Fluorescent Ha emission from dark haloes **Calvin Sykes** calvin.v.sykes@durham.ac.uk (with M. Fumagalli, R. Cooke, T. Theuns, A. Benítez-Llambay)

DEX XV, Edinburgh, January 2019

A central prediction of CDM

Many small DM haloes, in which SF is inhibited

A way to verify the prediction?

Many small DM haloes, in which SF is inhibited

A way to verify the prediction?

Predicting Ha emission

- Used our own radiative transfer code, assuming:
- Hydrostatic equilibrium between gas and DM potential
- Thermal and ionisation equilibrium with the UVB
- Emissivity peaks at ionisation front; project this to get surface brightness...

HI core surrounded by ionised gas

Limb brightening gives distinctive ring shape

What can we measure?

What can we learn from rings?

Existence of haloes in specific mass range

Rings only predicted for narrow halo mass range: need core of neutral but not star-forming gas

Density profile from size of ring

Surface brightness always maximal at N_{HI} ~10¹⁸cm²

Relation between N_{HI} and radius depends on $\rho(r)$

Density profile from size of ring

So ring radius is sensitive to c_{200} , cuspyness

UVB intensity from brightness of ring

Ring brightness is linear function of UVB photoionisation rate

What else?

Get (faint) He rings for free

Surface brightness ratios depend on Y_p

Summary

- Ha emission from dark haloes looks like rings in projection
- Properties of rings are sensitive to UVB, halo mass and density profile
- Observing a ring would allow these to be constrained

