

### **Clustering analysis with SDSS-IV eBOSS quasars**



DEX XV meeting Royal Observatory – Edinburgh January 8<sup>th</sup> 2019



# **Introduction** The ΛCDM model

Today energy content



#### Unknown 1: Dark matter Cold, very weakly interactive particles with broad mass range:

25%

 $10^{-22} eV < m_{DM} < 10 M_{\odot}$ 

Baryonic matter Also called ordinary matter Stars, planets, dust, gaz, us...

Unknown 2: Dark energy<br/>Assumed to be a cosmological<br/>constant  $\Lambda$  in the standard model70% $w = \frac{p_{DE}}{\rho_{DE}} = -1$ 

**Unknown of interest** 

# **Introduction** Dark energy or modifications of gravity?

Einstein 1915 Energy content Geometry  $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu} + \Lambda g_{\mu\nu} \operatorname{Cosmological}_{\text{constant }\Lambda}$ 

### Modified gravity models → No cosmological constant

Does general relativity break down at cosmological scales?

- Can add a scalar field like f(R) theories
- Can add a tensor field
- Can add a spatial dimension
- Can add a mass to the graviton

Dark energy models

In the ∧CDM model
→ Properties of dark energy are constant with time and space

$$w = \frac{p_{DE}}{\rho_{DE}} = -1$$

**Extensions to ACDM** e.g. time-dependent dark energy

$$w(a) = w_0 + w_a(1-a)$$

#### Pauline Zarrouk

DEX XV meeting - Edinburgh

# **Clustering analysis** Data: The SDSS-IV eBOSS quasars



### Sloan Digital Sky Survey (SDSS)

- 2.5 m telescope at Apache Point Observatory, USA
- Operating since 2000
- Baryon Oscillation Spectroscopic Survey (BOSS): 2008-2014
- extended BOSS (eBOSS) 2014-2019

#### Tracers for eBOSS

- Luminous Red Galaxies between
   0.6 < z < 1</li>
- Emission Line Galaxies (ELG, starforming galaxies) between 0.6 < z < 1
- Quasars (active galaxies with SMBH) between 0.8 < z < 2.2



**BOSS** galaxies

6

رې. رې

### **Clustering analysis** Observable: 2-point correlation function $\xi(r)$



Pauline Zarrouk

DEX XV meeting - Edinburgh



**Pauline Zarrouk** 

DEX XV meeting - Edinburgh



### III) Full-Shape analysis: $\xi_{0.2.4}(s)$

$$lpha_{\parallel} = rac{H^{
m fid}(z)r_s^{
m fid}}{H(z)r_s}, \qquad lpha_{\perp} = rac{D_{
m A}(z)r_s^{
m fid}}{D_{
m A}^{
m fid}(z)r_s}$$

Growth rate of  $f(a) = \Omega_m(a)^{\gamma=0.55}$ 

### **BAO-only analysis** Results : $1^{st}$ detection of BAO between 1 < z < 2

+ SDSS Press release



→ 3.8% precision on expansion rate of the universe at z=1.52
→ In agreement with ∧CDM model using Planck data

**Pauline Zarrouk** 

DEX XV meeting - Edinburgh

# **Full-shape analysus** Quasar redshift uncertainties



### Redshift estimates in the DR14 quasar catalog



Pauline Zarrouk

# **Full-shape analysis**

Modeling systematics: quasar redshift uncertainties



→ Quadrupole mainly affected on scales below 50  $h^{-1}Mpc$ 

**Pauline Zarrouk** 

## **Full-shape analysis** Study of systematics

### **Modeling systematics**

Using mock catalogues from N-body simulation  $\rightarrow$  Redshift uncertainties: 40% effect

$$\Delta f \sigma_8 = 0.033$$
  $\Delta lpha_{\parallel} = 0.038$   $\Delta lpha_{\perp} = 0.006$ 

Statistical precision  
$$f\sigma_8: 0.070$$
  
 $\alpha_{par}: 0.070$   
 $\alpha_{perp}: 0.050$ 

Dark matter halos hosting eBOSS quasars:  $M_{mean} \sim 10^{12.5} h^{-1} M_{\odot}$ 

### **Observational systematics**

- Related to observing conditions (depth, Galactic extinction)
- Related to instrumental limitations (close-pairs and redshift failures)

No additionnal systematic error budget thanks to an improved weighting scheme

# **Full-Shape analysis**

Results : Structure growth at z > 1



### **Cosmological implications** Structure growth in scalar-tensor theories



DEX XV meeting - Edinburgh

# **Conclusion of this work**

> **Quasars** can be used as **tracers** of the matter field Allows us to probe a redshift range almost unexplored to date

### > eBOSS DR14Q sample

2 years of data taking, ~149,000 quasars between 0.8  $\leq$  z  $~\leq$  2.2 over 2113 deg^2

#### > 1<sup>st</sup> BAO detection between 1 < z < 2 (eBOSS collaboration 2018)



### **Prospects**

### Towards precision cosmology!



Pauline Zarrouk