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Type Ia Supernovae

• Standardisable candles
• Parametrise Universe 

expansion
• Cosmological distance 

indicators - can be used to 
test models e.g. ΛCDM

Betoule et al. 2014



The Large Synoptic Survey Telescope (LSST)

• Will cover the whole night sky 
every 3-4 days.
• 15 TB of data per night.
• ~100,000 Type Ia Supernovae (SNe) 

per year, depending on survey 
strategy.
• Impossible to get spectra for all 

transient discoveries…

Solution: photometric classification 
with machine learning

lsst.org



A very brief introduction to machine learning

• Subset of artificial intelligence
• Program which learns to classify based on specific 

‘features’
• Alternative to deep learning which attempts to 

automatically learn summary features
• A training set of data is required for the program to 

learn before it can reliably classify input data

‘The 4th Industrial Revolution’



Creating a training sample
• Rapid spectroscopic follow-up will provide the training sample for machine 

learning to classify subsequent LSST transient discoveries.

• In the Time-Domain Extragalactic Survey (TiDES) we are working to maximise 
survey overlap with LSST to obtain many, good quality SNe light curves.

This will be done with the 4-metre Multi-Object Spectroscopic Telescope (4MOST) 
in the first few years of LSST’s observations.

LSST: example of 

rolling cadence 

(mothra_2045)



Machine learning on SNe light curves

• snmachine (Lochner et al. 
2016)
• Extract light curve features
• Train algorithms to recognise

features as belonging to 
specific classes (i.e. type Ia, 
Ibc, II)
• Classify new data based on 

their features

A type Ia light curve fit after wavelet 
decomposition feature extraction



Classification performance – ROC curves

• Receiver Operating 
Characteristic curves
• Binary classification of SNe 

(Ia vs non-Ia)
• Depends on many variables 

in training, such as sample 
size, representativeness, 
magnitude cut-off



Size of training sample



Compare original training (non-representative) 
against same size but class-representativeRepresentativeness

(All magnitudes)

Average AUC = 0.678 Average AUC = 0.877



Magnitude cut-off



Magnitude cut-off vs no cut-off
All training objects < 22 r mag

Same size training for all mags (i.e. 
no mag cut-off)



Magnitude cut-off vs no cut-off
Mag cut-off implies non-representativeness. Therefore we next test a 
magnitude cut-off against the same cut-off but representative by class



Magnitude cut-off vs representative (by class) cut-off
Same size training set as before, but limit set to 22.5 r mag (training/target split looks 
the same after down-sample, although the mag cut-off is present in both cases)



What this means…
• Classification performance with wavelet feature extraction is highly 

dependent on class and magnitude representativeness.
• Introducing a magnitude cut-off shows us that the machine learning 

struggles with this type of training.
• Going to deeper magnitudes requires more exposure time for getting 

good spectra. This really affects how many supernova we can 
realistically get for training.
• A template-fitting method may work better as it will help to normalise

the light curves.



Summary – further work
• Supernova classification with 

machine learning appears highly 
dependent on dataset size and 
representativeness in all senses
• A magnitude cut on training may 

affect classification negatively

Next things to consider:
• Main contaminants
• Partial light curves
• More data (PLAsTiCC)

Example plot of class 
separation after reducing 
feature dimensionality


