Particle and Nuclear Physics Beyond the Lab

and the second state of an

Mont Blanc

Large Hadron Collider

Franz Muheim University of Edinburgh

Geneva 🧼

Higgs Centre for Innovation

Lake Geneva

Institute for Particle and Nuclear Physics

Particle Physics Experiment (PPE)

Particle Physics Theory (PPT)

Nuclear Physcis (NP)

IPNP Research

Push forward the frontiers of knowledge

- What is the universe made of and how do we find out?
- What happened at the Big Bang?
- Is there a unified theory?
- Why is there so much matter and almost no antimatter?
- What happens in nuclei under extreme conditions?
- What are dark matter and dark energy (Cosmology)?

$(D_{\mu}\phi)^{\mu}D^{\mu}\phi - U_{\mu}\phi = \partial_{\mu}\phi - U_{\mu}\phi = \partial_{\mu}\phi - U_{\mu}\phi = \partial_{\mu}A_{\nu} - U_{\mu}\phi - U$

24 Jan 2019

IPNP Engagement with Industry

• Develop new technologies for detectors and accelerators

- Toolbox required for frontiers research
- Processes of interest are rare
- Challenging environments, e.g. radiation, state-of-the-art detector technologies, small, fast and thin
- Data intensive science e.g. huge date rates and CPU requirements at the Large Hadron Collider,

Challenges and Opportunities

- High performance computing Lattice QCD
- Silicon sensors
- Fast photon detectors
- Medical physics
- Nuclear non-proliferation
- GPUs
- Machine Learning

High Performance Computing

Research in Lattice QCD

- is extremely computationally demanding
- field is closely connected to modern chip design
- PPT group works at the leading edge of this area

Activities

- In 2001 2009 UKQCD obtained £ 6.6M
 for a multi-Teraflops scale computer, QCDOC
- From 2009 STFC grant
- Super computer development

Partners

- Columbia University and IBM TJ Watson
 Blue Gene supercomputer
- Intel, Nvidia

Silicon detectors

LHC High Luminosity running

- Hostile environment with large occupancy in detectors
- Many challenges for charged particle tracking sensors - electronics - mechanics

Activities

- Wafer probing FEI4 chips
- Monolithic Active Pixel Sensor MAPS
- HV-CMOS
- Electronics FPGA
- FlexTapes flexible readout cables

Partners

- Micron
- Xilinx
- Zot
- ...

Advanced Detector Development Centre

Advanced Detector Development Centre (ADDC)

- Rooms 5203/04 in JCMB
- Investment of £1.7M SUPA and University

ADDC equipment

- Wafer prober
- Wire bonder
- Silicon placement machine
- Climate chamber
- RF tester
- Single photon detector laboratory
- Spectrophotometer
- Si and Ge crystal detectors

Fast Photon Detectors

LHC High Luminosity running

- Hostile environment with large occupancy in detectors
- Picosecond time resolution will be required for photon sensors

Micro channel plate photon detectors

- O(60 ps) time resolution for single photons
- Pixellisation possible
- Fast electronics required
- potential for applications in neutrino physics, medical applications, security

Partners

- Photek
- Incom Inc LAPPD
- DMI

LAPPD ANL prototype

24 Jan 2019

Franz Muheim

MCP-PMT

Fast Photon Detectors

• TORCH

Time Of internally Reflected Cherenkov light

Activities

- R&D project UK universities, CERN and industrial partner Photek
- Local company (DMI) built part of protoTORCH

Photek

prototype

- Is now on preferred
- CERN supplier list

60 mm

0 8 8 8 0

Medical Physics

Positron Emission Tomography

Using quantum entanglement
 to make better images

• Partners

...

- Innovation UK, Kromek
- Edinburgh Imaging

Medical Physics

Medical Imaging

- Better simulations
 - GEANT4 toolkit
- Improving detectors
 - Crystals Silicon Photomultipliers
 - · SPAD
- Better image reconstruction
 - See machine learning slides

Partners

- This is a growth area
 - Looking for new partners
- Mirion?
- Edinburgh Imaging
- Medipix

Nuclear Industries

WATCHMAN-AIT

- Advanced Instrumentation Testbed
- Measure anti-neutrinos from Hartlepool reactors at 25km in a 6.5kt water Cherenkov detector underground in Boulby mine

Nuclear non-proliferation

 Deploy detectors to monitor nuclear power plants and other activity

Nuclear Industries

WATCHMAN-AIT

- Is a particle physics detector
- ~4500 large 10" photomultiplier tubes
- Synergies with LHCb and Hyper-K

• 22 Jan 2019

- UKRI and STFC announcement
- £9.7M for WATCHMAN-AIT
- Expect ~\$33M in US

Partners

24 Jan 2019

- AWE
- Hamamatsu
- CAEN
- Enterprises Limited

Machine Learning

Pattern recognition

- Reconstruction of particle physics events
- Data intensive science requires huge amount of CPU
- Change of scope over last two decades apply machine learning techniques

Adversarial Neural Networks

- Searches for exotic particles
- Interdisciplinary
 - face recognition
 - Medical imaging
- New Machine learning forum

Partners

- Tindeco
- Nvidia
- Data Lab
- Bayes Centre

-

See poster by Andreas Sogaard

Big Data

Data intensive science

- Particle physics requires huge amount of CPU
- Approaching limitations of chip size ~10 nm a few atomic layers
- Increasingly use GPU applications
- e.g. trigger for rare signal

Distributed Data storage

- Large data volumes
- GridPP for particle physics in UK
- Worldwide LHC Computing Grid (WLCG)
- Cloud Computing

Partners

- Tindeco
- Data Lab
- Nvidia
- Bayes Centre

-

Nvidia TESLA GPU

IPNP Industrial Strategy

• Increasing IPNP engagement with industry

- Existing range of activities
- Scope for increase

Funding Opportunities

- Innovation Partnership Scheme (IPS)
 - Cultivate innovation opportunities
 - Facilitating the transfer of technologies, skills and knowledge, developed through STFC funding, to industry and other users of research outputs
 - Focus on commercial exploitation to ensure UK economic impact
- Challenge Led Applied Systems Programme (CLASP)
- CASE studentships
- Potential for UK companies

IPNP Industrial Strategy

Doctoral Training Centres

- ScotDIST The Scottish Data-Intensive Science Triangle
 - partnership between Edinburgh, Glasgow and St. Andrews for PhD studentships in data-instensive science
- New DTC application (Artifical Intelligence) with Glasgow expect decision soon
- New MSc for Particle and Nuclear Physics
 - with modules on Machine Learning and Medical Physics
- Opportunities with Higgs Centre for Innovation
 - Networking
 - for companies with an interest in collaboration with STFC scientists
 - Access to scientists, academics, researchers, PhD & MSc students
 - CERN Business Incubator
 - Support for startups office
 - For details, see <u>https://www.cernbic.stfc.ac.uk</u>
 - CERN Alumni

IPNP Contacts

- Please feel free to contact us
 - luigi Del Debbio <luigi.del.debbio@ed.ac.uk>
 - Head of Institute
 - <u>Matthew David Needham < Matthew.Needham@cern.ch></u>
 - IPNP liaison to Higgs Centre for Innovation
 - Franz Muheim < f.muheim@ed.ac.uk>
 - Head of Particle Physics Experiment
 - <u>Peter Boyle <paboyle@ed.ac.uk></u>
 - Head of Particle Physics Theory
 - <u>Sinead Farrington < sinead.farrington@cern.ch></u>
 - <u>Richard Kenway < R.D.Kenway@ed.ac.uk></u>
 - Christos Leonidopoulos < Christos. Leonidopoulos@cern.ch>
 - <u>Alex Murphy <a.s.murphy@ed.ac.uk></u>
 - Jennifer Smillie <j.m.smillie@ed.ac.uk>
 - <u>Gary Smith <gary.smith@ed.ac.uk></u>

Major Open Questions

• What gives fundamental particles mass?

- Quantum Electro Dynamics (QED) exceptionally successful theory
- QED makes accurate prediction to 12 decimal places equivalent to knowing distance of Edinburgh - New York to the thickness of a human hair
- Standard Model of Particle Physics QED, QCD & weak interaction
- Major problem with theory particles don't have mass

• What is the universe made of?

only 4% of observed universe is made of known matter
 96% is not understood

• Why is there so much matter and almost no antimatter?

- only one in a billion particles are antimatter

Scotland at CERN

Experimental and Theoretical Particle Physics groups

- at Universities of Edinburgh and Glasgow
- 80 staff and 60 PhD students
- from many countries world wide, including
 Switzerland, Brazil, China, US, Germany, Italy,
- Scottish Involvement includes
 - Design and construction of detectors

ATLAS Silicon Tracker

PPE and NP Laboraties

- Probe station to probe silicon sensors or integrated circuits at wafer level
 - Wafer probing up to 8" (200 mm)
 - Wafer, single die or chard; silicon component characterisation, currents to fAmp, capicitance to fF
 - ASIC functionality testing
 - Temperature range -40 to 200 degree C
- Wirebonding machine
 - Ball and wedge wire-bonding, bond area up 10x10 cm^2
 - Pull and shear testing

Silicon placement machine

- Glueing silicon or equivalent to substrates with high precision better than 10mm in 3-dim
- Different process include epoxy glue, UV cured glue, eutectic bonding, silver glass bonding, ultra-sonic bonding
- Temperature control up to 450 degree C
- Force control up to 500 N

PPE and NP Laboraties

Climate chamber

- Size 70x70x40 cm^3
- Operating from -60 to +200 degree C
- Relative humidity control from +10 to 100 degree C

RF waveform testing

- At frequencies up to 6 GHz
- With arbitrary waveform generator, oscilloscope and probes and a spectrum analyser
- Vector network analyser up to 18 GHz
- Time domain reflectometer, vector voltmeter

Single photon detection laboratory

- Pico-second laser pulser, nano-second LED pulser
- Large variety of detectors, HPDs, MaPMTs, Spadnet,
- Crystals and sources
- Quantum efficiency setup : monochromator, Xe light source
- Readout electronics for voltage or charge pulse and time measurement

PPE and NP Laboraties

Spectrophotometer

- Transmission UV to visible wavelengths
- Need to add specs, is this the same as the monochromator or complementary? (Comment Stephan: this is different from the monochromator)

Semiconductor (silicon and germanium) detectors

- for high resolution, low background alpha, beta and gamma spectroscopy.
- Shielding for low background measurements

• VME based data acquisition electronics

- 32-ch charge sensitive ADC (12-bit, 0-400pC, 100fC resolution)
- 32-ch TDC (21-bit, 0-52ms, 25ps resolution)
- 32-ch peak sensing ADC (12-bit, 0-4V, 1mV resolution)
- 64-ch 65MS/s sampling ADC (12-bit, 0-2V, 0.5mV resolution)
- 8-ch 250MS/s sampling ADC (12-bit, 0-2V, 0.5mV resolution)
- High vacuum chambers
 - Down to 1e-06 mbar pressure

Research

The Mission of CERN

Push forward the frontiers of knowledge

E.g. the secrets of the Big Bang why within the first moments of the big

Develop new techno accelerators and c

Information technology

uniting people

CERN

Brain Metabolism in Alzheimer's Disease: PET Scan

Alshahmar's Disons

Train scientists and engineers of tomorrow

Medicine - diagnosis and therap Research

Unite people from different countries and cultures

