OBSERVING COLD, CLUMPY ACCRETION ONTO SUPERMASSIVE BLACK HOLES

TOM ROSE

PhD Supervisor: Professor Alastair Edge

Collaborators: Stephen Hamer, Françoise Combes, Philippe Salomé, Brian M^cNamara, Andy Fabian, Helen Russell, Raymond Oonk, Megan Donahue, Mark Voit, Craig Sarazin, Chris O'Dea, Stefi Baum, Max Gaspari, Michael McDonald, Grant Tremblay, Adrian Vantyghem, Nicole Nesvadba

HOW DO SMBHs ACCRETE THEIR FUEL?

- The evolution of a galaxy is influenced by the accretion of gas onto its central SMBH
- A myriad of theoretical models exists for SMBH accretion, e.g.:

L. Calçada/ESO

Outflows are observed considerably more than inflows: observational evidence to support accretion models is lacking

HOW DO SMBHs ACCRETE THEIR FUEL?

- The evolution of a galaxy is influenced by the accretion of gas onto its central SMBH
- A myriad of theoretical models exists for SMBH accretion, e.g.:

Chaotic Cold Accretion:

L. Calçada/ESO

Outflows are observed considerably more than inflows: observational evidence to support accretion models is lacking

STUDYING SMBH ACCRETION USING CO ABSORPTION

- The AGN of BCGs provide an extremely bright backlight
- Cold molecular clouds along the line-of-sight can be detected from CO absorption of the backlight continuum emission
- Inflows and outflows can be inferred from the CO lines' velocity shift

L. Calçada/ESO

HYDRA-A BRIGHTEST CLUSTER GALAXY

z = 0.055, D = 242Mpc

HYDRA-A BRIGHTEST CLUSTER GALAXY

z = 0.055, D = 242Mpc

814 nm Hubble image

ALMA CO(2-1) observations of Hydra-A

814 nm Hubble image

1kpc

814 nm Hubble image

HYDRA-A's CORE SPECTRUM

- A group of distinct, absorbing regions can be seen -> cold molecular gas clouds
- These are slightly blueshifted relative to the stellar recession velocity of the galaxy
- i.e. they're moving away from the SMBH at velocities between 6 and 43 km/s
- These velocities are small, so the clouds are most likely on stable, low ellipticity orbits

SIMILAR OBSERVATIONS

- So far there are three detections of these cold molecular gas clouds. These are in Hydra-A and A2597 (Tremblay et al. 2016), and NGC 5044 (David et al. 2014)
- You could conclude that all brightest cluster galaxies have cold molecular gas clouds along the line of sight to the SMBH
- More detections are needed to find a statistically significant value for the covering fractions of cold molecular gas clouds, their masses and the overall motions of the clouds relative to their SMBHs
- It will also be possible to compare the observed distribution of absorbing clouds to predictions from 3-D models and simulations e.g. (Gaspari et al. 2015)

University

FUTURE WORK WITH ALMA

- ALMA observations have been carried out for a CO(1-0) survey of the 24 strongest mm-continuum sources known in BCGs visible from ALMA
- This will provide a statistically meaningful set of observations that will allow us to probe many lines of sight
- We will be able to determine the overall properties of absorbing molecular clouds such as the covering fraction, masses and dynamics
- With this large sample, we will be able to compare the observed distribution of absorbing clouds to predictions from various 3-D accretion models and simulations e.g. Gaspari et al. (2015)

Abell 496

Abell 3112

r0132m08

NGC 6868

Abell 2390

r0439+05

- ALMA observations of Hydra-A reveal blueshifted groups of molecular clouds along the line of sight to the SMBH
- These have by far the highest optical depths found to date in absorption of this type

New ALMA CO observations of 24 BCGs with the brightest mm-continuum sources will provide the first definitive constraints on theories of chaotic cold accretion

