ISW Constraints via CMB-LRG Cross Correlation

Behzad Ansarinejad

Ruari Mackenzie, Tom Shanks, Nigel Metcalfe DEX 2019

Centre for Extragalactic Astronomy Arises as the universe becomes Dark Energy dominated (below z~1).

Durham University

- CMB photons left with net gain in energy as they pass through expanding gravitational potential wells of galaxy clusters, (opposite effect for voids).
- Results in secondary anisotropies on CMB temperature map detectable via CMB-LSS cross correlation -> Direct evidence for dark energy.
- Currently low signal to noise & mostly moderate detection significance – most detections <3σ, few detections up to 4σ.

(Image credit: NASA's Cosmic Times)

http://ifa.hawaii.edu/cosmowave/supervoids/ the-integrated-sachs-wolfe-effect/

ISW detection methods

CMB-LSS Cross Correlation

- <3σ: WMAP-SDSS (Sawangwit et al. 2010), WMAP-WISE (Kovács et al. 2013)
- Up to ~4σ: Planck-NVSS+SDSS+WISE (Planck Collaboration et al. 2016), WMAP-NVSS (Giannantonio et al. 2008)

Stacking of voids and superclusters

- <3σ: Granett et al. (2017) using Planck & BOSS, Kovács et al. (2017) using Planck & DES Y1.
- >3σ: BOSS CMASS sample (Nadathur & Crittenden 2016; Cai et al. 2017).

VLT Survey Telescope (VST)

 2.6-m wide field optical survey telescope located at Paranal. 1°x 1° field of view + OmegaCAM (16k x16k pixels) CCD.

VST ATLAS Survey

- Optical *ugriz* survey covering ≈ 4700 deg² of the Southern sky to similar depths as SDSS, but superior seeing (e.g. ~0."8 in i, compared to 1."2).
- ½ of SGC & NGC will be overlapped by German section of eROSITA, will be covered by 4MOST. Also overlapped by DES, VHS, KIDS, GAMA G23 & Pan-STARRS.
- Advantage of covering a large area in the southern hemisphere and can further reduce the ISW error bars, combined with SDSS in the North.

www.durham.ac.uk/physics

LRG samples photometric selection criteria urham

$\bar{z} \approx 0.35$ low redshift LRG sample

University

 $\bar{z} \approx 0.68$ high redshift LRG sample

- We correct for dust extinction (Schlegel et al. 1998), mask for artefacts and stellar contamination is removed by matching to Tycho-2 bright star catalogue (Høg *et al.* 2000) & visually imposing cuts on the i_{A3} vs i_{Kron} diagram.
- Also trying z_A3-z_A5 vs z_kron & r-i vs i-W1 cuts. Seeing / sky brightness dependent S/G separation.

Landy-Szalay estimator (Landy & Szalay 1993):

$$\omega(\theta) = 1 + \left(\frac{N_r}{N_d}\right)^2 \frac{DD(\theta)}{RR(\theta)} - 2\left(\frac{N_r}{N_d}\right) \frac{DR(\theta)}{RR(\theta)},$$
$$\sigma_{\bar{\omega}(\theta)} = \frac{\sigma_{N_s - 1}}{\sqrt{N_s}} = \sqrt{\frac{\sum(\omega_i(\theta) - \bar{\omega}(\theta))^2}{N_s^2 - N_s}}.$$

6 fields: each ~670 deg² in area.

Containing ~15,300, ~40,200 and ~32,700 galaxies for the z=0.35, z=0.55 and z=0.68 samples respectively.

LRG auto-correlation- ATLAS vs SDSS

Centre for Extragalactic Astronomy

www.durham.ac.uk/physics

• Number of LRGS in each sample after applying the colour cuts, masking artefacts and removing stellar contamination.

Sample \bar{z}	Number of LRGs	Sky Density	Magnitude
		(\deg^{-2})	(AB)
0.35	94,776	≈ 22	$17.5 \le r < 19.5$
0.55	$250,\!846$	≈ 58	$17.5 \le i < 19.5$
0.68	$201,\!356$	≈ 50	$19.8 \leq i < 20.5$

Figure 1. Redshift distribution of the three LRG samples inferred from the redshift surveys used in their selections.

Ansarinejad et al. (in prep)

Table 1. Summary of the LRG samples used in the cross-correlation analyses.

Sample	$\overline{\mathrm{Z}}$	Number	$\frac{\text{Sky density}}{(\text{deg}^{-2})}$	Magnitude (AB)
$\begin{array}{c} \mathrm{SDSS} \\ \mathrm{2SLAQ} \\ \mathrm{AA\Omega} \end{array}$	$0.35 \\ 0.55 \\ 0.68$	$\begin{array}{c} 106699 \\ 655775 \\ 800346 \end{array}$	$\begin{array}{l} \approx 13 \\ \approx 85 \\ \approx 105 \end{array}$	$\begin{array}{l} 17.5 \leqslant r < 19.5 \\ 17.5 < i < 19.8 \\ 19.8 < i \leqslant 20.5 \end{array}$

Sawangwit et al. (2010)

$$\omega_{LC}(\theta) = \frac{\sum_{ij} f_i \delta_L(\bar{n}_i) f_i \Delta_T(\hat{n}_j)}{\sum_{ij} f_i f_j},$$

$$\delta_L(\hat{n}) = \frac{n_L(\hat{n}) - \bar{n}_L}{\bar{n}_L}, \quad \Delta T = T - \bar{T} \qquad \hat{n}_i \cdot \hat{n}_j = \cos\theta$$

$$C_{ij} = \frac{N_{JK} - 1}{N_{JK}} \sum_{n=1}^{N_{JK}} [(\omega_{LC,n}(\theta_i) - \bar{\omega}_{LC}(\theta_i))$$
$$((\omega_{LC,n}(\theta_j) - \bar{\omega}_{LC}(\theta_j))],$$
$$\chi^2 = [\hat{\omega}_{LC,obs}(\theta) - \omega_{LC,mod}(\theta)]^T C^{-1}$$

$$\chi^{2} = [\hat{\omega}_{LC,obs}(\theta) - \omega_{LC,mod}(\theta)]^{T} C^{-1} \\ [\hat{\omega}_{LC,obs}(\theta) - \omega_{LC,mod}(\theta)],$$

Ansarinejad et al. (in prep)

Centre for Extragalactic Astronomy

ISW cross correlation

Ansarinejad et al. (in prep)

High redshift negative ISW signal?

 Negative signal currently insignificant and likely due to cosmic variance.

Universitv

- No detection at z~0.68 when combining SDSS, ATLAS and eBOSS LRGs. ΛCDM rejected at up to ~3σ on small scales.
- If ISW shown to be redshift dependent might need alternative cosmological models, e.g. higher Ω_m?, modified gravity?
 Backreaction (Beck et al. 2018) – negative ISW signal between z~1.5-4.4?
- Test with DES / DECaLS LRGs to further reduce error bars.

Ansarinejad et al. (in prep)

^{Durham} ISW cross correlation – magnitude limited samples ¹⁴

Combined Null rejection: 1.6o

- Measured ISW effect using Planck CMB + VST ATLAS LRGs.
- In agreement with SDSS, up to ~3σ detection at z~0.35, 0.55, consistent with ΛCDM. Supports accelerating expansion rate.
- Also detected in magnitude limited samples (out to z~0.4).
- But no detection at z~0.68 when combining SDSS, ATLAS and eBOSS LRGs. ΛCDM rejected but only at up to ~3σ on small scales.
- If ISW shown to be redshift dependent might need alternative interpretation e.g. higher Ω_m ?, modified gravity?, backreaction (Beck et al. 2018)?
- Ongoing:

-Repeat with new ATLAS calibration + improved S/G separation (improvement in detection significance). Further test high-z signal with DES / DECaLS.

- Extend the projected LRG auto-correlation measurements to larger scales to check previous claims of non-Gaussianity.

- Cross-correlate LRGs with CMB lensing map.