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@] N-=4Super Yang-Mills °r

® Supersymmetric cousin of SU(N,) Yang-Mills theory.

® Spectrum:
= Gluon (spin 1, 2 pol.)
= Gluino (spin 1/2, 2 pol., 4 kinds)
= Scalar (spin 0, 6 kinds)

8 bosonic and

8 fermionic d.o.f.

® Conformal at the quantum level.

® Expected to be dual to string theory on AdSs x S° via AAS/CFT

COI’I’GSPODdel’lCG.

= Allows to explore strongly coupled regime.
® Could be looking at the hirst exactly solvable gauge theory mm 4D.
= N=4 SYM is the ‘hydrogen atom of the 21st centruy’.



@ Dual conformal symmetry ¢

® In the planar imit N. — o scattering amplitudes in N=4 SYM
have additional symmetries.

= Result of a duality between amplitudes and Wilson 100ps.
[Alday, Maldacena; Branshuber, Heslop, Spence, Travaglini;

D1 D6 Drummond, Henn, Korchemsky, Sokatchev]
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= Dual conformal symmetry = conformal symmetry in the z;.

= (Closes with ordinary conformal symmetry into an infinite-
dimensional Yangian symmetry. [Drummond, Henn, Plefka]

= Sign of integrability!?



@ Amplitudes in N=4 SYM  *°©

Symmetry fixes 4 & 5-point amplitudes completely.

® ['rom 6 points: amplitude determined up to a function of
conformally invariant cross ratios (‘remainder function’).
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® 6-point remainder function:

] [ Caron-Huot, Del Duca, Dixon,
= MHYV (--++++) known through 7 loops. CD. Dulat, Drummond.

Goncharov, Henn, von Hippel,

= NMHV (---+++) known through 5 loops. McLeod, Smirnov, Spradiin,

Pennington, Vergu, Volovich, ...]
® /-point remainder function:

= MHYV (---++++) known through 2 loops (+3&4-loop symbol).

[ Golden, Spradlin; Drummond, Papathansiou, Spradlin]
® Some results at strong and finite coupling.

[Alday, Maldacena; Alday, Gaiotto, Madacena, Sever, Vieira; Basso, Sever, Vieira]



@] N-=4Super Yang-Mills °r

® Mysterious property: ‘Maximal transcendentality’

= An L loop amplitude only contains polylogarithms of
‘transcendentality’ /weight 2L .

2 ©dt
1 1. os 21 - :/ G .t
A 2 Og P i 2 (ala'”vanaz) . t—a1 (a'27"°7a’n7 )
weight n

G(0;2) = log 2 log(—1) =4m

= MHYV (--++...) amplitudes are ‘pure’: coetficients in front of
polylogarithms are rational numbers (not functions!)

= Currently there 1s no explanation or proot.

= [t 1s known to hold for very large classes of amplitudes,
correlation functions, form factors, anomalous dimension, ...



(7 Multi-Regge kinematics (@]

® Definition of MRK:

p§>>pi>>...p;\r]_1>>p;\r], P3|~ ...~ |pN| pk:pi—l—ipz

® We know all remainder functions in the Euclidean region in

MRK:

= For all multiplicities and helicity configurations.

= [For all values of the coupling.




(7 Multi-Regge kinematics (@]

® This 1s no longer true if we go to other Riemann sheets!
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® Origin: Taking the multi-Regge limit does not commute with
analytic COntinuati()n, | Bartels, Lipatov, Sabio-Vera]

= Firstu — 1, then1 —u — *™(1 — u) :

= Firstl —u — 627Ti(1 —u), then v — 1:

Lig(1 —u) — Lig(1 —u) + 27ilog(1l — u) — 2milog 0



(7 Multi-Regge kinematics (@]

® The remainder 1s described by a BFKL-type equation.
X

+—>@+

C ’—) — Schnitzer; Bartels, Lipatov, Kormilitzin, Prygaryn;
Del Duca, Druc, Drummond, CD, Dulat, Marzucca,

Papathanasiou, Verbeek]
=

BFKL eigenvalue (octet)

nj/2
2 dv .
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[ Bartels, Lipatov, Sabio-Vera; Lipatov, Prygaryn,

27

Impact factor

Ty ~ T z: ~ transverse d.o.f.

= (Obvious generalisation to higher points.



@ Outhine

® The Fourier-Mellin space story:

= [ntegrability and all order results.

® The momentum-space story:

= The geometry of multi-Regge kinematics.

® The perturbative story:

= A complete picture of MRK to all orders.

= See also Robin’s talk!



The Fourier-Mellin

space story

Integrability and all

order results




ux tube picture e
@) Flux tube pi '

® The sides of the polygon source a flux tube.

A .
AdS radial Dual string

direction

e

[Basso@Amplitudes 16]
[Alday, Gaiotto, Madacena, Sever, Vieira]

® Can describe the Wilson loop/amplitude via the excitations of
the flux tube.

= The spectrum of excitations i1s known from integrabﬂity.
[ Basso]
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@ Pentagon transitions L

® In principle: Fully non-perturbative description of amplitudes.

vacC
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v [ Basso, Sever, Vieira]

= Transition probability P(41|¢2) known from integrability.

® In practise: Hard to make it concrete.

= So far only used for low numbers of points to obtain a
series expansion around the collinear limit.

= But first results on 6-point amplitude at finite coupling!

| Basso, Sever, Vieira]



@ MRK vs Flux Tube e

® BIKL-type equation very reminiscent of flux tube formulal

BFKL eigenvalue > Spectrum of excitations

Impact fac.tm: & —> Transition probability
central emission block P (1 |t2)
_)@ vac
|
Y
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® Flux-tube building blocks
obtained from integrability for
all values of the coupling.

® BFKL building blocks obtained

by analytically continuing the
flux-tube building blocks.

[ Basse, Caron-Huot, Sever]

® In a landmark paper Basso, Caron-Huot and Sever have
determined the octet BFKL eigenvalue and impact factors for all
values of the coupling!

= Sufhicient to compute 6-point amplitude to all orders in MRK.
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@ Central emission vertex — ©°

® We have recently determined the central emission vertex to all

Orders 1n the Coupllng o [Del Duca, Druc, Drummond, CD, Dulat,

Marzucca, Papathanasiou, Verbeek, to appear]

® Basic idea:

= Worite all-orders ansatz inspired by all order formulas for
eigenvalue and impact factor.

= Match ansatz to available perturbative data through ! loops.

= [Fxtrapolate beyond 3-loops.

® This conjecturally provides the last missing building block for
all order formula for amplitudes in MRK.



@ Convolutions e

® Next step: what happens In momentum space’

X

y 2
— — Ps H Z 2\ "/ dv; - oE oE
J J 29V ; h vimn h von —h
p2 p4h4 ~J . _‘Z]’ ZVJX 37-1 1 1C 47- 2 2X 5
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11,12
D6 hg
b1 pr [ Bartels, Lipatov, Sabio-Vera; Lipatov, Prygaryn, Schnitzer; Bartels,

. Lipatov, Kormilitzin, Prygaryn]

: : R N A ' 1 91
® Fourier-Mellin transform: F[F(v,n)]= ) (;) / o |27 Fv,n)

® Which F(v,n) can appear?



@y FM building blocks

® Integrability: In perturbation theory, integrand 1s a polynomaial

in multiple zeta values and

N IR
E(v,n) = 2,2 1 FY (1w + o )+ (1 —iv+ =5 ) = 29(1)
F(V,n):—%()+¢(1+w——)+¢(1—iy—g),

Vn) = ———7,  Nn)=——, Di=(—i)"d,

2 | n®
V—|-4 12

'n/
T
. 7 —’nl N =Y
M (vi, ng, v, ny) = 4 (Z(Vk — ) — ) < Vi — 1) ) )

® Example: NLO BFKL eigenvalue

1 1
Efn = =5 D0Bun+ 5V DuByn =GB, =3

1(1
ER) = g{g DE,,—V DE,, + (V?+2G)D2E,,, — V (N*+8()D,E,

+3(4V2 4+ N+ 444 B, + 166:¢ + 80C5} :



@ FM building blocks e“’

® Conclusion: We only need to understand how to compute FM
transforms that involve products of these building blocks.

® M transform maps products into convolutions:

2 2z
]:[F.G]:]-“[F]*]:[G]:f*g__ ,dpf() <w)

® What can we say about these integrals...?



The momentum-space
story

The geometry of

multi-Regge kinematics




@ Multi-Regge kinematics ~ #°

® Non-trivial kinematical dependence in transverse plane.

P4

P3
P1

D2
Pe6

P5

= Kinematics encoded into N — 2 points in transverse plane.

® Dual conformal invariance in transverse plane:

= Functional dependence only on N —5 cross ratios in
transverse plane:

(X1 — Xi43) (Xit2 — Xi41)
(X1 — Xit1) (Xit2 — Xiy3)

£ =



@ The moduli space My ,,  °©

® )iy, = moduli space space of Riemann spheres with n marked

points.

= space of configurations of 1 points on the
Riemann sphere.

® Forn=N—2:9y n_2 1s phase space’ of MRK.

= Fix 3 pomnts to 0,1, co.
- dim@ m(),n =—n—3

= (Coordinates are collectionof n—3=N -5
cross ratios

(X1 — Xi13) (Xiy2 — Xit1)

(%1 = Xit1) (Xit2 — Xiy3)

& =




@ The moduli space My ,,  °©

® [ix three points to 0,1, cc.

® iy 4 = complex plane with the points 0,1, 00 removed.

Mo 5

Y
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[ Figure: F. Brown]




@ [terated integrals on My ., e

® Singularities: ‘Degenerate’ configurations of points.

= 2 points become equal.

= Physically: momentum 1s soft.

® What are ‘natural integrals’ on this space?

= Should have singularities at most when x; = x;.

® All iterated integrals on g ,, can be written in terms of
polylogarithms. [Brown]

Z

2 dt G(ay;z) = log (1 — —)
Glai,...,an;2) = G(ag,...,an;t) ai
o t—a G(0,12) = ~Lis(2)

® Consequence: Amplitudes in MRK can be written in terms of

polylogarithms.

= Must have branch cuts dictated by unitarity!



@ Hopf algebras erc

® The geometry of My ,, and polylogarithms are well studied in
modern mathematics.

O Polylogarithms form a Hopt algebra. [Goncharov; Brown]

= Algebra: Vector space with an operation that allows one
to ‘fuse’ two elements into one (multiplication).

= (Coalgebra: Vector space with an operation that allows
one to break one element apart (coproduct A).

® A Hopf algebra 1s

= .t the same time an algebra & a coalgebra

= such that the product and coproduct are compatible
Ala-b) = Aa) - Ab)
= together with an antipode, a linear map S such that
m(S ®id)A(x) =0, ifx ¢ Q



Polylogarithms

[

O Polylogarithms form a Hopf algebra. [Goncharov; Brown]

AG(1;2) =G(1;2) @1+ 1R G(1; 2) G(1;z) = log(1 — 2)

A(G(0,1;2)) =G(0,1;2) @1+ G(1;2)  G(0;2) + 1 ® G(0, 15 2)

® Meaning of the two entries: discontinuities and derivatives.

ADisc = (Disc @ id)A A, = (id ® 9,)A

O Example: G(0,1;2) = —Lis(2)

= (G(0,1;2) has a branch cut starting at z =1 ...

=  butnotatz=0.



EPolylogarlthms & Amphtudes °

® Branch cuts are dictated by unitarity:

= Coproduct of amplitudes must ‘know’ about unitarity.

® Optical theorem: branch cuts can only start at 7, = (z; — z;)* = 0.

® Consequence: Logarithms that appear in first factor of
coproduct are highly constrained!

A(A) ~ log :c R . ADisc = (Disc ® id)A
® Consequence for MRK:

AAMEEY Llogx; — x)° ® ... = Single-valued function!

>0, if i

® Conclusion:

N -point scattering amplitudes in planar N=4 SYM in MRK
are single-valued iterated integrals on MMy n_2.




[@ Single-valued functions  °¢

® Single-valued polylogarithms = combinations of polylogarithms
and their complex conjugates such that all branch cuts cancel.

® One way to construct them: A map S that assigns to each

polylogarithm its single-valued version:

— M(S’ X ld)A [cf. Brown for MZV case]
u = multiplication g _ Complex conjugate of the
A = coproduct antipode (up to a sign)

Q Examples:
2

Ga(2) = s(G(a: 2)) = G(a; 2) + G(a: z) = log ‘1 _ 2
Gap(2) = s(G(a,b; 2)) = G(a,b; 2) + G(b,a; 2) + G(b; a) G(a; 2)
+G(b;a)G(a; z) — G(a;b) G(b; 2) + G(a; 2) G(b; 2) — G(a; b) G(b; 2)



[@ Single-valued functions  °¢

® Preserves multiplication: s(a-b) = s(a) - s(b)
® Preserves relations among polylogarithms.
® Commutes with holomorphic differentiation: 9,s =s9,

® Antipode corresponds to complex conjugation: s = s S

= Example:
G(a,b;z) = 8(G(a,b;2)) = G(b,a;2) +G(b;a) G(a; 2) — G(a; b) G(b; 2)

® Does not commute with anti-holomorphic differentiation:

= Example:

0.G(a,b; z) = - : - G(b;a) - : (G(a;z) — G(a;b))




The perturbative story

A complete picture of
MRK to all orders
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[@ Single-valued functions  °¢

® The theory of single-valued polylogarithms almost trivialises
the computation of the convolution integrals.

® Main idea:

= Recursive structure in the loop order (for fixed log accuracy).

‘F[XunE€+1XVn] o ‘F[XynEenXVn] * ‘F[EVn]

Z+ z
2|11 — z|?

FlE,,| =
= Convolution integral 1s a simple residue computation.

= See Robin’s talk!

® [Here: Focus on general consequences.



@ Factorisation L

® Consequence 1: Convolutions imply a factorisation theorem!

—_—
| )::m

o 11
(i1,12) . >
gh4h5h6 ~Y . h5

12
(="
® Theorem: _)F: _>F: ,

[Del Duca, Druc,
Drummond, CD ,Dulat,

Marzucca, Papathanasiou,

Verbeek; Bargheer]

~©: %

= Implies relations between amplitudes with different
numbers of legs.



() °
.......
.....

@ Factorisation for MHV ¢«

® Consequence: At L loops an MHV amplitudes in MRK 1s
determined by amplitudes with at most L + 4 external legs.

® Two loops, LLLA: Reduces to known factorisation:

Rf) 4+ = E lOg T gg_l_)'_ ( ,OZ) [ Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]

1<i<N-—5

® Three loops, LLA:

3 1 2 1,1
RE L =3 > log’m 92 (pi) + D logTilogm 9\ (pis pj) -
1<i<N—5 1<i<j<N—5



E Factorisation for non-MHV et

® Factorisation theorem still holds for non-MHYV amplitudes.

*Oi *O:h
—»O:’ —»©::

= Unlike MHV: infinite number building blocks per loop.

O Examp:_e:
N—5
9 0
73(_1 logﬁg() (p1) + ZlOgTJ 9( +J)r()017,03)
71=2

N-5
2 1,0 0,1 0,0,1
RSF)_+ = logm gg-——)|-(/017 p2) +log gg———)k(pla p2) + Z log 7; gs——‘|—‘)|'(p17 P2, Pj)

j=3



@) Helicity flips

® Consequence 2: Non-MHYV amplitudes from MHYV ones.

Q> + —_ Q@—> +

—(=1 —(=1

- _I_ - _I_
Fxt P et 5% x7] Flx 703" x7]

~FIX /XTI« FIxT P Cr st X

Z

® Heliaty thp kernel: Fx /x| = - (1= 2)

@ Helicity flips on central emission block are similar.

|



cte 00 0
........
.....

@ Transcendentality L

® Consequence 3: Complete characterisation of the function

space.

® Integrability: In perturbation theory, integrand 1s a polynomal
of mlkople zetagld ursmanlthiple zeta values and

Evn N(v,n) V(v,n) M(vi,n1,v2,n2) F(v,n) D, weight 1

® Example: NLO BFKL eigenvalue

1 1 .
E,(/,l% — _Z DI%EI/,TL + 5 V DVEI/,’I’L Il CQ El/,n — 3 <.-3 Welght 3

1(1
E,g?,g — g{g D)E,,—V DE,, +(V*+2G)D2E,,, —V (N*+8()D,E, .,

+GUAVE+ N?) + 446G By, + 166G + 80C5} , weight 5



Transcende ntality

[

® Theorem: If A(2) is a pure combination of SVMPLs of uniform
weight 1, then A(z) * F|X|, with X ¢ {E,V,N,M,F,D},is a
pure combination of SVMPLs of uniform weight n + 1.

® All two-loop MHV amplitudes in MRK are known, e.g., at LLLA:

R(Q) = log T; (1) : | Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]
+..+ ETi g1+ \Pi ryg p g ryg p

1<i<N-5
[NLLA: Bargheer, Papathanasiou, Schomerus; Del Duca, Druc, Drummond, CD,
Dulat, Marzucca, Papathanasiou, Verbeek; Del Duca, CD, Dulat, Penante]

= They are all pure functions of uniform weight!

® We can recursively characterise the function space to all orders.



Transcende ntality

[

Theorem: All amplitudes in MRK in planar N=4 SYM are
combinations of uniform weight of SVIMPLs, (single-valued) multi
zeta values and powers of 27t .

In addition:

— MHYV amplitudes are pure functions (no rational prefactors).

— Non-MHYV amplitudes are not pure.

[ Del Duca, Druc, Drummond, CD, Dulat, Marzucca, Papathanasiou, Verbeek, to appear]

® Why are MHV amplitudes not pure?

F[X_/Xﬂ *-F[X+T1CLE0+T2CLEX_} ]:[X_/Xﬂ — (1_ZZ)Q

Requires residues at double pole ~ derivative



@ Conclusion & Outlook @

® We have a solution of scattering amplitudes of planar N=4 SYM
in MRK in this Mandelstam region to all orders in the coupling.

= (Conjectural) all-order formula for BFKL eigenvalue,
impact factor & central emission vertex.

= (Geometric picture of the kinematics.

= Algorithmic way of doing all Fourier-Melling integrals
® Applications: (see Robin’s talk)

= Explicit results.

= Complete description of MRK function space.



