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N=4 Super Yang-Mills

• Spectrum:
➡ Gluon (spin 1, 2 pol.)
➡ Gluino (spin 1/2, 2 pol., 4 kinds)
➡ Scalar (spin 0, 6 kinds)

8 bosonic and 
8 fermionic d.o.f.

• Supersymmetric cousin of              Yang-Mills theory.SU(Nc)

• Conformal at the quantum level.

• Expected to be dual to string theory on                  via AdS/CFT 
correspondence.

AdS5 ⇥ S5

➡ Allows to explore strongly coupled regime.

• Could be looking at the first exactly solvable gauge theory in 4D.
➡ N=4 SYM is the ‘hydrogen atom of the 21st centruy’.



Dual conformal symmetry
• In the planar limit               scattering amplitudes in N=4 SYM 

have additional symmetries. 
➡ Result of a duality between amplitudes and Wilson loops.
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➡ Closes with ordinary conformal symmetry into an infinite-
dimensional Yangian symmetry.

➡ Sign of integrability!?

➡ Dual conformal symmetry = conformal symmetry in the    . xi

Nc ! 1
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Amplitudes in N=4 SYM
• Symmetry fixes 4 & 5-point amplitudes completely.

• From 6 points: amplitude determined up to a function of 
conformally invariant cross ratios (‘remainder function’).
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• 6-point remainder function: 
➡ MHV (--++++) known through 7 loops.
➡ NMHV (---+++) known through 5 loops.

• 7-point remainder function: 
➡ MHV (---++++) known through 2 loops (+3&4-loop symbol).

• Some results at strong and finite coupling.

[Caron-Huot, Del Duca, Dixon, 
CD, Dulat, Drummond, 

Goncharov, Henn, von Hippel, 
McLeod, Smirnov, Spradlin, 

Pennington, Vergu, Volovich, …]

[Golden, Spradlin; Drummond, Papathansiou, Spradlin]

[Alday, Maldacena; Alday, Gaiotto, Madacena, Sever, Vieira; Basso, Sever, Vieira]



N=4 Super Yang-Mills

• Mysterious property: ‘Maximal transcendentality’
➡ An     loop amplitude only contains polylogarithms of 

‘transcendentality’/weight      . 
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➡ MHV (--++…) amplitudes are ‘pure’: coefficients in front of 
polylogarithms are rational numbers (not functions!)

G(0; z) = log z
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➡ Currently there is no explanation or proof.

➡ It is known to hold for very large classes of amplitudes, 
correlation functions, form factors, anomalous dimension, …



Multi-Regge kinematics
• Definition of MRK:

• We know all remainder functions in the Euclidean region in 
MRK:

momenta

p± ≡ p0 ± pz , pk ≡ pk⊥ = pxk + ipyk . (2.13)

Using this decomposition, the scalar product between two four vectors p and q is given by

2p · q = p+q− + p−q+ − pq̄− p̄q . (2.14)

Without loss of generality we may choose a reference frame such that the momenta of the

initial state gluons p1, p2 lie on the z-axis with pz2 = p02, which implies p+1 = p−2 = p1 =

p2 = 0. Then the multi-Regge limit is defined as the limit where the outgoing gluons

with momenta pi, i ≥ 3, are strongly ordered in rapidity (or equivalently in the lightcone

+-coordinates) while having comparable transverse momenta,

p+3 ≫ p+4 ≫ . . . p+N−1 ≫ p+N , |p3| ≃ . . . ≃ |pN | . (2.15)

The mass-shell condition p2i = p+i p
−
i − |pi|2 = 0 implies that

p−N ≫ p−N−1 ≫ . . . p−4 ≫ p−3 . (2.16)

The ordering between the lightcone coordinates in eq. (2.15) implies the following hierarchy

between the Lorentz invariants,

s12 ≫ s3···N−1, s4···N ≫ s3···N−2, s4···N−1, s5···N ≫ · · ·
. . . ≫ s34, . . . , sN−1N ≫ −t1, · · · ,−tN−3 ,

(2.17)

with ti held fixed, where

si(i+1)...j ≡ (pi + pi+1 + . . . + pj)
2 = x2(i−1)j , (2.18)

ti+1 ≡ q2i , qi ≡ p2 + . . .+ pi+3 = x1(i+3) . (2.19)

Let us briefly sketch how the hierarchy in eq. (2.17) follows from the strong ordering in

lightcone coordinates, eq. (2.15). In MRK momentum conservation can be written in the

form

p−1 = −
N∑

i=3

p−i ≃ −p−N , p+2 = −
N∑

i=3

p+i ≃ −p−3 , 0 =
N∑

i=3

pi , (2.20)

and the two-particle invariants in MRK become

s12 = 2p1 · p2 ≃ p+3 p
−
N

s1i = 2p1 · pi ≃ −p+i p
−
N

s2i = 2p2 · pi ≃ −p+3 p
−
i

sij = 2pi · pj ≃ p+i p
−
j , 1 ≤ i < j ≤ N .

(2.21)

From the last line of eq. (2.21), it is evident that all Mandelstam invariants made of k

consecutive final state momenta sii+1...i+k ≃ sii+k will be comparable in size, and much

larger than invariants made of k − 1 consecutive momenta. This proves the hierarchy
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pk = pxk + ipyk

➡ For all multiplicities and helicity configurations.

➡ For all values of the coupling.

0



Multi-Regge kinematics
• This is no longer true if we go to other Riemann sheets!

+
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+

+
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= 0
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• Origin: Taking the multi-Regge limit does not commute with 
analytic continuation.

1� u ! e2⇡i(1� u)
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• The remainder is described by a BFKL-type equation.
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[Bartels, Lipatov, Sabio-Vera; Lipatov, Prygaryn, 
Schnitzer; Bartels, Lipatov, Kormilitzin, Prygaryn; 

Del Duca, Druc, Drummond, CD, Dulat, Marzucca, 
Papathanasiou, Verbeek]
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Impact factor Central emission vertex
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➡ Obvious generalisation to higher points.
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Outline

• The Fourier-Mellin space story:

➡ Integrability and all order results.

➡ The geometry of multi-Regge kinematics.

• The momentum-space story:

• The perturbative story: 

➡ A complete picture of MRK to all orders.

➡ See also Robin’s talk!



The Fourier-Mellin 
space story

Integrability and all 
order results



Flux tube picture

1+1d background :  flux tube sourced by two parallel null lines

Collinear / OPE regime

Sum over all flux-tube eigenstates

bottom&top cusps excite the flux tube out of its ground state

Flux

Dual stringAdS radial
direction

W =
X

states 

Cbot( )⇥ e�E( )⌧+ip( )�+im( )� ⇥ Ctop( )

[Alday,Gaiotto,Maldacena,Sever,Vieira’09]

Monday, July 4, 16

• The sides of the polygon source a flux tube.

• Can describe the Wilson loop/amplitude via the excitations of 
the flux tube. 

➡ The spectrum of excitations is known from integrability.

[Basso@Amplitudes 16]

[Alday, Gaiotto, Madacena, Sever, Vieira]

[Basso]



Pentagon transitions

=
X

 

Z
dµP (0| ) e�E⌧+ip+im�1 P ( |0)

• In principle: Fully non-perturbative description of amplitudes.

 

vac

vac

➡ Transition probability              known from integrability.P ( 1| 2)

• In practise: Hard to make it concrete.

➡ So far only used for low numbers of points to obtain a 
series expansion around the collinear limit.

➡ But first results on 6-point amplitude at finite coupling!

[Basso, Sever, Vieira]

[Basso, Sever, Vieira]



MRK vs Flux Tube
• BFKL-type equation very reminiscent of flux tube formula!

BFKL eigenvalue Spectrum of excitations
Impact factor & 
central emission block

Transition probability 
P ( 1| 2)

 

vac

vac

=
X

 

Z
dµP (0| ) e�E⌧+ip+im�1 P ( |0)
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MRK vs Flux Tube

2g
�2g u

a)

b)

⌫

�
⇡
2�cusp

⇡
2�cusp

Figure 11. Contour of integration for the BFKL mode m = 0 in ⌫ space a) and in u space b).
The contour implements the Feynman-like i✏-prescription [43] for integrating around the poles of the
m = 0 impact factor at ⌫ = ±

⇡
2�cusp. Two copies of the rapidity plane are needed to cover the full

integration range. They are depicted by the lower and upper sheet in figure b). The former sheet,
which is associated to the parametric representation (4.6) of the m = 0 eigenvalue, only accommodates
for ⌫ in the real intervals |⌫| > ⌫0 = ⌫(u = 2g). To access to the inner interval |⌫| < ⌫0, one should
analytically continue eqs. (4.6) to the upper sheet, by passing through the cut stretching between
u = ±2g. On this sheet the function !(u) and ⌫(u) are invariant under u ! u ± i. This periodicity
allows us to wrap this u plane into a cylinder of radius i, as done in figure b). The ends of this cylinder
map to the points (!, ⌫) = (0,±⇡

2�cusp), respectively. The (red) line, which stands ‘ i2 ’ away from the
cut, covers the interval |⌫| < ⇡

2�cusp through the representation (C.6).

in (C.1). This allows us to pass through the cut and obtain a representation on the second

sheet. We immediately find

! =

1Z

0

dt

t

�+(2gt) cos (ut)

et � 1
+

1

2

1Z

0

dt

t
�+(2gt)e

⌥iut
,

⌫ =

1Z

0

dt

t

��(2gt) sin (ut)

et � 1
±

i

2

1Z

0

dt

t
��(2gt)e

⌥iut
,

(C.3)

which holds within a strip in the lower/upper half plane, respectively. Using the formu-

lae (C.2) one verifies that the two representations (C.3) agree for u2 > (2g)2. It means that

crossing the cut from above or from below boil down to the same operation and lead to the

– 39 –

• Flux-tube building blocks 
obtained from integrability for 
all values of the coupling.

• BFKL building blocks obtained 
by analytically continuing the 
flux-tube building blocks.

[Basse, Caron-Huot, Sever]

• In a landmark paper Basso, Caron-Huot and Sever have 
determined the octet BFKL eigenvalue and impact factors for all 
values of the coupling!

➡ Sufficient to compute 6-point amplitude to all orders in MRK.



Central emission vertex
• We have recently determined the central emission vertex to all 

orders in the coupling.

➡ Write all-orders ansatz inspired by all order formulas for 
eigenvalue and impact factor.

• Basic idea:

➡ Match ansatz to available perturbative data through 3 loops.

➡ Extrapolate beyond 3-loops.

• This conjecturally provides the last missing building block for 
all order formula for amplitudes in MRK.

[Del Duca, Druc, Drummond, CD, Dulat, 
Marzucca, Papathanasiou, Verbeek, to appear]
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half νk−1 plane (or the lower half νk plane). Finally the shift (2.44) takes the pole slightly

into the upper half νq−1 plane.

Equation (2.37) can be written as an inverse multiple Fourier-Mellin transform. The

(inverse) Fourier-Mellin transform of a function F (ν, n) is defined as

f(z) = F [F (ν, n)] =
+∞∑

n=−∞

(z
z̄

)n/2 ∫ +∞

−∞

dν

2π
|z|2iν F (ν, n) , (2.45)

where z ∈ C. This integral transform is invertible, and its inverse is given by

F−1[f(z)] =

∫
d2z

π
z−1−iν−n/2 z̄−1−iν+n/2 f(z) , (2.46)

with the usual metric on the complex plane

d2z = −dz ∧ dz̄

2i
= dx ∧ dy = r dr ∧ dϕ , for z = x+ iy = reiϕ . (2.47)

The Fourier-Mellin transform has the property that it maps ordinary products into convo-

lutions. More precisely, if F [F ] = f and F [G] = g, then

F [F ·G] = F [F ] ∗ F [G] = f ∗ g , (2.48)

where the convolution is defined by

(f ∗ g)(z) =
1

π

∫
d2w

|w|2
f(w) g

( z
w

)
. (2.49)

A proof of the convolution theorem for the Fourier-Mellin transform is given in Appendix A.

It is easy to see that the convolution product is associative and commutative, and the

distribution π δ(2)(1− z) is a neutral element.

We conclude this section by quoting some properties of the Fourier-Mellin space func-

tions that enter eq. (2.37). For nk = 0, the BFKL eigenvalue and the central emission

block have the following properties [61,63,72,90,94–96],

lim
ν→0

Eν0 = 0 , (2.50)

lim
ν→0

C±(ν, 0, µ,m) = χ±(µ,m) , (2.51)

lim
µ→0

C±(ν, n, µ, 0) = −χ∓(ν, n) , (2.52)

Resν=µC
±(ν, n, µ, n) = (−1)n i . (2.53)

Note that Eν0 vanishes quadratically as ν → 0 due to its symmetry under ν ↔ −ν. As we
will see shortly, the above relations guarantee that eq. (2.37) has the correct soft behaviour.

In order to prove the last relation (2.53), we need the following identity,

sinπ(n2 + iν)

sinπ(n2 − iν)
= (−1)n+1 , n ∈ Z . (2.54)
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[Bartels, Lipatov, Sabio-Vera; Lipatov, Prygaryn, Schnitzer; Bartels, 
Lipatov, Kormilitzin, Prygaryn]

• Fourier-Mellin transform:
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• Next step: what happens in momentum space?

• Which             can appear?F (⌫, n)
<latexit sha1_base64="QhPYTa+88gYQCIsUZlewkY7CPvM=">AAACBXicbVDLSgMxFL1TX7W+qi7dBItQQcpMFXRZEMRlBVsL7VAyaaYNTTJDkhHKUHDn3q3+gjtx63f4B36GmbYL23rgwuGce3NvThBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqhVgTTmTtGGY4bQVK4pFwOlDMLzO/IdHqjSL5L0ZxdQXuC9ZyAg2VmrdlDsyOZOn3WLJrbgToGXizUgJZqh3iz+dXkQSQaUhHGvd9tzY+ClWhhFOx4VOommMyRD3adtSiQXVfjq5d4xOrNJDYaRsSYMm6t+JFAutRyKwnQKbgV70MvE/r52Y8MpPmYwTQyWZLgoTjkyEss+jHlOUGD6yBBPF7K2IDLDCxNiI5rZkbysd6nHBRuMtBrFMmtWKd16p3l2UarWnaUh5OIJjKIMHl1CDW6hDAwhweIFXeHOenXfnw/mctuacWbCHMAfn6xfa95kf</latexit>



FM building blocks
• Integrability: In perturbation theory, integrand is a polynomial 

in multiple zeta values and

Contents

1 Building Blocks 1

2 MHV Amplitudes 1

2.1 Form of MHV Amplitudes 3

2.2 The Building Block M 4

2.3 The Building Block D
n
⌫M 6

3 non-MHV Amplitudes 6

1 Building Blocks

In this note we will show that amplitudes in MRK in N = 4 SYM can be expressed to

all orders in terms of single-valued polylogarithms. In order to prove this statement, we

will make use of the fact, that the perturbative coe�cients can be expressed in terms of

Fourier-Mellin integrals of combinations of a small set of building blocks, namely

E(⌫, n) = �
1

2

|n|

⌫2 +
n2

4

+  

✓
1 + i⌫ +

|n|

2

◆
+  

✓
1� i⌫ +

|n|

2

◆
� 2 (1) , (1.1)

F (⌫, n) = �2 (1) +  

⇣
1 + i⌫ �

n

2

⌘
+  

⇣
1� i⌫ �

n

2

⌘
, (1.2)

V (⌫, n) =
i⌫

⌫2 +
n2

4

, N(⌫, n) =
n

⌫2 +
n2

4

, D
n
⌫ ⌘ (�i)

n
@
n
⌫ , (1.3)

M(⌫k, nk, ⌫l, nl) =  

✓
i(⌫k � ⌫l)�

nk � nl

2

◆
+  

✓
1� i(⌫k � ⌫l)�

nk � nl

2

◆
, (1.4)

H0(⌫, n) =
�
�
0 (⌫, n)

�
+
0 (⌫, n)

, (1.5)

$N = �
+
0 (⌫1, n1)

 
N�6Y

k=1

C
+
0 (⌫k, nk, ⌫k+1, nk+1)

!
�
�
0 (⌫N�5, nN�5) . (1.6)

2 MHV Amplitudes

In this section we show that MHV amplitudes in MRK are pure functions of uniform weight

to all logarithmic orders and to all orders in perturbation theory. To show this, we will

look at the individual building blocks and show that the convolution of their Fourier-Mellin

transforms with a pure function with uniform transcendental weight will not generate any

leading singularities and will raise the weight by the correct amount. Throughout this

proof we will repeatedly make use of the following Lemma.
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• FM transform maps products into convolutions:

half νk−1 plane (or the lower half νk plane). Finally the shift (2.44) takes the pole slightly

into the upper half νq−1 plane.

Equation (2.37) can be written as an inverse multiple Fourier-Mellin transform. The

(inverse) Fourier-Mellin transform of a function F (ν, n) is defined as

f(z) = F [F (ν, n)] =
+∞∑

n=−∞

(z
z̄

)n/2 ∫ +∞

−∞

dν

2π
|z|2iν F (ν, n) , (2.45)

where z ∈ C. This integral transform is invertible, and its inverse is given by

F−1[f(z)] =

∫
d2z

π
z−1−iν−n/2 z̄−1−iν+n/2 f(z) , (2.46)

with the usual metric on the complex plane

d2z = −dz ∧ dz̄

2i
= dx ∧ dy = r dr ∧ dϕ , for z = x+ iy = reiϕ . (2.47)

The Fourier-Mellin transform has the property that it maps ordinary products into convo-

lutions. More precisely, if F [F ] = f and F [G] = g, then

F [F ·G] = F [F ] ∗ F [G] = f ∗ g , (2.48)

where the convolution is defined by

(f ∗ g)(z) =
1

π

∫
d2w

|w|2
f(w) g

( z
w

)
. (2.49)

A proof of the convolution theorem for the Fourier-Mellin transform is given in Appendix A.

It is easy to see that the convolution product is associative and commutative, and the

distribution π δ(2)(1− z) is a neutral element.

We conclude this section by quoting some properties of the Fourier-Mellin space func-

tions that enter eq. (2.37). For nk = 0, the BFKL eigenvalue and the central emission

block have the following properties [61,63,72,90,94–96],

lim
ν→0

Eν0 = 0 , (2.50)

lim
ν→0

C±(ν, 0, µ,m) = χ±(µ,m) , (2.51)

lim
µ→0

C±(ν, n, µ, 0) = −χ∓(ν, n) , (2.52)

Resν=µC
±(ν, n, µ, n) = (−1)n i . (2.53)

Note that Eν0 vanishes quadratically as ν → 0 due to its symmetry under ν ↔ −ν. As we
will see shortly, the above relations guarantee that eq. (2.37) has the correct soft behaviour.

In order to prove the last relation (2.53), we need the following identity,

sinπ(n2 + iν)

sinπ(n2 − iν)
= (−1)n+1 , n ∈ Z . (2.54)
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• Conclusion: We only need to understand how to compute FM 
transforms that involve products of these building blocks.

• What can we say about these integrals…?

FM building blocks
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Multi-Regge kinematics

p1

p2

p3
p4

p5
p6

• Non-trivial kinematical dependence in transverse plane.

➡ Kinematics encoded into           points in transverse plane.N � 2

• Dual conformal invariance in transverse plane:

q0

q1

qN−5

qN−4

kN−4

kN−5

k2

k1

...
x1

x2

x3

xN−3

xN−2

Figure 5: The dual coordinates in the transverse space. Dashed lines indicate the for-

ward momenta with zero transverse momentum, which are strictly speaking absent in the

transverse momentum space because they are orthogonal to it.

We also introduce the transverse cross ratios

zi ≡ 1− 1

ξi
=

(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= − qi+1 ki

qi−1 ki+1
. (2.28)

In the literature it is customary to use the variables wi ≡ −zi.

It is easy to see from Fig. 5 that the MRK setup has a natural Z2 symmetry, called

target-projectile symmetry [86, 88], which acts by reflecting all the points along the hori-

zontal symmetry axis. This symmetry acts on the points xi via

xi #→
{
x1 , if i = 1 ,

xN−i , if 2 ≤ i ≤ N − 2 .
(2.29)

On the cross ratios zi target-projectile symmetry acts by

zi #→ 1/zN−4−i . (2.30)

In the previous section we have seen that the kinematics of scattering amplitudes in

planar N = 4 SYM are naturally encoded through a configuration of N momentum twistors

in three-dimensional projective space CP3. In the remainder of this section we show that

there is a very natural geometrical interpretation of MRK in terms of momentum twistors.

More precisely, we will show that the dual conformal invariance of planar N = 4 SYM

implies that the multi-Regge limit defined in eq. (2.15) is conformally equivalent to the

strongly-ordered multi-soft limit where the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi
softer than pi+1.

Before proving the connection between the multi-Regge and soft limits, let us discuss

in more detail how to take a single soft limit in momentum twistor space. In terms of

dual coordinates, the momentum pi+1 is soft if the points xi and xi+1 coincide. As the

points xi correspond to lines in momentum twistor space, the soft limit corresponds to the

limit where the momentum twistors Zi−1, Zi and Zi+1 are aligned. In other words, to set
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➡ Functional dependence only on           cross ratios in 
transverse plane:

N � 5
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The moduli space   M0,n

•           = moduli space space of Riemann spheres with    marked   
points.

          = space of configurations of     points on the 
Riemann sphere.

the multi-soft limit, it is easy to show that all the Uij tend to 1 in MRK. We introduce

new reduced cross ratios which have a finite multi-Regge limit,

Ũij ≡
1− Uij∏j−4

k=i−1(1− u1k)
→

∣∣∣∣∣
xi − xj−1

xi − xi+2

j−3∏

k=i+1

xk − xk+1

xk − xk+2

∣∣∣∣∣

2

. (3.4)

From eq. (3.4) we see that all the Uij approach 1 at different speeds in the multi-soft limit.

Indeed, the multi-soft limit is approached sequentially according to ϵ2 ≪ ϵ3 ≪ . . . ≪ ϵN−4,

where ϵi are the small parameters introduced in eq. (2.31). Since u1i = 1+O(ϵi+1), we see

that Uij = 1 +O(ϵi . . . ϵj−4), and so all the Uij approach 1 at a different speed.

We now show that the first entries of the perturbative coefficients reduce to absolute

values squared of cross ratios in CP1 (up to logarithmically divergent terms that are ab-

sorbed into the definition of the τk). Let us first look at the case where the first letter

is d logUijkl. It is sufficient to analyse the multiplicatively independent cross ratios in

eq. (3.3). They all tend to 1, except for u2i and u3i, which we may exchange for the corre-

sponding reduced cross ratios ũ2i and ũ3i. The latter reduce to absolute values squared of

cross ratios in CP1, see eq. (2.25).

Next, let us analyse the case of a letter of the type d log(1−
∏

ijkl U
nijkl

ijkl ). It is sufficient

to assume that the factors in the product are taken from eq. (3.3). If one of the factors

goes to zero in MRK, then the claim is true, because we have for example,

d log(1− un2i U) →
{
n d log u2i + d logU , if n < 0 ,

0 , if n > 0 ,
(3.5)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the

product
∏

ijkl U
nijkl

ijkl tend to 1, then we know that one of the factors tends to one much

slower than the others. Hence, up to terms that are power-suppressed in MRK, we only

need to keep this factor. The claim then follows from eq. (3.4).

The previous discussion implies that the coefficients appearing in the perturbative

expansion of scattering amplitudes in planar N = 4 SYM are iterated integrals with singu-

larities described by the cluster algebra AN−5 ×AN−5 and whose first letters are absolute

values squared of cross ratios. As the first entries describe the branch points of the function,

we conclude that the perturbative coefficients have no branch cuts when seen as functions

of the complex points xi. In other words, these iterated integrals must define single-valued

functions on the moduli space of Riemann spheres with N − 2 marked points. In the re-

mainder of this section we review the theory of single-valued iterated integrals on M0,N−2.

We first discuss ordinary, not necessarily single-valued, iterated integrals on M0,N−2, and

we turn to the construction of their single-valued analogues at the end of the section.

3.2 Coordinate systems on M0,n

In this section we review various coordinate systems on M0,n which are useful to study

iterated integrals and the multi-Regge limit. As a geometric space, we can describe M0,n

by configurations of n distinct points on the Riemann sphere. We identify configurations
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that are related by conformal transformations. As SL(2,C) has complex dimension 3, we

immediately see that

dimC M0,n = n− 3 . (3.6)

Roughly speaking, since M0,n is SL(2,C)-invariant, a system of coordinates is given

by a set of cross ratios formed out of the points xi. There is no global coordinate system

on M0,n. One such set of cross ratios is given by the cross ratios zi defined in eq. (2.28).

We will refer to these coordinates as Fourier-Mellin coordinates. These coordinates are

well suited to write down the Fourier-Mellin transforms that describe amplitudes in MRK.

These coordinates, however, are not ideal to describe the iterated integrals on M0,n.

In ref. [41] various local systems of coordinates are discussed that are well suited to

study iterated integrals on M0,n. A particularly simple set of local coordinates are the

simplicial coordinates, obtained by using the SL(2,C) invariance to fix three of the n

points to 0, 1 and ∞, e.g.,

(x1, . . . ,xn) → (0, 1,∞, t1, . . . , tn−3) , with ti−3 =
(xi − x1)(x2 − x3)

(xi − x3)(x2 − x1)
, 4 ≤ i ≤ n . (3.7)

Note that there are 6
(n
3

)
= n(n − 1)(n − 2) different choices for simplicial coordinates,

depending on which three points we fix to (0, 1,∞). Using simplicial coordinates we can

describe M0,n (roughly speaking) as the space

{(t1, . . . , tn−3) ∈ Cn−3|ti ≠ 0, 1 and ti ≠ tj} . (3.8)

While there is in principle no reason to prefer one particular choice of simplicial coordi-

nates over the other, some choices are more suited to MRK than others. In particular, it is

useful to choose the coordinates so that they transform nicely under the symmetries of the

problem. In our case, we prefer to choose simplicial coordinates on which target-projectile

symmetry acts in a simple way. It is easy to check that the simplicial coordinate systems

with this property are defined by fixing the points (x1,xk,xN−k), 2 ≤ k ≤
⌈
N−1
2

⌉
. In

addition, for N even the set of simplicial coordinates defined by fixing (xN/2,xk,xN−k)

also has this property.

There is one particular choice of simplicial coordinates with the nice property that

in these coordinates the two-loop MHV amplitudes factorise into sums of six-point ampli-

tudes [83–85]. They are defined by

(x1, . . . ,xN−2) → (1, 0, ρ1, . . . , ρN−5,∞) . (3.9)

We refer to these coordinates as simplicial MRK coordinates. From the previous discus-

sion it follows that simplicial MRK coordinates transform nicely under target projectile

symmetry,

(ρ1, . . . , ρN−5) '→ (1/ρN−5, . . . , 1/ρ1) . (3.10)

Simplicial MRK coordinates are related to the Fourier-Mellin coordinates by

zi =
(ρi − ρi−1)(ρi+1 − 1)

(ρi − ρi+1)(ρi−1 − 1)
, (3.11)
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➡ Coordinates are collection of                        
cross ratios
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We also introduce the transverse cross ratios

zi ≡ 1− 1

ξi
=

(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= − qi+1 ki

qi−1 ki+1
. (2.28)

In the literature it is customary to use the variables wi ≡ −zi.

It is easy to see from Fig. 5 that the MRK setup has a natural Z2 symmetry, called

target-projectile symmetry [86, 88], which acts by reflecting all the points along the hori-

zontal symmetry axis. This symmetry acts on the points xi via

xi #→
{
x1 , if i = 1 ,

xN−i , if 2 ≤ i ≤ N − 2 .
(2.29)

On the cross ratios zi target-projectile symmetry acts by

zi #→ 1/zN−4−i . (2.30)

In the previous section we have seen that the kinematics of scattering amplitudes in

planar N = 4 SYM are naturally encoded through a configuration of N momentum twistors

in three-dimensional projective space CP3. In the remainder of this section we show that

there is a very natural geometrical interpretation of MRK in terms of momentum twistors.

More precisely, we will show that the dual conformal invariance of planar N = 4 SYM

implies that the multi-Regge limit defined in eq. (2.15) is conformally equivalent to the

strongly-ordered multi-soft limit where the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi
softer than pi+1.

Before proving the connection between the multi-Regge and soft limits, let us discuss

in more detail how to take a single soft limit in momentum twistor space. In terms of

dual coordinates, the momentum pi+1 is soft if the points xi and xi+1 coincide. As the

points xi correspond to lines in momentum twistor space, the soft limit corresponds to the

limit where the momentum twistors Zi−1, Zi and Zi+1 are aligned. In other words, to set
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Figure 5: The dual coordinates in the transverse space. Dashed lines indicate the for-

ward momenta with zero transverse momentum, which are strictly speaking absent in the

transverse momentum space because they are orthogonal to it.
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➡ Fix 3 points to            . 0, 1,1

• For                   :               is ‘phase space’ of MRK. M0,N�2n = N � 2



The moduli space   M0,n

• Fix three points to            .0, 1,1

•          = complex plane with the points             removed.0, 1,1M0,4

M0,5
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1x 3x

2x
=

=

=

Figure 10. The associahedron or StasheÆ polytope X6,± = K5 in
M

±

0,6
(R) obtained by truncating the unit cube in R3, or blowing up

along x1 = x2 = x3 = 1, and then x1 = x2 = 1 and x2 = x3 = 1. It
has six faces F13, F24, F35, F46, F51, F62 which are pentagons X5,±,
and three faces F14, F25, F36 which are quadrilaterals X4,±1£X4,±1 .
These are permuted by the group D12. There are three types of
vertices corresponding to three kinds of triangulation of a hexagon.
The vertex coordinates defined in §2.3 for each triangulation pro-
vide local a±ne charts in the neighbourhood of each vertex.

which is defined over Z. This representation of M0,S is degenerate since some coor-
dinates are the same, but it is clearly invariant under the action of the symmetric
group. Now for every dihedral structure ± on S, there is an embedding

j± : M
±

0,S
!M0,S

given by lemma 2.1, which expresses every cross ratio [ij|kl] as a product of dihedral
coordinates. Letting ± vary, we obtain in this way an a±ne covering of M0,S .

Lemma 2.26. The compactification M0,S is covered by a±ne charts M
±

0,S
, as ±

ranges over the set of all dihedral structures on S:

(2.38) M0,S =
[

±2Sn/D2n

j±

°
M

±

0,S

¢
.

Proof. The right-hand side is clearly contained in the left. But one can show in a
similar manner to the proof of lemma 2.5 that M0,S is dense in M0,S as defined
above. The point is that j±(M0,S) Ω {[i j|k l] 6= 0} Ω M0,S for all ±. Any cross-
ratio [i j|k l] is a dihedral coordinate uab for some dihedral structure ±0. Therefore
[i j|k l] = 0 is in the closure of j±0(M0,S) by lemma 2.5. The same holds for the
divisors [i j|k l] = 1,1 by (2.1). This proves that both sides are equal. §

Theorem (2.21) implies the following corollary.

Corollary 2.27. M0,S is smooth and M0,S\M0,S is a normal crossing divisor.

The irreducible components at infinity of M0,S\M0,S can be described as follows.

M0,6

[Figure: F. Brown]



Iterated integrals on   M0,n

• Singularities: ‘Degenerate’ configurations of points.
                        = 2 points become equal.

➡ Physically: momentum is soft.p3

p4

p5

p6

x3

x4

x5

x6 • What are ‘natural integrals’ on this space?

➡ Should have singularities at most when          .       xi = xj

• All iterated integrals on           can be written in terms of 
polylogarithms.

the multi-soft limit, it is easy to show that all the Uij tend to 1 in MRK. We introduce

new reduced cross ratios which have a finite multi-Regge limit,

Ũij ≡
1− Uij∏j−4

k=i−1(1− u1k)
→

∣∣∣∣∣
xi − xj−1

xi − xi+2

j−3∏

k=i+1

xk − xk+1

xk − xk+2

∣∣∣∣∣

2

. (3.4)

From eq. (3.4) we see that all the Uij approach 1 at different speeds in the multi-soft limit.

Indeed, the multi-soft limit is approached sequentially according to ϵ2 ≪ ϵ3 ≪ . . . ≪ ϵN−4,

where ϵi are the small parameters introduced in eq. (2.31). Since u1i = 1+O(ϵi+1), we see

that Uij = 1 +O(ϵi . . . ϵj−4), and so all the Uij approach 1 at a different speed.

We now show that the first entries of the perturbative coefficients reduce to absolute

values squared of cross ratios in CP1 (up to logarithmically divergent terms that are ab-

sorbed into the definition of the τk). Let us first look at the case where the first letter

is d logUijkl. It is sufficient to analyse the multiplicatively independent cross ratios in

eq. (3.3). They all tend to 1, except for u2i and u3i, which we may exchange for the corre-

sponding reduced cross ratios ũ2i and ũ3i. The latter reduce to absolute values squared of

cross ratios in CP1, see eq. (2.25).

Next, let us analyse the case of a letter of the type d log(1−
∏

ijkl U
nijkl

ijkl ). It is sufficient

to assume that the factors in the product are taken from eq. (3.3). If one of the factors

goes to zero in MRK, then the claim is true, because we have for example,

d log(1− un2i U) →
{
n d log u2i + d logU , if n < 0 ,

0 , if n > 0 ,
(3.5)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the

product
∏

ijkl U
nijkl

ijkl tend to 1, then we know that one of the factors tends to one much

slower than the others. Hence, up to terms that are power-suppressed in MRK, we only

need to keep this factor. The claim then follows from eq. (3.4).

The previous discussion implies that the coefficients appearing in the perturbative

expansion of scattering amplitudes in planar N = 4 SYM are iterated integrals with singu-

larities described by the cluster algebra AN−5 ×AN−5 and whose first letters are absolute

values squared of cross ratios. As the first entries describe the branch points of the function,

we conclude that the perturbative coefficients have no branch cuts when seen as functions

of the complex points xi. In other words, these iterated integrals must define single-valued

functions on the moduli space of Riemann spheres with N − 2 marked points. In the re-

mainder of this section we review the theory of single-valued iterated integrals on M0,N−2.

We first discuss ordinary, not necessarily single-valued, iterated integrals on M0,N−2, and

we turn to the construction of their single-valued analogues at the end of the section.

3.2 Coordinate systems on M0,n

In this section we review various coordinate systems on M0,n which are useful to study

iterated integrals and the multi-Regge limit. As a geometric space, we can describe M0,n

by configurations of n distinct points on the Riemann sphere. We identify configurations
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G(a1, . . . , an; z) =

Z z

0

dt

t� a1
G(a2, . . . , an; t)

G(a1; z) = log

✓
1� z

a1

◆

G(0, 1; z) = �Li2(z)

• Consequence: Amplitudes in MRK can be written in terms of 
polylogarithms.

➡ Must have branch cuts dictated by unitarity!

[Brown]



Hopf algebras

• Polylogarithms form a Hopf algebra.

• The geometry of           and polylogarithms are well studied in 
modern mathematics.
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Next, let us analyse the case of a letter of the type d log(1−
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ijkl ). It is sufficient

to assume that the factors in the product are taken from eq. (3.3). If one of the factors

goes to zero in MRK, then the claim is true, because we have for example,
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{
n d log u2i + d logU , if n < 0 ,

0 , if n > 0 ,
(3.5)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the

product
∏
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ijkl tend to 1, then we know that one of the factors tends to one much

slower than the others. Hence, up to terms that are power-suppressed in MRK, we only

need to keep this factor. The claim then follows from eq. (3.4).

The previous discussion implies that the coefficients appearing in the perturbative

expansion of scattering amplitudes in planar N = 4 SYM are iterated integrals with singu-

larities described by the cluster algebra AN−5 ×AN−5 and whose first letters are absolute

values squared of cross ratios. As the first entries describe the branch points of the function,

we conclude that the perturbative coefficients have no branch cuts when seen as functions

of the complex points xi. In other words, these iterated integrals must define single-valued

functions on the moduli space of Riemann spheres with N − 2 marked points. In the re-

mainder of this section we review the theory of single-valued iterated integrals on M0,N−2.

We first discuss ordinary, not necessarily single-valued, iterated integrals on M0,N−2, and

we turn to the construction of their single-valued analogues at the end of the section.
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In this section we review various coordinate systems on M0,n which are useful to study

iterated integrals and the multi-Regge limit. As a geometric space, we can describe M0,n

by configurations of n distinct points on the Riemann sphere. We identify configurations
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➡ Algebra: Vector space with an operation that allows one 
to ‘fuse’ two elements into one (multiplication).

• A Hopf algebra is 
➡ at the same time an algebra & a coalgebra
➡ such that the product and coproduct are compatible

➡ together with an antipode, a linear map     such thatS

�(a · b) = �(a) ·�(b)

➡ Coalgebra: Vector space with an operation that allows 
one to  break one element apart (coproduct    ).�

m(S ⌦ id)�(x) = 0 , if x /2 Q

[Goncharov; Brown]



Polylogarithms
• Polylogarithms form a Hopf algebra. [Goncharov; Brown]

• Meaning of the two entries: discontinuities and derivatives.

�Disc = (Disc⌦ id)� �@z = (id⌦ @z)�

• Example:

�(G(0, 1; z)) = G(0, 1; z)⌦ 1 +G(1; z)⌦G(0; z) + 1⌦G(0, 1; z)

G(0, 1; z) = �Li2(z)

➡              has a branch cut starting at          …
➡ … but not at         .

G(0, 1; z) z = 1

z = 0

�(G(1; z)) = G(1; z)⌦ 1 + 1⌦G(1; z) G(1; z) = log(1� z)



Polylogarithms & Amplitudes

• Consequence: Logarithms that appear in first factor of 
coproduct are highly constrained!

�Disc = (Disc⌦ id)�

• Optical theorem: branch cuts can only start at                             . x2
ij = (xi � xj)

2 = 0

• Consequence for MRK: 
�(A) ⇠ log x2

ij ⌦ . . .

�(AMRK) ⇠ log |xi � xj |2 ⌦ . . . ➡ Single-valued function!
| {z }

>0, if i 6=j

N -point scattering amplitudes in planar N=4 SYM in MRK 
are single-valued iterated integrals on                .  M0,N�2

• Conclusion:

• Branch cuts are dictated by unitarity:

➡ Coproduct of amplitudes must ‘know’ about unitarity.



Single-valued functions
• Single-valued polylogarithms = combinations of polylogarithms 

and their complex conjugates such that all branch cuts cancel.

• One way to construct them: A map    that assigns to each 
polylogarithm its single-valued version:

s

Let us now show how we can use the coproduct and the antipode to define single-

valued hyperlogarithms. We use the notation of Section 3.4.1 and we write LΣ for the

shuffle algebra of all hyperlogarithms with singularities in Σ, LΣ is its complex conjugate

and LΣLΣ ≃ LΣ ⊗ LΣ. Note that each of these algebras is actually a Hopf algebra for the

coproduct in eq. (3.75). Let us define a map

S̃ : LΣ → LΣ ; G(⃗a; z) $→ (−1)|⃗a| S(G(⃗a; z)) , (3.80)

where S denotes the complex conjugate of the antipode. It is easy to check that S̃ inherits

many properties from S. In particular, it is an involution and it satisfies

S̃(a · b) = S̃(b) · S̃(a) and ∆S̃ = (S̃ ⊗ S̃)τ∆ . (3.81)

Unlike the antipode, S̃ does not satisfy eq. (3.76). Rather, the equivalent equation for S̃

defines the single-valued map (see also ref. [99]),

s = µ(S̃ ⊗ id)∆ , (3.82)

i.e., we claim that G(⃗a; z) = s(G(⃗a; z)) is the single-valued analogue of G(⃗a; z). Before

proving single-valuedness, let us discuss some of the properties of the single-valued map

s. Unlike the definition of the map sΣ of Section 3.4.1, the definition (3.82) is purely

combinatorial and does not depend on the set of singularities. It is easy to see that s is

Q-linear and that it preserves the multiplication (see Appendix B for a detailed proof),

s(a · b) = s(a) · s(b) . (3.83)

We stress at this point that s is only linear with respect to rational numbers. In particular,

this means that s may act non-trivially on non-algebraic periods. Indeed, we have [99]

s(iπ) = 0 and s(ζn) = 2ζn , for n odd . (3.84)

Let us denote by LSV
Σ ⊂ LΣLΣ the image of LΣ under the map s. We use sugges-

tively the same notation as for the shuffle algebra of single-valued hyperlogarithms from

Section 3.4.1. While LΣ and LΣLΣ are Hopf algebras, the algebra LSV
Σ is not a sub-Hopf

algebra of LΣLΣ, but the Hopf algebra structure on LΣLΣ turns LSV
Σ into a graded LΣLΣ-

comodule, whose coaction agrees with the coproduct on LΣLΣ,

∆ : LSV
Σ → LSV

Σ ⊗ LΣLΣ . (3.85)

In Appendix B we show that the coaction is given by

∆s(I(a0; a⃗; z)) =
∑

∅⊆c⃗⊆b⃗⊆a⃗

s(Ic⃗(a0; b⃗; z)) ⊗
[
S̃(I(a0; c⃗; z)) I⃗b(a0; a⃗; z)

]
. (3.86)

Let us now show that G(⃗a; z) = s(G(⃗a; z)) is single-valued. Following Section 3.4.1

we denote by MσG(⃗a; z) the result of analytically continuing G(⃗a; z) along a small loop
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multiplicationµ =

� = coproduct
S̃ = Complex conjugate of the 

antipode (up to a sign)

[cf. Brown for MZV case]

• Examples:

We do the same for the right-hand side of eq. (B.14) and we obtain

(s1 ⊗ S̃1 ⊗ id)(τ∆1 ⊗ id)∆1(x) = ((S̃1 ⊗ id)∆1 ⊗ (S̃1 ⊗ id))(τ∆1 ⊗ id)∆1(x)

=
∑

(x)

S̃1(x1,2,1)⊗ x1,2,2 ⊗ S̃1(x1,1)⊗ x2

= (S̃1 ⊗ id⊗ S̃1 ⊗ id)(∆1 ⊗ τ)
∑

(x)

x1,2 ⊗ x2 ⊗ x1,1

= (S̃1 ⊗ id⊗ S̃1 ⊗ id)(id ⊗ id⊗ τ)(id ⊗∆1 ⊗ id)
∑

(x)

x1,2 ⊗ x2 ⊗ x1,1

= (S̃1 ⊗ id⊗ S̃1 ⊗ id)(id ⊗ id⊗ τ)
∑

(x)

x1,2 ⊗ x2,1 ⊗ x2,2 ⊗ x1,1

=
∑

(x)

S̃1(x1,2)⊗ x2,1 ⊗ S̃1(x1,1)⊗ x2,2 ,

(B.16)

and the last line agrees with eq. (B.15).

C. Explicit expression for single-valued hyperlogarithms

In this appendix we present explicit expressions of single-valued hyperlogarithms up to

weight three in terms of ordinary hyperlogarithms. We only give the results for Lyndon

words. All other cases can be reconstructed from the fact that single valued hyperloga-

rithms form a shuffle algebra.

C.1 Single-valued hyperlogarithms of weight one

G0(z) = G0(z) +G0(z̄) . (C.1)

Ga(z) = Ga(z) +Gā(z̄) . (C.2)

C.2 Single-valued hyperlogarithms of weight two

G0,a(z) = G0,a(z) +Gā,0 (z̄)−G0(a)Gā (z̄)−G0 (ā)Gā (z̄) +G0(z)Gā (z̄) . (C.3)

Ga,b(z) = Ga,b(z) +Gb̄,ā (z̄) +Gb(a)Gā (z̄) +Gb̄ (ā)Gā (z̄) (C.4)

−Ga(b)Gb̄ (z̄) +Ga(z)Gb̄ (z̄)−Gā
(
b̄
)
Gb̄ (z̄) .

– 77 –

= s(G(a; z)) = G(a; z) +G(ā; z̄) = log
���1�

z

a

���
2

Ga,b(z) = s(G(a, b; z)) = G(a, b; z) +G(b̄, ā; z̄) +G(b; a)G(ā; z̄)

+G(b̄; ā)G(ā; z̄)�G(a; b)G(b̄; z̄) +G(a; z)G(b̄; z̄)�G(ā; b̄)G(b̄; z̄)



Single-valued functions

• Preserves multiplication: 
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s(iπ) = 0 and s(ζn) = 2ζn , for n odd . (3.84)

Let us denote by LSV
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tively the same notation as for the shuffle algebra of single-valued hyperlogarithms from
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algebra of LΣLΣ, but the Hopf algebra structure on LΣLΣ turns LSV
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comodule, whose coaction agrees with the coproduct on LΣLΣ,
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In Appendix B we show that the coaction is given by
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[
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]
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Let us now show that G(⃗a; z) = s(G(⃗a; z)) is single-valued. Following Section 3.4.1
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➡ Example:

• Preserves relations among polylogarithms. 

(oriented counterclockwise) encircling the singularity σ ∈ Σ (and no other singularity). In

order to show that G(⃗a; z) is single-valued, we need show that

MσG(⃗a; z) = G(⃗a; z) , ∀σ ∈ Σ , (3.87)

or equivalently

DiscσG(⃗a; z) = 0 , ∀σ ∈ Σ , (3.88)

where the discontinuity operator is Discσ = Mσ−id. The proof that G(⃗a; z) is single-valued
proceeds by induction in the weight. If |⃗a| = 1, we have

G(a; z) = G(a; z) + S̃(G(a; z)) = log
∣∣∣1−

z

a

∣∣∣
2
, (3.89)

and this function is manifestly single-valued. Let us now assume that all functions G are
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∆Discσ(G(⃗a; z)) = (Discσ ⊗ id)∆(G(a; z)) = DiscσG(⃗a; z) ⊗ 1 . (3.90)

From eq. (3.76) we obtain

0 = µ(id⊗ S)∆Discσ(G(⃗a; z)) = Discσ(G(⃗a; z)) · S(1) = Discσ(G(⃗a; z)) , (3.91)

and so G(⃗a; z) is single-valued.
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1

z − a
G(⃗b; z) . (3.94)
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• Commutes with holomorphic differentiation:

• Antipode corresponds to complex conjugation:

Single-valued hyperlogarithms naturally have both anti-holomorphic and holomorphic

parts. Hence, they carry a natural action of complex conjugation. We can again de-

compose a complex conjugated single-valued hyperlogarithm into standard single-valued

hyperlogarithms,

G(⃗a; z̄) =
∑

b⃗

ca⃗,⃗b G(⃗b; z) . (3.95)

Note that the fact that complex conjugation acts non-trivially on single-valued hyperlog-

arithms (in the sense that the complex conjugate of an single-valued hyperlogarithm is a

linear combination of single-valued hyperlogarithms) is at the origin of why s does not com-

mute with anti-holomorphic derivatives. In Appendix B we show that the action of complex

conjugation on single-valued hyperlogarithms is encoded in the map S̃. If s̄ denotes the

complex conjugate of s, we find

s̄ = s S̃ . (3.96)

As an example, we have

G(ā, b̄; z̄) = s̄(G(a, b; z)) = G(b, a; z) + G(b; a)G(a; z) − G(a; b)G(b; z) . (3.97)

In the same way, we can also easily compute anti-holomorphic derivatives, because we can

reduce the anti-holomorphic derivative to a holomorphic one via the map S̃. For example,

we find,

∂̄zG(a, b; z) =
1

z̄ − ā
G(b; a) + 1

z̄ − b̄
(G(a; z) − G(a; b)) . (3.98)

We conclude this section by commenting on functional equations for single-valued hy-

perlogarithms. We can of course obtain functional equations by expressing single-valued

hyperlogarithms in terms of ordinary hyperlogarithms, and then applying functional equa-

tions to the latter. There is, however, a simpler way to obtain functional equations for

single-valued hyperlogarithms: assume we are given a relation between ordinary hyper-

logarithms. We can then act with s on it, and we obtain a relation among single-valued

hyperlogarithms. Since the action of s is, essentially, to replace G by G, we conclude that

single-valued hyperlogarithms satisfy the same identities as ordinary hyperlogarithms. Note

that eq. (3.84) is crucial for this to work. Let us consider an example to see how this works:

we start from the following relation among ordinary hyperlogarithms of weight three (valid

on some branch for the logarithm),

G

(
0, 1, 1;

1

z

)
= −G(0, 0, 0; z) +G(0, 0, 1; z) +G(0, 1, 0; z) −G(0, 1, 1; z)

+ iπ [G(0, 0; z) −G(0, 1; z)] +
π2

2
G(0; z) + ζ3 −

iπ3

6
.

(3.99)

We can act on both sides with s, and we obtain,

G
(
0, 1, 1;

1

z

)
= −G(0, 0, 0; z) + G(0, 0, 1; z) + G(0, 1, 0; z) − G(0, 1, 1; z) + 2ζ3 . (3.100)

This is indeed a valid identity among single-valued hyperlogarithms. We stress the impor-

tance of eq. (3.84) in order for this to be true.
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The perturbative story 

A complete picture of 
MRK to all orders



Single-valued functions

➡ Recursive structure in the loop order (for fixed log accuracy).

• The theory of single-valued polylogarithms almost trivialises 
the computation of the convolution integrals.

➡ See Robin’s talk!

• Main idea:

➡ Convolution integral is a simple residue computation.

F [E⌫n] = � z + z̄

2|1� z|2
<latexit sha1_base64="+wWnmUskbAV5XlIS59icMFKyzv0="></latexit>

• Here: Focus on general consequences.

F [�+
⌫nE

`+1
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�
⌫n] ⇤ F [E⌫n]

<latexit sha1_base64="OkAq/XAUMNtUo7TB/ploIPOIWOs="></latexit><latexit sha1_base64="OkAq/XAUMNtUo7TB/ploIPOIWOs="></latexit><latexit sha1_base64="OkAq/XAUMNtUo7TB/ploIPOIWOs="></latexit><latexit sha1_base64="OkAq/XAUMNtUo7TB/ploIPOIWOs="></latexit>



Factorisation
• Consequence 1: Convolutions imply a factorisation theorem!

i2

i1

h4

h5

h6

g(i1,i2)h4h5h6
⇠

• Theorem:

i2

h

h
0

h6

i2

h

h6

=
[Del Duca, Druc,  

Drummond, CD ,Dulat, 
Marzucca, Papathanasiou, 

Verbeek; Bargheer]

➡ Implies relations between amplitudes with different 
numbers of legs.



Factorisation for MHV

• Two loops, LLA: Reduces to known factorisation:

• Three loops, LLA:

Let us discuss the implications of this result. First, eq. (4.19) implies that we can compute

all MHV amplitudes by performing convolutions over the left-most variable z1. Indeed,

assume that we know all MHV amplitude with up to N legs. Then we can write

g
(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

g
(2,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

(4.20)

and so on. The amplitude in the left-hand side is a known lower-point amplitude. At the

beginning of this section we have argued that we can always easily perform convolutions

over z1 by going to simplicial coordinates based at z1, because the change of variable has

unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we conclude that every

MHV amplitude can be recursively constructed in this way, and we have thus obtained an

efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of

MHV amplitudes. Indeed, since the sum of all indices is related to the loop number, we

see that for a fixed number of loops there is a maximal number of non-zero indices, and

so there is only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude in MRK to

LLA [83–85]. Indeed, if all indices are zero except for one, say ia, then eq. (4.19) reduces

to

g(0,...,0,ia,0,...,0)+...+ (ρ1, . . . , ρN−5) = g(ia)++ (ρa) , (4.21)

and so at two loops the amplitude completely factorises, in agreement with ref. [83–85],

R(2)
+...+ =

∑

1≤i≤N−5

log τi g
(1)
++(ρi) . (4.22)

As anticipated in ref. [84], the amplitude does no longer factorise completely beyond two

loops. However, we find that at every loop order only a finite number of different functions

appear. For example, at three-loop order at most two indices are non-zero, and so we have

R(3)
+...+ =

1

2

∑

1≤i≤N−5

log2 τi g
(2)
++(ρi) +

∑

1≤i<j≤N−5

log τi log τj g
(1,1)
+++(ρi, ρj) . (4.23)

The only new function that appears at three loops that is not determined by the six-point

amplitude is g(1,1)++ , which is determined by the three-loop seven-point MHV amplitude. At

four loops we have

R(4)
+...+ =

1

6

∑

1≤i≤N−5

log3 τi g
(3)
++(ρi)

+
1

2

∑

1≤i<j≤N−5

[
log2 τi log τj g

(2,1)
+++(ρi, ρj) + log τi log

2 τj g
(1,2)
+++(ρi, ρj)

]

+
∑

1≤i<j<k≤N−5

log τi log τj log τk g
(1,1,1)
++++(ρi, ρj , ρk) .

(4.24)
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[Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]

• Consequence: At    loops an MHV amplitudes in MRK is 
determined by amplitudes with at most         external legs.L+ 4

L



Factorisation for non-MHV
• Factorisation theorem still holds for non-MHV amplitudes.

➡ Unlike MHV:  infinite number building blocks per loop.

is indeed the case, and so we obtain a new non-MHV building block with a vanishing index,

R(2)
−++ = log τ1 g

(1)
−+(ρ1) + log τ2 g

(0,1)
−++(ρ1, ρ2) . (5.17)

Hence, the simple factorisation observed for MHV amplitudes, eq. (4.19), is no longer valid

for non-MHV amplitudes.

As a consequence, unlike for MHV amplitudes, the number of building blocks is no

longer finite at each loop order in the non-MHV case. As eq. (4.19) is no longer valid

for non-MHV amplitudes, the number of different coefficients is no longer bounded. In

particular, unless there is another mechanism at work that waits yet to be uncovered,

there should be an infinite tower of different non-MHV coefficients already at two loops,

because the factorisation theorem does not allow us to reduce the coefficients corresponding

to alternating helicities to simpler functions.

We have computed explicitly all non-MHV amplitudes up to eight external legs and four

loops. Analytic results for the independent helicity configurations are shown in Appendix D

up to three loops for six and seven external legs and up to two loops for eight external legs.

Results up to four loops and eight points are included as ancillary material in computer-

readable form with the arXiv submission. We have checked that in all cases our results have

the correct soft limits and symmetry properties. These results are sufficient to compute all

two-loop NMHV amplitudes. If hi = −1 and all other helicities are positive, we obtain

R(2)
+...−...+ = log τi−1 g

(1,0)
+−+(ρi−1, ρi) + log τi g
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and the remaining cases can be obtained from target-projectile symmetry.

5.3 Leading singularities of scattering amplitudes in MRK

In the previous section we have shown how we can compute non-MHV amplitudes via

convolution with the universal helicity flip kernel H. Due to the double pole in the helicity

flip kernel, non-MHV amplitudes are no longer pure, but the transcendental functions

are multiplied by rational prefactors. This is in agreement with the expectation for the

structure of scattering amplitudes in full kinematics, where these coefficients are identified

with the leading singularities of the amplitudes [107]. In this section we present a way to
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• Consequence 2: Non-MHV amplitudes from MHV ones.
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• Helicity flips on central emission block are similar.



Transcendentality
• Consequence 3: Complete characterisation of the function 

space.

• Integrability: In perturbation theory, integrand is a polynomial 
in multiple zeta values and
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• Example: NLO BFKL eigenvalue

equivalent, up to a di↵erent definition of the impact factor. In this paper, we will continue to
use the form (3.11).

The first two nontrivial orders in the expansion of the BFKL eigenvalue and the impact factor
were known previously [35, 30, 32, 16, 36],
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where  (z) = d
dz ln�(z) is the digamma function,  (1) = ��E is the Euler-Mascheroni constant,

and V and N are given by,
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with D⌫ ⌘ �i@⌫ ⌘ �i @/@⌫.
After expanding the master equation (3.11) to the relevant order in a and ln(1� u), one has

to match the resulting combinations of SVHPLs in (w,w⇤) against the inverse Fourier-Mellin
transforms of suitable functions of ⌫ and n. This was carried out in ref. [36], in terms of the
then-undetermined ai and bi constants. Inserting the values (3.6) and (3.7) into the respective
expressions, we obtain,
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weight 1

• Integrability: In perturbation theory, integrand is a polynomial 
of uniform weight in multiple zeta values and

weight 3

weight 5
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Transcendentality

• Theorem: If          is a pure combination of SVMPLs of uniform 
weight    , then                     , with                                        , is a 
pure combination of SVMPLs of uniform weight          .                   
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• All two-loop MHV amplitudes in MRK are known, e.g., at LLA:

Let us discuss the implications of this result. First, eq. (4.19) implies that we can compute

all MHV amplitudes by performing convolutions over the left-most variable z1. Indeed,

assume that we know all MHV amplitude with up to N legs. Then we can write

g
(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

g
(2,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5) ,

(4.20)

and so on. The amplitude in the left-hand side is a known lower-point amplitude. At the

beginning of this section we have argued that we can always easily perform convolutions

over z1 by going to simplicial coordinates based at z1, because the change of variable has

unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we conclude that every

MHV amplitude can be recursively constructed in this way, and we have thus obtained an

efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of

MHV amplitudes. Indeed, since the sum of all indices is related to the loop number, we

see that for a fixed number of loops there is a maximal number of non-zero indices, and

so there is only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude in MRK to

LLA [83–85]. Indeed, if all indices are zero except for one, say ia, then eq. (4.19) reduces

to

g(0,...,0,ia,0,...,0)+...+ (ρ1, . . . , ρN−5) = g(ia)++ (ρa) , (4.21)

and so at two loops the amplitude completely factorises, in agreement with ref. [83–85],

R(2)
+...+ =

∑

1≤i≤N−5

log τi g
(1)
++(ρi) . (4.22)

As anticipated in ref. [84], the amplitude does no longer factorise completely beyond two

loops. However, we find that at every loop order only a finite number of different functions

appear. For example, at three-loop order at most two indices are non-zero, and so we have

R(3)
+...+ =

1

2

∑

1≤i≤N−5

log2 τi g
(2)
++(ρi) +

∑

1≤i<j≤N−5

log τi log τj g
(1,1)
+++(ρi, ρj) . (4.23)

The only new function that appears at three loops that is not determined by the six-point

amplitude is g(1,1)++ , which is determined by the three-loop seven-point MHV amplitude. At

four loops we have

R(4)
+...+ =

1

6

∑

1≤i≤N−5

log3 τi g
(3)
++(ρi)

+
1

2

∑

1≤i<j≤N−5

[
log2 τi log τj g

(2,1)
+++(ρi, ρj) + log τi log

2 τj g
(1,2)
+++(ρi, ρj)

]

+
∑

1≤i<j<k≤N−5

log τi log τj log τk g
(1,1,1)
++++(ρi, ρj , ρk) .

(4.24)

– 46 –

[Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]

[NLLA: Bargheer, Papathanasiou, Schomerus; Del Duca, Druc, Drummond, CD, 
Dulat, Marzucca, Papathanasiou, Verbeek; Del Duca, CD, Dulat, Penante]

➡ They are all pure functions of uniform weight!

• We can recursively characterise the function space to all orders.



Transcendentality

Theorem: All amplitudes in MRK in planar N=4 SYM are 
combinations of uniform weight of SVMPLs, (single-valued) multi 
zeta values and powers of        .2⇡i
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In addition:
- MHV amplitudes are pure functions (no rational prefactors).
- Non-MHV amplitudes are not pure.
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• Why are MHV amplitudes not pure?

Requires residues at double pole ~ derivative

[Del Duca, Druc, Drummond, CD, Dulat, Marzucca, Papathanasiou, Verbeek, to appear]



Conclusion & Outlook
• We have a solution of scattering amplitudes of planar N=4 SYM 

in MRK in this Mandelstam region to all orders in the coupling.

➡ (Conjectural) all-order formula for BFKL eigenvalue, 
impact factor & central emission vertex.

➡ Geometric picture of the kinematics.

➡ Algorithmic way of doing all Fourier-Melling integrals

• Applications: (see Robin’s talk)

➡ Explicit results.

➡ Complete description of MRK function space.


