DEX-XV Workshop, Edinburgh, 08/01/19

Redshift Space Distortion with different galaxy colour and group mass

Qianjun Hang Supervisors: John Peacock & Shadab Alam

Large Scale Structure of the Universe

2dF Survey Final Data Release 2003

What is RSD?

- * It all starts with velocities...
- * Distances to galaxies are measured by redshifts of their spectra via Hubble's law $D \sim v/H$
- * Galaxies can have peculiar velocities $D' \sim (v+u)/H$

More complicated: baryonic physics, non-linearity etc.

2D correlation function

- from random distribution at certain scale.

* In simulations, we can compare both real space and redshift space.

* Correlation function: measures the deviation of galaxy distribution

How to model these effects?

- * We have good theory
- * Peculiar velocity: ∇

- * δ comes from displacements: $\delta = -\nabla \cdot \mathbf{D}$
- 6
- * $\delta \rightarrow (1+f\mu^2) \delta$
- * Galaxies $\delta_g = b(1+f\mu^2)$

y on large scales!

$$f \cdot \mathbf{u} = -\dot{\delta} = -Hf\delta$$

$$f = \frac{d\ln\delta}{d\ln a}$$

Along line of sight, $D \rightarrow (1+f\mu)D$, where $\mu = \cos\theta$

$$\delta = (1 + \beta \mu^2) \delta$$
, where $\beta = f/b$

How to model these effects?

 $P_{c}^{s}(k,\mu) = b_{\rm gal}b_{\rm grp}(1+\beta_{\rm gal}\mu^{2})(1+b_{12}\beta_{\rm gal}\mu^{2})P_{m}^{r}(k),$

Mohammad et. al. 2016

Cross-correlation of galaxies and groups

GAMA

Mocks

Fitting the mocks

* We fit the projected correlation function w_p and the multipole expansions ξ_l , l=0,2,4.

Fitting mean of the mocks: galaxy auto-correlation

Model 1

Fitting the mocks

We fit with various minimum scale cuts r_{min} because measurements at very small scales are biased.

Preliminary Results: mocks

Model 1

The mean gives relatively unbiased results.

Model 2

Preliminary Results: GAMA data

Model 1

Consistent with Blake et. al. 2013, where they measured $f\sigma_8=0.36\pm0.09$ from GAMA at *z=0.18*

Model 2

Thank you!

Questions?