeV⁻², B(PYTHIA8 A3) = 7.10 GeV⁻²
- Expected approximate $d\sigma/d\xi \propto 1/\xi$ dependence holds over two orders of magnitude in ξ
- Further interpreted in `triple pomeron' model:

$$\frac{d\sigma_{SD}}{d\log_{10}(\xi)} \propto \left(\frac{1}{\xi}\right)^{\alpha(0)-1} \frac{1}{B} \left(e^{Bt_{\text{high}}} - e^{Bt_{\text{low}}}\right)$$

 $\alpha(0) = 1.07 \pm 0.02(\text{stat.}) \pm 0.06(\text{syst.}) \pm 0.06(\alpha')$... compatible with value describing elastic cross section \rightarrow universality

... compatible with models (PYTHIA8 A3: 1.14, PYTHIA8 A2 (SS): 1.00)

