Simba: Cosmological Galaxy Formation Simulations Including Black Hole Growth and Feedback

Romeel Davé (Edinburgh) Daniel Anglés-Alcázar (CCA) Mika Rafieferantsoa, Nicole Thomas (UWC) Desika Narayanan, Qi Li (Florida) Katarina Kraljic, Sarah Appleby, Dylan Robson, Jacob Christiansen (Edinburgh)

Black Hole Accretion Disk & Jets

Artist's Conception NASA M. Weiss

Physics issue: Steep scaling w/BH mass: dM_{BH}/dt~M_{BH}² requires *self-regulated growth* to evolve along M_{BH}-σ. Feedback needs to be *quasi-spherical* to self-regulate, but observed BH feedback is not necessarily spherical.

Solution Numerical issue: Computing Bondi accretion requires knowing ρ, c_s at BH, which is poorly resolved in cosmological sims. boost factor α is sometimes required.

BH accretion models find that angular momentum loss limits BH accretion, not local dispersion.

Torque-Limited Accretion

 BH accretion limited by angular momentum loss via disk instabilities – analytic model tested with iso disk sims (Hopkins&Quataert 2011):

$$\begin{split} \dot{M}_{\rm Torque} &\approx \alpha_{\rm T} \, f_{\rm disk}^{5/2} \times \left(\frac{M_{\rm BH}}{10^8 \,{\rm M}_\odot}\right)^{1/6} \left(\frac{M_{\rm disk}(R_0)}{10^9 \,{\rm M}_\odot}\right)^{1} \\ &\times \left(\frac{R_0}{100 \,{\rm pc}}\right)^{-3/2} \left(1 + \frac{f_0}{f_{\rm gas}}\right)^{-1} \,{\rm M}_\odot \,{\rm yr}^{-1}, \end{split}$$

R₀~kpc encloses 256 neighbors

1 free parameter $\epsilon \sim 0.05-0.1$ Converges to M- σ w/ σ feedback!

Two-mode BH Feedback

- Heckman & Best 2014: HERGs ('cold') at $f_{Edd} < 0.02$, LERG ('hot') $f_{Edd} > 0.02$
- Jet mode: Red & dead, $v \sim 10^4$ km/s, $p > \sim$ few L/c
- Solution \otimes Radiative mode: ULIRGs, v~10³ km/s, p~20L/c

HB14

Simba

- Solution Grackle-3.1 cooling+heating, H₂-based SF, pressurized ISM, enrichment from Type II/Ia + AGB, onthe-fly self-shielding for HI.
- SF Feedback: Kinetic decoupled winds based on FIRE particle tracking results.
- **BH Growth:** Torque-limited accretion (ϵ =0.1) for T<10⁵K, Bondi for T>10⁵K.
- $M_{\text{seed}} = 10^4 @ M_* = 3 \times 10^9, <3 \times Eddington.$
- **Radiative+Jet BH Feedback:**

Always: kinetic & bipolar, p=20 L_{bol}/c, $\theta = 0^{\circ}$ 8 Radiative mode: (f_{Edd} >0.1) v_{out} ~500-1500km/s 8 Jet mode: $f_{Edd} < \sim 0.02$, v_{out} up to 7000 km/s 8 *X-ray feedback* based on Choi+13 in jet mode

Dust formation&destruction on the fly

12.5

Simba Black Hole Predictions

Which AGN feedback quenches?

Tets responsible for quenching, truncating GSMF; X-ray feedback non-trivial.

Torque-limited vs. Bondi Accretion: Which Dominates?

- Torque-limited accretion dominates globally., increasingly so to low M_{BH}.
- Bondi dominates at late times when hot gas is present, but intermittently.

HACINA MATA

- Simba = Mufasa+torque-limited BH feeding + bipolar jet feedback: matches star, gas, metal properties similarly to or better than Mufasa.
- Torque-limited model is an interesting alternative to Bondi. Works together with BH feedback to produce galaxy-BH co-evolution as observed.
- Suite: 100, 50, 25, 12.5 Mpc/h w/1024^3, plus cluster+galaxy zooms.
 Outputs and galaxy catalogs available upon request as completed.