The nature and evolution of distant SC4K Lyman-alpha emitters from z~6 to z~2

Sérgio Santos

David Sobral, Jorryt Matthee, João Calhau

DEX2019 Edinburgh 7 January 2019

Lyα as a probe of high-z Universe

Ly α (1216 Å) emitted by <u>star-forming galaxies</u> (+ AGN) Intrinsically the brightest line Observable from ground-based telescopes at z > 2

broad-band narrow-band emission-line

Slicing the COSMOS field (~2 deg²) 16 redshift slices (12+4 MB/NBs) Subaru+INT

<u>4000 Lyα emitters at z ~ 2 - 6</u>

Sobral, Santos et al. 2018

Evolution of LAE properties

(see Calhau's talk tomorrow)

Stellar Mass - SFR relation

LAEs fill the low mass, low SFR range. Typically above the MS. LAEs follow the MS slope at certain mass ranges

Muv - UV B slope

LAEs typically bluer than the LBG population

Bluer

Summary

- Lyα + NB/MB to probe high redshift Universe
- SC4K: ~4000 LAEs at z~2-6 in the COSMOS field
- No evidence for EW evolution with redshift
- LAEs typically above Main Sequence but follow it for some mass ranges
- LAEs typically low stellar mass and very blue

Thank you for your attention

Selection of Lyman-alpha emitters

EW₀ > 50 Å Σ > 3 2" apertures

Same selection Comparable samples

Filter profile corrections

Propagation of errors

SED fitting - MAGPHYS

