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H�+[OIII] and [OII] LFs out to z ⇠ 5 15

Figure 9. Our [OII] dust & AGN corrected SFRD evolution with the [OII] studies of Bayliss et al. (2011); Ciardullo et al. (2013); Sobral
et al. (2013) and Sobral et al. (2015), along with the results of this paper, that are used to fit the parametrization of Madau & Dickinson
(2014). The best fit is shown as the dashed line (dodger blue) and is only based on [OII] measurements. We also include an extrapolation
to higher-z (dashed-dotted turquoise line), as we don’t constrain this part of redshift space but can extrapolate based on our fit. The
1-� region is highlighted in gold filled regions around the fit. The stacked radio study of Karim et al. (2011) and the H↵ study of Sobral
et al. (2013) are also shown as a comparison and are in agreement with our measurements. Our compilation of SFRD measurements (in
gray) are a combination of our compilation and that of Hopkins & Beacom (2006), Madau & Dickinson (2014), Ly et al. (2007), and
Gunawardhana et al. (2013). We reproduce the SFRD evolution history of the universe based primarily on [OII] studies with the peak
of star-formation history occurring at z ⇠ 3. We also include the fits of Hopkins & Beacom (2006) (IMF corrected to Salpeter) and that
of Madau & Dickinson (2014). We find that the Hopkins & Beacom (2006) fit reasonably matches our SFRD fit, while the Madau &
Dickinson (2014) fits well until z > 2. This is mostly because the Madau & Dickinson (2014) fit is driven by the z > 5 UV measurements
(which are not backed by spectroscopy), for which we do not include in our [OII] fit.

would allow us to compare and confirm the UV SFRD mea-
surements at z > 5.

We also compare our fit to those of Hopkins & Beacom
(2006) and Madau & Dickinson (2014) in figure 9. For the
z < 2 regime, we find that our [OII] SFRD fit agrees well
with all the other fits. For the z > 2 regime, we do see
divergences based on the fit. In terms of the actual data
points, we find that the Hopkins & Beacom (2006) is closest
in agreement as it has a continuing SFRD up to a peak
at z ⇠ 2.5 and a drop that continues through the high-z
[OII] measurements. The Madau & Dickinson (2014) is also
in agreement for the high-z measurements, but fails to match
with the z ⇠ 2� 3 peak. This is mostly due to the fact that
their measurements are driven by the z > 5 UV dropout

SFRDs (e.g., Bouwens et al. 2011, 2014; Oesch et al. 2010;
Schenker et al. 2013).

As with all SFR measurements, there are systematic
uncertainties that must be taken into account. In the case
of [OII] emitters, our main systematic uncertainties come
from metallicity and dust extinction. To study the metallici-
ties and its e↵ects on the star-formation rate calibration, we
will need to conduct follow-up spectroscopy. Furthermore,
studying the metallicity of our sample will give us also an
understanding of the dynamics (inflow/outflow) that can af-
fect star-formation activity. We also plan to study in a fu-
ture paper the dust extinction properties of our sample and
how it relates to and a↵ects the star-formation activity of
galaxies in our sample (Khostovan et al., in prep).
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understanding of the dynamics (inflow/outflow) that can af-
fect star-formation activity. We also plan to study in a fu-
ture paper the dust extinction properties of our sample and
how it relates to and a↵ects the star-formation activity of
galaxies in our sample (Khostovan et al., in prep).
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rate seems to follow the  
evolution of star formation

With the ratio between the  
two remaining constant -  
same feeding mechanism?
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in agreement as it has a continuing SFRD up to a peak
at z ⇠ 2.5 and a drop that continues through the high-z
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As with all SFR measurements, there are systematic
uncertainties that must be taken into account. In the case
of [OII] emitters, our main systematic uncertainties come
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ties and its e↵ects on the star-formation rate calibration, we
will need to conduct follow-up spectroscopy. Furthermore,
studying the metallicity of our sample will give us also an
understanding of the dynamics (inflow/outflow) that can af-
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ture paper the dust extinction properties of our sample and
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galaxies at higher redshifts? 

Lyɑ shifts to the 
visible at these 
redshifts. 

So we follow LAEs
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ENTER SC4K - SLICING COSMOS FROM Z=2 TO Z=6
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~4000 LAEs spanning a 
redshift range of z ~ 2 - 6 in 
the COSMOS field.

Total volume of ~ 6 x 107 Mpc3 

In the COSMOS field 
(Scoville et al. 2007).

Numerous available 
bands: X-rays, Radio, 
Infrared and more

Sobral et al 2018a - ArXiv:1712.04451

Publicly available

Calhau et al. submitted



X-RAY ACTIVITY FOR LAES

Inverse-Compton effect: 
X-ray emission 

Directly related to the  
rate of accretion.

Radio emission from 
synchrotron radiation.



THE X-RAY ACTIVITY OF STAR FORMING GALAXIES AT Z=2-6
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Direct detections in the X-rays possess moderate to high 
luminosity, but stacking non-X-ray sources results in non-
detections.

Calhau et al. submitted

Calhau et al. submitted

Average LX-rays (stack) < 1043.3 erg s-1 
Average  BHAR < 0.08 M⦿ yr-1

LX-rays (detections) > 1043.5

Average BHAR ~ 0.46 M⦿ yr-1



THE X-RAY ACTIVITY OF STAR FORMING GALAXIES AT Z=2-6
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Direct detections in the X-ray possess moderate to high 
luminosity, but stacking non-X-ray sources results in non-
detections.

Full 3705 source-
stack; ~480Ms of 

exposure (17 
years) !

This remains true for 
both stacking in bins of 
redshift and for the full 
sample

Calhau et al. submitted



THE X-RAY ACTIVITY OF STAR FORMING GALAXIES AT Z=2-6

There seems to be a relation between Lyɑ 
luminosity and X-ray luminosity - Lyɑ 
becomes a tracer for black hole accretion.

This relation differs for different redshift bins. For low 
redshift sources, the same x-ray luminosity results in 
fainter Lyɑ emission - low-z LAEs less dusty than 
higher-z counterparts?

Calhau et al. submitted



THE AGN FRACTION OF LAES
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Only ~4% of our sources are detected in 
either x-rays or radio and classified as 
AGN.

The total AGN fraction 
(x-ray + radio) rises 
with Lyɑ luminosity. 

At higher luminosity 
b i n s , t h i s f r a c t i o n 
approaches 100%.
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THE AGN FRACTION OF LAES

Only ~4% of our sources are detected in 
either x-rays or radio and classified as 
AGN.

The total AGN fraction 
(x-ray + radio) rises 
with Lyɑ luminosity. 

At higher luminosity 
b i n s , t h i s f r a c t i o n 
approaches 100%. 

The AGN fractions also 
a p p e a r s t o s h o w 
evolution with redshift.
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THE AGN FRACTION OF LAES

Only x - ray sample 
s h o w s s i g n s o f 
evolution. Radio AGN 
are constant across 
Lya luminosity.
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LX/LRADIO RELATION WITH LYⱭ LUMINOSITY?

Radio and X-rays correlate with Lyɑ luminosity?
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LX/LRADIO RELATION WITH LYⱭ LUMINOSITY?
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Does not seem like Radio correlates with Lyɑ luminosity. Radio 
emission originates from different processes than X-rays and 
Lyɑ.



THE EVOLUTION  OF BHAR ACROSS COSMIC TIME
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(Ṁ

B
H

(M
�

yr
�

1 )
)

This work (Stack)

This Work (AGN)

C+17 (H↵, AGN)

C+17 (H↵, stack)

SFRD (scaled)

CII], CIII], CIV (Stroe+17)

Lyɑ-selected samples yield 
high accretion black holes.

The evolution of BHARs 
is consistent with SFRD 

up to z=3, but beyond that 
we cannot be sure.
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The black hole to galaxy 
growth ratio (BHAR/SFR) 
is <0.001, consistent with 

typical star forming 
galaxies that can easily 
lead to establishing the 

local BHAR/SFR relation.



TAKE AWAY POINTS

• ~96% of the LAEs are likely star forming galaxies. Only 4% are AGN candidates. 

• Very bright AGN in the X-rays (log(LX-rays)> 43.5;  average BHAR ~ 0.46 Msolar/yr) 

• No relation between X-ray and Lyɑ luminosities found when stacking without the AGN, but -  
• Positive relation when including X-ray detections. 

• Lyɑ emission in X-ray detected galaxies is likely tracing BH activity. 

• AGN fraction rises with Lya luminosity and shows signs of evolution with redshift. 

• LAEs present a variety of different HR values, but there is no evolution with redshift. 

• Radio emission does not correlate with Lyɑ           likely originates from different processes 
than Lyɑ and X-rays. 

• Evolution of BHAR consistent with SFH up to z~3. BHAR/SFR comparable to lower redshift 
star forming galaxies suggesting a trend across cosmic time.





-15.0 -14.7 -14.4 -14.1 -13.8 -13.5 -13.2
log10 2.0-7.0keV Flux (this work)

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

�
lo

g 1
0

2.
0-

7.
0k

eV
F
lu

x

This work-Civano 2016 (Full band)
one-to-one relation

-15.9 -15.6 -15.3 -15.0 -14.7 -14.4 -14.1 -13.8 -13.5
log10 2.0-7.0keV Flux (this work)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�
lo

g 1
0

2.
0-

7.
0k

eV
F
lu

x

This work-Civano 2016 (Soft band)
one-to-one relation

-15.0 -14.7 -14.4 -14.1 -13.8 -13.5 -13.2
log10 2.0-7.0keV Flux (this work)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�
lo

g 1
0

2.
0-

7.
0k

eV
F
lu

x

This work-Civano 2016 (Hard band)
one-to-one relation

FLUX CORRECTIONS FOR THE X-RAY MEASUREMENTS

Correction of a factor of +0.1 (log scale) based on the median 
difference between the logs of our fluxes and Civano et al. 2016



X-RAY FLUX CORRECTION

Flux correction to 
our X-ray fluxes to 
m a k e t h e m 
c o m p a r a b l e t o 
C i v a n o e t a l . 
2016’s fluxes. 
Correction taken 
as the median of 
the difference of 
the logarithm of 
the fluxes.
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HARDNESS RATIO
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IMPOSING A 3-SIGMA CUT ON THE STACKS

Still no detections but flux goes down considerably, even going 
below the AGN/SF limit of LX = 1042 erg/s.



LYMAN-ALPHA EMISSION

• Photon emission from the passage of an electron from the energy level n=2 to n=1 in an 
Hydrogen atom. 

• Wavelength 1216 angstrom. 

• VERY easily absorbed by gas. 

• Has a very distinct shape. 

• Shifts to optical at z>2 and is the most luminous line in SF regions. 

• May also come from AGN activity.

LYⱭ TO THE RESCUE

• Lyɑ redshifts to the 
optical at z>2. 

• It is the most luminous 
line in star forming 
regions.

Lyα: currently still the best spectroscopic tool at z>2…

• 1216 Å redshifts into optical at z > 2
• Intrinsically most luminous emission-

line in star-forming HII regions 
• Easy to identify thanks to asymmetric 

shape 
• Easy to select photometrically thanks 

to nearby Lyman-break 

• Coupled with other UV lines for 
apparently very luminous sources, 
e.g.  CIII], CIV, HeII)

+ 1216 Å redshifts into optical at z > 2 

+ intrinsically most luminous emission 
line in star-forming HII regions 

+ easy to identify thanks to asymmetric 
shape 

+ easy to select photometrically thanks 
to nearby Lyman-break

LY M A N - A L P H A  I S  C U R R E N T LY  O U R  
B E S T  S P E C T R O S C O P I C  T O O L  AT  Z > 2 . 3

LyỬ

See Daniel Stark + Jorryt Matthee’s talks and e.g. Stark+15,16

Local Universe: LARS [Östlin et al. 
2014; Hayes et al. 2014]

Further modelling development needed, see: Eldridge et al. 2008; 
Eldridge & Stanway 2009, 2012; Grafener & Vink 2015; Stanway et al. 2016 

See also : Gutkin et al. 2016; Jaskot & Ravindranath 2016; Amorin et al. 2017
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Sobral+ in prep.

Sobral et al. 2017

• Easy to identify due to 
shape and Lyman break.


