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Overview of PhD work with HIZELS
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Resolving star formation at high redshift
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ALMA observations indicate that dust continuum
emission of high-redshift galaxies is compact
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ALMA imaging of ALESS galaxies at z~2.5 (Hodge+16). At
~0.15" resolution, the 870-micron emission appears smooth
and compact, whereas the rest-frame optical structures
mapped by HST tend to be more extended.



SHIZELS: Spatially-resolved observations of
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SHIZELS-14: wildly different morphologies

" HST UV (F606W)| & SINFONI Ho ALMA 252GHz
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0.15"-resolution imaging in three different widely used tracers of star
formation: UV continuum (from HST), the Ha emission line (from
SINFONI/VLT), and the far-infrared (from ALMA)




SHIZELS-14: an extremely dusty galaxy
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Commonly-used SFR calibrations break down
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Using the FIRE-2 simulations to interpret
observations

- State-of-the-art in
hydrodynamical
cosmological zoom-in
simulations.

- Resolves the formation of
giant molecular clouds on
~10pc scales.

10 kpc

Figure from a MW-like galaxy in the main FIRE-2
simulations (Hopkins+17). The gas density
distribution at high and low redshift.

Our sample: 4 central galaxies (A1, A2, A4, A8) that reach Milky Way
masses by z~2. Gas and star particles at 600 redshift snapshots.
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Using the FIRE-2 simulations to interpret
observations

|dentify galaxies/snapshots likely to have high FIR fluxes using dust
mass and SFR. +

Run radiative transfer modelling on these snapshots to derive
predicted emission maps in different wavebands.

Look at the spatial distribution of the dust continuum emission, and
how this compares to other physical quantities.
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SKIRT uses Monte Carlo technigues to
simulate the scattering, absorption and
emission of photons by dust particles

Camps & Baes 2014
Simulating galaxy SEDs using the SKIRT
radiative transfer code

- (Gas and star particle positions for a given snapshot

- Every star particle is treated as a single stellar population
with known mass, age, and metallicity. SEDs come from
stellar evolution models of Bruzual & Charlot, assuming a
Kroupa IMF

- dust prescription: a mixture of graphite, silicate and PAH
grains (Weingartner and Draine 2001)
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| - dust grid (octree)
We used an octree grid.

Cell sizes are adjusted

according to the dust
density distribution. - detectors placed at z=0 (7 inclinations) 12

- a wavelength grid (resolve emission from UV to mm
wavelengths)
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The typical ALMA waveband used
to probe rest-frame FIR emission at

high-z is shown by the green line
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The UV emission is clumpy and

extended.

We see clear

morphological differences

between waveba
frame emission S

h

h

ds (rest-
own)

Galaxy A1,

z=4.4

The FIR emission
appears smoother
and more compacit.

Stellar mass
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Galaxy A2 at z=2.95
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How does the predicted dust continuum
emission trace other physical quantities?
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Spatial distribution of dust emission
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Derived radii are consistent with observations
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Effective radius of dust
continuum emission Is
~0.5-4Kkpc, in line with
observations of high
redshift galaxies

18



The role of recent (<100Myr) star-formation
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Stars

Some galaxies show extremely
compact recent star formation,
on the scale of <0.5kpc. These
galaxies also have very
compact dust emission.
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The role of recent (<100Myr) star-formation
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Summary

We identify a population of FIRE-2 galaxies with ~1-3mdJy FIR
fluxes at z~1-5.

These galaxies display compact dust emission (~0.5-4kpc),
consistent with observations.

The dust continuum emission in simulated galaxies is more
compact than the dust itself.

A small number of galaxies have extremely compact dust
emission (~0.5kpc). These also have recent SF of similar extent.
Where the star formation is centrally concentrated, dust in the
Inner regions Iis heated most.
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