

The Circumgalactic Medium at $z \sim 1$ as traced by OVI

Rich Bielby, Centre for Extra-galactic Astronomy, Durham University

With J. P. Stott, R. A. Crain, T. Tripp, J. Burchett, R. G. Bower, S. L. Morris, M. Fumagalli, J. X. Prochaska & N. Amos.

DEX XV, 7th January 2019, ROE.

Overview

- Presenting results from the Quasar Sightline and Galaxy Evolution (QSAGE) Survey.
 - Introduction to OVI absorption as a tracer of the circum-galactic medium.
 - Overview of the QSAGE survey.
 - Results tracing the circum-galactic medium at $z \sim 1$ via OVI absorption.

The Circumgalactic Medium

- Circum-Galactic Medium (CGM) the interface between a galaxy and the Inter-Galactic Medium (IGM).
 - The gaseous halo surrounding a galaxy.
 - Messy & complicated mix of phases, processes.
 - Infalling material from IGM;
 - Outflows/winds powered by SN and AGN;
 - Galactic fountains combining the above two within the CGM.
 - Loose definition of physical size:
 - $1R_{vir}$, $2R_{Vir}$?

Gas structures around galaxies are complex!

ESO137-001 (z~0.016), neutral hydrogen in emission (red = Halpha) from MUSE, Fumagalli+14

Complex and abundant cool metal absorption distribution within group environment at z=0.282, MUSE, Bielby+17b

Interacting LAE pair with extended HI gas reservoir at z~3, in close proximity to a DLA, MUSE, Fumagalli+17

Quasar Sightline and Galaxy Evolution (QSAGE)

- Grism observations using WFC3/G141.
 - Spectrum for everything above flux limit for 3`x3`
 field of view.
 - 4 roll angles in order to remove overlapping objects
 + zeroth order light from individual spectra.
 - Low resolution, R=130
 - Wavelength coverage 1.1-1.6μm
 - ⁻ Covers 0.7<z<1.5 with H α , H β and OIII.
 - Complements 0.7<z<1.5 Ly α forest coverage provided by archival STIS/E230M data.
 - Probing CGM scales of >100 galaxies per field.
- MUSE observations of central 1'x1' in several fields.
 - 4 to be observed in ESO P103.
- Large dataset to constrain feedback and infall models at z \sim 1

Tracing the CGM in OVI

- OVI traces $\sim 10^{5}$ K gas
- Identified via wavelength ratio of doublet:
 - 1031A/1037A
 - Note: overlaps with Lya forest, so get's trickier at higher redshift.
- Absorber strength correlated with galaxy SFR in low-redshift work, e.g. Tumlinson+11, Werk+13
- Also, hint of SFR connection via orientation effects (Kacprzak+15)

Analysis of first field (HB890232-042)

- HST-WFC3 grism data supported by VLT-MUSE data at smaller scales.
 - VLT-MUSE check of grism redshift accuracy: ~ 600 km/s.

- Large over-density co-incident with the bright QSO at z=1.44.
 - Early indication from line ratios suggest widespread AGN activity in the QSO group members (Stott et al. In Prep).

Galaxy Group Environments

 Low mass group coincident with strong OVI absorption, z~1.089

- Large galaxy group also found at QSO redshift.
 - Initial analysis suggests enhanced AGN activity among group members.

OVI absorption systems around z~1 galaxies

- Results at $z\sim1$ build on picture formed from previous surveys at z<0.5.
 - OVI seen up to large scales, i.e. \sim 350 kpc, from nearest detected galaxy.
 - Large scatter in level of OVI absorption detected around the galaxy population.

OVI absorption – Galaxy properties

- COS-Halos shows correlation of OVI absorber strength with galaxy SFR (Tumlinson+11, Werk+13).
- OVI absorption primarily detected in the proximity (<R_{vir}) of star-forming galaxies.

OVI absorption – Galaxy properties

- COS-Halos shows correlation of OVI absorber strength with galaxy SFR (Tumlinson+11, Werk+13).
 - OVI absorption primarily detected in the proximity (<R_{vir}) of star-forming galaxies.
- QSAGE data provides a complementary dataset in parameter space, in particular probing to lower mass systems.
 - Correlation with SFR less clear.
 - Potential indication of OVI absorbers to have a preferred mass-scale of galaxies (c.f. Oppenheimer+).

Covering fractions of OVI at z~1

- QSAGE covers large field of view in terms of estimated.
- Agreement/overlap with small-scale lowredshift work (e.g. Werk+13, Kacprzak+15).
 - After taking evolution in R_{vir} into account.

- Covering fractions at large scales again show hint of preference for ~10¹⁰ Msun galaxies.
- But no evidence of any SFR correlation at these large scales.

Comparison to Hydro-Sims

- Taking estimated halo mass of absorber host halos:
 - Hint of OVI tracing temperature of host halo – i.e. diffuse collisionally ionized gas.
 - c.f. Oppenheimer et al (2016, 2018)
 - •Also Nelson et al. (2018) Illustris

Conclusions and Summary

- First of 12 fields presented in Bielby et al. (2019).
- Background QSO @ z=1.44
- Large over-density co-incident with QSO, with signs of group member AGN activity (see Stott et al., In Prep).
- Analysis of OVI at $z \sim 0.7$ -1.5.
- OVI absorption seen at up to ~ 350 kpc from nearest detected galaxy.
- OVI system detected in association a small mass galaxy group @ z=1.08.
- Tentative indication of OVI absorbers preferentially being located in close proximity to $\sim 10^{10}M_{sol}$ galaxies ($\sim 10^{12}M_{sol}$ halos).

