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4. All orders soft gluon evolution and a remarkable result



Even at one-loop it is not the case that 

|M⇥ � Sp(p1, ..., pm; P̃ )|M⇥

Corrections are
p
sij suppressed.

Catani, de Florian, 
Rodrigo 
arXiv:1112.4405

P̃

“Generalized factorization”:

|M⟩ ≈ Sp(p1, ..., pm; P̃ ; pm+1..., pn)|M⟩

Matrix elements factorize in the infra-red

So factorization into PDFs is
not true at amplitude level

http://arXiv.org/abs/arXiv:1112.4405


A quick recap on how infra-red poles 
cancel, leaving behind potentially 

large logarithms 



One-loop correction to a hard process
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�({pi}) = 1 � perfect cancellation = KLN/Bloch-Nordsieck

For a general observable only the poles need to cancel (IRC safety).

Generally, the remnant of this cancellation is uncancelled logarithms.

Note: the imaginary part of the loops needs a different mechanism to cancel.
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One-emission correction to a hard process



An example: dijet production with a veto

Emitted “in the gap”

Emitted “out of the gap”

Adding the loop correction gives

Putting sij ⇠ Q2 > Q2
0 for i and j on opposite sides of the gap.
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Veto in-gap real emission with k? > Q0

This is simply the loop correction integrated over the region of “phase-space” 
where the real emission is vetoed.
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Factorization breaking 



Coulomb exchange in the initial state 
breaks amplitude-level factorization at one-
loop level. It cancels at the cross-section 
level. Since e�(1)

C is anti-Hermitian

One loop

�M (0)|M (1)⇥+ h.c. = �M (0)|Sp(0)† Sp(1)|M (0)⇥+ h.c.

+ �M (0)|Sp(0)† Sp(0)|M (1)⇥+ h.c.
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The one-loop splitting operator is
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|M⟩ ≈ Sp(p1, ..., pm; P̃ ; pm+1..., pn)|M⟩



Two loops
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The factorization breaking still cancels at the cross-section level in pure 
QCD processes.
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Seymour & Sjödahl

arXiv:0810.5756

http://arXiv.org/abs/arXiv:0810.5756


Three loops: no escape!
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This gives a non-zero contribution to the cross-section in QCD.

JRF, Seymour, Siodmok
arXiv:1206.6363

http://arxiv.org/abs/1206.6363


The example of gaps-between-jets or
how the plus prescription fails



The original calculation of
Oderda & Sterman



It is WRONG



It should be…..



The Coulomb exchanges are spoiling the plus prescription and destroying
our ability to factorize the collinear logarithms into PDFs





The non-vanishing of [….] at z=1 
induces “super-leading” logs 

Kyrieleis, Seymour, JRF
arXiv:hep-ph/0604094

http://arxiv.org/abs/hep-ph/0604094


One collinear splitting contribution to gaps-between-jets

Kyrieleis, Seymour, JRF
arXiv:0808.1269This is the failure of factorization we anticipated earlier

http://arxiv.org/abs/0808.1269


This physics is not specific to non-global observables



Soft gluon evolution

Amplitude-level evolution is needed to go beyond leading colour,
see Zoltan’s talk and his work with Dave Soper.





The leading Nc part of this hierarchy = BMS equation = dual to the BK equation.

Is this hierarchy dual to JIMWLK? (Weigert Nucl.Phys. B685 (2004) 321, hep-ph/0312050 )

Collinearly improved in 
Forshaw, Holguin, Plätzer
JHEP 1908 (2019) 145
arXiv:1905.0868



The ordering variable often does not matter.

(It does for the super-leading logs, where it must be transverse momentum.)

However, we have additional insight from the work of Catani & Grazzini
and from the PhD thesis of René Ángeles-Martínez.

Catani & Grazzini: Nucl. Phys.B591, 435 (2000), hep-ph/0007142 



Catani-Grazzini: all-orders amplitude-level factorization in the soft limit
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|MN ⟩ = (gsµ
ϵ)N J(qN ) · · ·J(q1) |M0⟩

J(1)(qm+1) =
1

2

n+m∑

j=1

n+m∑

k=1

d(1)
jk (qm+1)

d(1)
ij (qa) =

αs

2π

cΓ
ϵ2

Tn+a ·Ti

(
(q(ij)a )2 e−iπδ̃i(n+a) e−iπδ̃j(n+a)

4πµ2 e−iπδ̃ij

)−ϵ

dij(qa)

|M0⟩ = |M (0)
0 ⟩+ |M (1)

0 ⟩

|M (1)
0 ⟩ =

n∑

i=2

i−1∑

j=1

Iij(0, Q) |M (0)
0 ⟩

At one-loop:

dij(q) = Tj

(
pj · ε
pj · q

− pi · ε
pi · q

)

∑

j

dij(q) =
∑

j

Tj
pj · ε
pj · q

= J(0)(q)



Remarkably this can be re-written

Ángeles-Martínez , JRF, Seymour: arXiv:1602.00623
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http://arxiv.org/abs/arXiv:1602.00623




Conclusions

• Coulomb gluons wreck collinear factorization as soon as they are able to
(though factorization always holds below the ”inclusivity” scale, which
means Collins-Soper-Sterman factorization of the collinear poles works)

• Phenomenology of this? 

• We have the means to go beyond leading colour in general purpose
event generators. 

• It is remarkable how QCD selects a special ordering variable (not easy to 
see this in SCET?).

• Can we make more precise the link between soft-gluon evolution and
JIMWLK? Why is there even any link at all?


