Image Credit: NASA, ESA and Koekemoer (STScl)

EDINBURGH - 2019

The X-ray activity of star-forming galaxies across cosmic time

João Calhau

Collaborators: **David Sobral**, Jorryt Matthee, Sérgio Santos, Andra Stroe, Ana Paulino-Afonso

DEX XV

THE STAR FORMATION HISTORY OF THE UNIVERSE

(I'm sorry)

THE STAR FORMATION HISTORY OF THE UNIVERSE

THE BLACK HOLE ACCRETION RATE OF STAR FORMING GALAXIES

Calhau et al. 2017

THE BLACK HOLE ACCRETION RATE OF STAR FORMING GALAXIES

ENTER SC4K - SLICING COSMOS FROM Z=2 TO Z=6

5.6

5.2

4.8

4.4

3.6

3.2

Redshift (z)

Sobral et al 2018a - ArXiv:1712.04451 2.6Dec. (deg.) 2.42.21.4151.0150.8**P** 150.6 ア 150.4 (150.2 150.7 149.86.05.55.0 $\operatorname{Redshift}^{4.0}(z)$ 149.63.02.5

In the COSMOS field (Scoville et al. 2007).

Numerous available bands: X-rays, Radio, Infrared and more ~4000 LAEs spanning a redshift range of $z \sim 2 - 6$ in the COSMOS field.

Total volume of ~ $6 \times 10^7 \text{ Mpc}^3$

Publicly available

X-RAY ACTIVITY FOR LAES

Radio emission from synchrotron radiation.

Inverse-Compton effect: X-ray emission

Directly related to the rate of accretion.

THE X-RAY ACTIVITY OF STAR FORMING GALAXIES AT Z=2-6

Direct detections in the X-rays possess moderate to high luminosity, but stacking non-X-ray sources results in non-detections.

THE X-RAY ACTIVITY OF STAR FORMING GALAXIES AT Z=2-6

Direct detections in the X-ray possess moderate to high luminosity, but stacking non-X-ray sources results in non-detections.

THE X-RAY ACTIVITY OF STAR FORMING GALAXIES AT Z=2-6

Only ~4% of our sources are detected in either x-rays or radio and classified as AGN.

The total AGN fraction (x-ray + radio) rises with Lya luminosity.

At higher luminosity bins, this fraction approaches 100%. Only ~4% of our sources are detected in either x-rays or radio and classified as AGN.

The total AGN fraction (x-ray + radio) rises with Lya luminosity.

At higher luminosity bins, this fraction approaches 100%.

The AGN fractions also appears to show evolution with redshift.

BUT

Calhau et al. submitted

Only x-ray sample shows signs of evolution. Radio AGN are constant across Lya luminosity.

Radio and X-rays correlate with Lya luminosity?

L_X/L_{RADIO} RELATION WITH LYCI LUMINOSITY?

Does not seem like Radio correlates with Lya luminosity. Radio emission originates from different processes than X-rays and Lya.

- ~96% of the LAEs are likely star forming galaxies. Only 4% are AGN candidates.
- Very bright AGN in the X-rays (log(L_{X-rays})> 43.5; average BHAR ~ 0.46 Msolar/yr)
- No relation between X-ray and Lya luminosities found when stacking without the AGN, but -
- Positive relation when including X-ray detections.

- Lya emission in X-ray detected galaxies is likely tracing BH activity.
- AGN fraction rises with Lya luminosity and shows signs of evolution with redshift.
- LAEs present a variety of different HR values, but there is no evolution with redshift.
- Radio emission does not correlate with Lya Iikely originates from different processes than Lya and X-rays.
- Evolution of BHAR consistent with SFH up to z~3. BHAR/SFR comparable to lower redshift star forming galaxies suggesting a trend across cosmic time.

FLUX CORRECTIONS FOR THE X-RAY MEASUREMENTS

Correction of a factor of +0.1 (log scale) based on the median difference between the logs of our fluxes and Civano et al. 2016

X-RAY FLUX CORRECTION

Flux correction to our X-ray fluxes to make them comparable to Civano et al. 2016's fluxes.

Correction taken as the median of the difference of the logarithm of the fluxes.

IMPOSING A 3-SIGMA CUT ON THE STACKS

Still no detections but flux goes down considerably, even going below the AGN/SF limit of $L_X = 10^{42}$ erg/s.

+ easy to select photometrically thanks to nearby Lyman-break

•