Classification of

supernovae

with machine
learning

DEX 2019

Jon Carrick

LLancaster EEE!
University *

.
~oesc 4

Supernova SN2014J in M82, taken from the William Herschel Telescope
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The Large Synoptic Survey Telescope (LSST)
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A very brief introduction to machine learning

‘The 4™ Industrial Revolution’

* Subset of artificial intelligence - Lifed0 .
* Program which learns to classify based on specific |t
‘features’ e

* Alternative to deep learning which attempts to
automatically learn summary features

* Atraining set of data is required for the program to
learn before it can reliably classify input data




Creating a training sample

* Rapid spectroscopic follow-up will provide the training sample for machine
learning to classify subsequent LSST transient discoveries.

* In the Time-Domain Extragalactic Survey (TiDES) we are working to maximise
survey overlap with LSST to obtain many, good quality SNe light curves.
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This will be done with the 4-metre Multi-Object Spectroscopic Telescope (4MOST)
in the first few years of LSST's observations.



Machine learning on SNe light curves

Object: DES SNO09571.DAT, 2:0.42, Type:1

e snmachine (Lochner et al.
2016) .
 Extract light curve features
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Classification performance — ROC curves
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* Receiver Operating
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* Binary classification of SNe
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* Depends on many variables
in training, such as sample
size, representativeness,
magnitude cut-off
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Size of training sample
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Type fraction

Representativeness

Average AUC = 0.678
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Compare original training (non-representative)
against same size but class-representative

Average AUC = 0.877
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Magnitude cut-off
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Type fraction
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Magnitude cut-off vs no cut-off

Same size training for all mags (i.e.

All training objects < 22 r mag no mag cut-off)
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Magnitude cut-off vs no cut-off

Mag cut-off implies non-representativeness. Therefore we next test a
magnitude cut-off against the same cut-off but representative by class
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True positive rate (completeness)
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Magnitude cut-off vs representative (by class) cut-off

Same size training set as before, but limit set to 22.5 r mag (training/target split looks
the same after down-sample, although the mag cut-off is present in both cases)
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What this means...

e Classification performance with wavelet feature extraction is highly
dependent on class and magnitude representativeness.

* Introducing a magnitude cut-off shows us that the machine learning
struggles with this type of training.

* Going to deeper magnitudes requires more exposure time for getting
good spectra. This really affects how many supernova we can
realistically get for training.

* A template-fitting method may work better as it will help to normalise
the light curves.



Summary — further work

Example plot of class
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* A magnitude cut on training may
affect classification negatively 2|

Next things to consider:
* Main contaminants

e Partial light curves
* More data (PLAsTiICC)
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