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Extreme Value Statistics
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Extreme Events: rare but devastating
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Applications
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Climate studies, finance and economics, hydrology, sports,....

Random walks, disordered systems, random matrices, number theory, .....
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Average vs. Extreme
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General setting:

X {x1,%2,...,xny} = random
variables drawn from a joint pdf

P(x1, X2y .-, XN)

‘ ‘ independent or correlated
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General setting:

{x1,x2,...,xn} = random
X. /Xmﬂx . ..
! variables drawn from a joint pdf
Xlﬂlﬂ
\\ P(Xl,XQ,...,XN)
‘ \‘ ‘ independent or correlated
1 2 N

Extreme Value Statistics: global maximum or minimum
Xmax = Max{xy, Xz, ..., Xn}

Xmin = min{xy, x2, ..., Xy}
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General setting:

{x1,x2,...,xn} = random
X. /Xmﬂx . ..
! variables drawn from a joint pdf
Xlﬂlﬂ
\\ P(Xl,XQ,...,XN)
‘ \‘ ‘ independent or correlated
1 2 N

Extreme Value Statistics: global maximum or minimum

Xmax — maX{Xth, . ,X/V}
Xmin = min{X17X2, ceey XN}
Q: Given P(xy,x2,...,xy), what can we say about the statistics of Xpax

and Xmin?
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Extreme statistics of i.i.d random variables

A particularly simple case is when

{x1,x2,...,xy} = set of N i.i.d random variables

N
each drawn from p(x) — P(x1,x2, ..., xn) = H p(x)
i=1
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Extreme statistics of i.i.d random variables

A particularly simple case is when

{x1,x2,...,xy} = set of N i.i.d random variables

N
each drawn from p(x) — P(x1,x2, ..., xn) = H p(x)
i=1

Maximum: Xmax = max(xy, X2, ..., Xy)
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Extreme statistics of i.i.d random variables

A particularly simple case is when

{x1,%2,...,xn} = set of N i.i.d random variables

N
each drawn from p(x) — P(x1,x2, ..., xn) = H p(x)
i=1

Maximum: Xmax = max(xy, X2, ..., Xy)

Cumulative dist. of the maximum:

Qn(x) = Prob[xmax < x] = Prob[x; < x,x < x,...xy < x]
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Extreme statistics of i.i.d random variables

A particularly simple case is when

{x1,%2,...,xn} = set of N i.i.d random variables

N
each drawn from p(x) — P(x1,x2, ..., xn) = H p(x)
i=1

Maximum: Xmax = max(xy, X2, ..., Xy)

Cumulative dist. of the maximum:
Qn(x) = Prob[xmax < x] = Prob[x; < x,x < x,...xy < x]

X N 00 N
Independence = Qu(x) = [j_oc p(x') dx’] =[1— [ p(x') dx’]
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Extreme statistics of i.i.d random variables

A particularly simple case is when

{x1,%2,...,xn} = set of N i.i.d random variables

N
each drawn from p(x) — P(x1,x2, ..., xn) = H p(x)
i=1

Maximum: Xmax = max(xy, X2, ..., Xy)

Cumulative dist. of the maximum:

Qn(x) = Prob[xmax < x] = Prob[x; < x,x < x,...xy < x]

X N 00 N
Independence = Qu(x) = [j_oc p(x') dx’] =[1— [ p(x') dx’]

Scaling limit: N large, x large: ’ Qn(x) = F[(x —an)/bn] ‘

S.N. Majumdar Extreme Value Statistics for Random Matrices



Three universal extreme value distributions

Scale factors ay and by = Non-universal (depends on the precise tail
of p(x))
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Three universal extreme value distributions

Scale factors ay and by = Non-universal (depends on the precise tail
of p(x))

But only 3 possible varieties of scaling functions F(z) (depending only on
the generic tail of p(x))

= LAW OF EXTREMES
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Three universal extreme value distributions

Scale factors ay and by = Non-universal (depends on the precise tail
of p(x))

But only 3 possible varieties of scaling functions F(z) (depending only on
the generic tail of p(x))

= LAW OF EXTREMES

[Fréchet (1927), Fisher and Tippet (1928), Gnedenko (1943), Gumbel
(1958)...]
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Three universal extreme value distributions

Scale factors ay and by = Non-universal (depends on the precise tail
of p(x))

But only 3 possible varieties of scaling functions F(z) (depending only on
the generic tail of p(x))

= LAW OF EXTREMES

[Fréchet (1927), Fisher and Tippet (1928), Gnedenko (1943), Gumbel
(1958)...]

Several applications = Climate, Finance, Oceanography, Disordered
Systems (Random Energy Model of Derrida)
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Three canonical extreme value distributions

Type | (GUMBEL): If p(x) is unbounded with faster than power law tail
(e.g., exponential)

Fi(z) = exp[—e~7]
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Three canonical extreme value distributions

Type | (GUMBEL): If p(x) is unbounded with faster than power law tail
(e.g., exponential)

Fi(z) = exp[—e™7]
Type Il (FRECHET): If p(x) has power law tails: p(x) ~ x~(1+1)

F//(Z) =0 z < 0
=exp[-z77] z>0
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Three canonical extreme value distributions

Type | (GUMBEL): If p(x) is unbounded with faster than power law tail
(e.g., exponential)

Fi(z) = exp[—e™7]
Type Il (FRECHET): If p(x) has power law tails: p(x) ~ x~(1+1)
Fu(z)=0 z<0
=exp[—z77] z>0
Type Il (WEIBULL): If p(x) is bounded: p(x) ~ (1 — x)(7—1)

Fii(z) = exp[—|z|"] z<0
=1 z>0
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Three canonical extreme value distributions

Type | (GUMBEL): If p(x) is unbounded with faster than power law tail
(e.g., exponential)

Fi(z) = exp[—e™7]
Type Il (FRECHET): If p(x) has power law tails: p(x) ~ x~(1+1)
Fu(z)=0 z<0
=exp[—z77] z>0
Type Il (WEIBULL): If p(x) is bounded: p(x) ~ (1 — x)(7—1)

Fii(z) = exp[—|z|"] z<0
=1 z>0

f\
I

WEIBULL
FRECHET

F(2)
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Extreme statistics of correlated variables

In many situations, however, the underlying random variables

{x1,%2,...,xn} = correlated

Joint distribution is not factorisable: P(x1, xa, ..., xn) # H p(x)
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Extreme statistics of correlated variables

In many situations, however, the underlying random variables

{x1,%2,...,xn} = correlated

Joint distribution is not factorisable: P(x1, xa, ..., xn) # H p(x)

Extreme statistics of correlated variables = nontrivial
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Extreme statistics in weakly correlated systems

Weakly correlated variables {x, x2, ..., xy}
— finite correlation length £ << N

__ global maximum
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Extreme statistics in weakly correlated systems

Weakly correlated variables {x, x2, ..., xy}
— finite correlation length £ << N

__ global maximum
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e z; — maximum in the j-th block = uncorrelated
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Extreme statistics in weakly correlated systems

Weakly correlated variables {x, x2, ..., xy}
— finite correlation length £ << N

__ global maximum

-

{ Ll

e z; — maximum in the j-th block = uncorrelated

e Global maximum: X, = max (z1, 2, ..)
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Extreme statistics in weakly correlated systems

Weakly correlated variables {x, x2, ..., xy}
— finite correlation length £ << N

__ global maximum

-

{ Ll

e z; — maximum in the j-th block = uncorrelated

e Global maximum: X, = max (z1, 2, ..)

— Fréchet, Gumbel or Weibull



J. Phys. A: Math. Gen. 30 (1997) 7997-8015. Printed in the UK PIL: S0305-4470(97)85814-3

Universality classes for extreme-value statistics

Jean-Philippe Bouchaud{§ and Marc Mézardi||

1 Service de Physique de I’Etat Condensé, Centre d’études de Saclay, Orme des Merisiers, 91191
Gif-sur-Yvette Cedex, France

1 Laboratoire de Physique Théorique de I’Ecole Normale Supérieure¥, 24 rue Lhomond, 75231
Paris Cedex 05, France

Received 9 July 1997

Abstract. The equilibrium low-temperature physics of disordered systems is governed by the
statistics of extremely low-energy states. It is thus relevant to discuss the possible universality
classes for extreme-value statistics. We compare the usual probabilistic classification to the
results of the replica approach. We show in detail for several problems (including the random
energy model and the decaying Burgers turbulence) that one class of independent variables
corresponds exactly to the so-called one step replica symmetry breaking solution in the replica
language. We argue that this universality class holds if the correlations are sufficiently weak, and
propose a conjecture on the level of correlations which leads to different universality classes.
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Extreme statistics in strongly correlated systems

For strongly correlated {xi, x2, ..., xn}: correlation length £ ~ O(N)

Extreme statistics — nontrivial = few exact results
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Extreme statistics in strongly correlated systems

For strongly correlated {xi, x2, ..., xn}: correlation length £ ~ O(N)
Extreme statistics — nontrivial = few exact results

Examples:
e Random walks and Lévy flights
e Watermelons (vicious random walkers)
e Branching processes
e Mass transport/condensation processes
e Directed polymer & sequence matching

e Fluctuating interfaces (KPZ)

e Top eigenvalue of a Gaussian random matrix
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Gaussian Random Matrices: A brief reminder
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Spectral Statistics in Random Matrix Theory (RMT)

Consider N x N Gaussian random matrix J = [J]

(i) real symmetric (i) complex Hermitian (iii) complex quaternionic

Prob.[J] «x exp |:6/;l Z |J,-j|2]
iJ

Ju  Ji2 Jin

J— Jio o Jon
T o exp [—B 5 Tr (JTJ)]

Jin on Inn

— invariant under rotation

(i) GOE (i) GUE (iii) GSE
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Spectral Statistics in Random Matrix Theory (RMT)

Consider N x N Gaussian random matrix J = [J]

(i) real symmetric (i) complex Hermitian (iii) complex quaternionic

Prob.[J] «x exp |:6/;l Z |J,-j|2]
iJ

Ju  Ji2 Jin

J— Jio o Jon
T o exp [—B 5 Tr (JTJ)]

Jin on Inn

— invariant under rotation

(i) GOE (i) GUE (iii) GSE
N real eigenvalues: {/\1, /\2, ceey /\/\/} — strongly correlated

Spectral statistics in RMT = statistics of {)\1, )\2, ceey )\/\/}
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Joint distribution of eigenvalues

Joint distribution of eigenvalues (Wigner, 1951)

B

ﬂ N
_2N§/\?] T =

j<k

1
P(A1>A27~-~>AN):?N exp

where the Dyson index 8 =1 (GOE), 5 =2 (GUE) or 5 = 4 (GSE)
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Joint distribution of eigenvalues

Joint distribution of eigenvalues (Wigner, 1951)

B

1
P(A1>A27~-~>AN):?N exp

ﬂ N
_2N§/\?] T =

j<k

where the Dyson index 8 =1 (GOE), 5 =2 (GUE) or 5 = 4 (GSE)

The Vandermonde term H IAj — Ak|” makes {\;}'s
j<k

—> strongly correlated
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A physical realization of GUE eigenvalues

v . . .
=) A single quantum particle in a
\ _ | harmonic potential: V(x) = $mw?x?
\ : Z=3 Schrodinger equation:
k=2 R? d’e 1, 2.2 .
s —am a2+ 3 MwxPok(x) = expr(x)
s k=0 with px(x = £00) =0

S.N. Majumdar Extreme Value Statistics for Random Matrices



A physical realization of GUE eigenvalues

v . . .
=) A single quantum particle in a
\ _ | harmonic potential: V(x) = $mw?x?
\ : Z=3 Schrodinger equation:
k=2 R? d’e 1, 2.2 .
s —am a2+ 3 MwxPok(x) = expr(x)
s k=0 with px(x = £00) =0

1/2

single particle eigenfunctions: ¢ (x) = [m} e=a’ X/ Hi(a x)

with energy levels: ¢, = (k+1/2)hw k=0,1,2,3...
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A physical realization of GUE eigenvalues

v . . .
=) A single quantum particle in a
\ _ | harmonic potential: V(x) = $mw?x?
\ : Z=3 Schrodinger equation:
k=2 R? d’e 1, 2.2 .
s —am a2+ 3 MwxPok(x) = expr(x)
s k=0 with px(x = £00) =0

1/2

single particle eigenfunctions: ¢ (x) = [m} e=a’ X/ Hi(a x)

with energy levels: ¢, = (k+1/2)hw k=0,1,2,3...

a = y/mw/h — inverse of the width of the ground state wave packet
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A physical realization of GUE eigenvalues

v . . .
=) A single quantum particle in a

\ ; | harmonic potential: V(x) = $mw?x?
\ : Z=3 Schrodinger equation:

=2 R? d’e 1, 2.2 o

o —om ar T amwx*ok(x) = expr(x)
s k=0 with @i (x — £00) =0
X —

1/2

single particle eigenfunctions: ¢ (x) = [m} e=a’ X/ Hi(a x)

with energy levels: ¢, = (k+1/2)hw k=0,1,2,3...

a = y/mw/h — inverse of the width of the ground state wave packet
Hi(x) — Hermite polynomials

For example, Ho(x) = 1, Hi(x) = 2x, Ha(x) = 4x? — 2, etc.



N\ spinless Fermions in a harmonic trap: T=0

Fermi level
~ ground state many-body

\ : /k:N—l wavefunction — Slater determinant
k=3

Vo (x1,%0,...,xn) = ﬁ det[pi(x)]
=2 with0<i<(N-1),1<j<N

k=1
* k=0 ground state energy: Eg = hw N?/2
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N\ spinless Fermions in a harmonic trap: T=0

Fermi level

o ground state many-body
\ /k:N—l wavefunction — Slater determinant
k=3

Vo (x1,%0,...,xn) = ﬁ det[pi(x)]
=2 with0<i<(N-1),1<j<N

k=1
* k=0 ground state energy: Eg = hw N?/2

2
) o e— % Zh (v -
Vo({x}) e F TR det [Hi(ax)]

o2
o e™F T TG =0

Jj<k
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N\ spinless Fermions in a harmonic trap: T=0

Fermi level

o ground state many-body
| | . .
; /k=N_1 wavefunction — Slater determinant
- Vo (x1,%0,...,xn) = ﬁdet[g@,—(xj)]
1 = with 0</i<(N-1),1<j<N
k=1
* k=0 ground state energy: Eg = hw N?/2
X%
Vo({xi)) x e % T det [Hi(ax)]
o({x:}) o aX;
o2
x e F T TG =)
Jj<k
1 a2 SN2
= Wo({x})]? = 5-e =9 16— %)
Zn j<k

S.N. Majumdar Extreme Value Statistics for Random Matrices



Free fermions at T=0 = GUE eigenvalues

e Fermions: squared many-body wave function at T =0
(quantum probability density)

N
Wo({x:})|* = ZiN exp [—Z a? x?] H(XJ — x;)? where a = \/mw/h
i=1

j<k
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Free fermions at T=0 = GUE eigenvalues

e Fermions: squared many-body wave function at T =0
(quantum probability density)

Wo({x:})|* = ZiNexp [ Za ] H x; — xx)? where a = \/mw/h

j<k

e GUE eigenvalues: joint probability distribution

P(A1, A2y Ay) = exp[ ZV} TT % = Al

Jj<k

= The positions of free fermions in a harmonic trap at 7 = 0 behave
statistically as the eigenvalues of a GUE random matrix

‘(axl, QXgy oy XN) = ()\1.,/\2,....,)\,\/)‘

Dean, Le Doussal, S.M. & Schehr, PRL, 114, 110402 (2015); PRA, 94, 063622 (2016); J. Stat.
Mech. P063301 (2017);  Recent Review: arXiv: 1810.12583
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Joint distribution of eigenvalues

Joint distribution of eigenvalues (Wigner, 1951)

B e «
2 N,;A’g] [T =2l

Jj<k

1
P(/\l,)\27...,)\/\/) = ?N exp

where the Dyson index 8 =1 (GOE), 5 =2 (GUE) or § = 4 (GSE)
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Joint distribution of eigenvalues

Joint distribution of eigenvalues (Wigner, 1951)

—/\/Zf] TT 1 = Al

Jj<k

1
P(/\l,)\27...,)\ ) Z—exp

where the Dyson index 8 =1 (GOE), 5 =2 (GUE) or § = 4 (GSE)

Coulomb gas interpretration: (Dyson, 1962)

P(M, A2y M) = 2 exp {—7 (/v SEN Y, Iog\)\j—)\k|)}
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Joint distribution of eigenvalues

Joint distribution of eigenvalues (Wigner, 1951)

—/\/Zf] TT 1 = Al

Jj<k

1
P(/\l,)\27...,)\ ) Z—exp

where the Dyson index 8 =1 (GOE), 5 =2 (GUE) or § = 4 (GSE)

Coulomb gas interpretration: (Dyson, 1962)
P(M, A2y M) = 2 exp {—7 (/v SEN Y, Iog\)\j—)\k|)}
~ exp [=B E[{Ai}]
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Joint distribution of eigenvalues

Joint distribution of eigenvalues (Wigner, 1951)

—/\/Zf] TT 1 = Al

Jj<k

1
P(/\l,)\27...,)\ ) Z—exp

where the Dyson index 8 =1 (GOE), 5 =2 (GUE) or § = 4 (GSE)

Coulomb gas interpretration: (Dyson, 1962)

POL Ao ) = 2 exp |5 (N X2 = 55 log 1Ay — Al )|
~exp [-B E[{Ai}]

Boltzmann weight of a gas of N pairwise repelling charges (log-repulsion)
in an external harmonic potential V(\) = \?

confining
parabolic
potential

0 A—
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Spectral Density: Wigner’'s Semicircle Law

e Av. density of eigenvalues (normalized to unity):

1 N
PO N) = (1 Zé(A —Ai))
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Spectral Density: Wigner’'s Semicircle Law

e Av. density of eigenvalues (normalized to unity):
1N
p(A, N) = <N 25()\ =)
i=1

1
o Wigner's Semi-circle: p(\, N) = p(A) = =v2 -2
—00

™

P(A)

WIGNER SEMI-CIRCLE

A—
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Average density of eigenvalues

N

e Average density: p(\, V) = p(A) =1v2 -2
— 00
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Average density of eigenvalues

pL) L

redge

bulk
e Average density: p(\, V) = p(A) =1v2 -2
—00

e bulk interparticle distance: folb‘”k p(A) dX ~ & = hyuk ~ &
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Average density of eigenvalues

N

DR
redge

e Average density: p(\, V) = p(A) =1v2 -2
— 00

e bulk interparticle distance: folb‘”k p(A) dX ~ & = hyuk ~ &

e edge interparticle distance: f\/\/g_/ p(A\) dA =~ % = ledge ~ N—2/3

edge
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Average density of eigenvalues

N

DR
redge

e Average density: p(\, V) = p(A) =1v2 -2
— 00

e bulk interparticle distance: folb‘”k p(A) dX ~ & = hyuk ~ &

e edge interparticle distance: f\/\/g_/ p(A\) dA =~ % = ledge ~ N—2/3

edge

/odgc >> /bulk

[Bowick & Brezin '91, Forrester '93]



Top eigenvalue: A\ ax

ics for Random Matrices
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Top Eigenvalue of a random matrix )\, ..

Recent excitements in statistical physics & mathematics on

Amax = the top eigenvalue of a random matrix
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Top Eigenvalue of a random matrix

TRACY-WIDOM
P(AN)
WIGNER SEMI-CIRCLE

N-2/3

/) 0 V2

Average: (Amax) = V/2; Typical fluctuations: [y — V2| ~ lgge ~ N72/3
typical fluctuations, for large N, are distributed via Tracy-Widom ('94)

P(Amaxa N) ~ \/é N2/3 fﬂ (\/Q N2/3 (Amax - \/Q))
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Top Eigenvalue of a random matrix

TRACY-WIDOM
P(AN)
WIGNER SEMI-CIRCLE

N-2/3

/) 0 V2

Average: (Amax) = V/2; Typical fluctuations: [y — V2| ~ lgge ~ N72/3
typical fluctuations, for large N, are distributed via Tracy-Widom ('94)
P(Amaxa N) ~ \/é N2/3 fﬂ (\/Q N2/3 (Amax - \/Q))

fz(x) — Painlevé-ll

S.N. Majumdar Extreme Value Statistics for Random Matrices



Tracy-Widom Distribution for )\, .

Probability densities f(x)

e Dyson index 8 =1 (GOE), g =2 (GUE) & 3 = 4 (GSE)
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Tracy-Widom Distribution for )\, .

Probability densities f(x)
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Tracy-Widom Distribution for ), ..

Probability densities f(x)

e Dyson index 8 =1 (GOE), g =2 (GUE) & 3 = 4 (GSE)

o Asymptotics: fg(x) ~ exp {——|x\3} as X — —00

~ exp [—% x3/2} as X — 00
Typical fluctuations (small) = Tracy-Widom distribution — ubiquitous

directed polymer, random permutation, growth models—KPZ equation,
sequence alignment, large N gauge theory, liquid crystals, spin glasses,...
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Tracy-Widom distribution: Experiments

week ending

PRL 104, 230601 (2010) PHYSICAL REVIEW LETTERS 11 JUNE 2010

Universal Fluctuations of Growing Interfaces: Evidence in Turbulent Liquid Crystals

Kazumasa A. Takeuchi®™ and Masaki Sano
Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

PHYSICAL REVIEW E 85, 020101(R) (2012)

Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers

Moti Fridman, Rami Pugatch, Micha Nixon, Asher A. Friesem, and Nir Davidson”
Wei Institute of Science, Department of Physics of Complex Systems, Rehovot 76100, Israel

PHYSICAL REVIEW B 87, 184509 (2013)

Universal scaling of the order-parameter distribution in strongly disordered superconductors

G. Lemarié," A. Kamlapure;‘ D. Bucheli,? L. Benfatto,? J. Lorenzana,? G. Seibold,* S. C. Ganguli."
P. Raychaudhuri,? and C. Castellani’
!Laboratoire de Physique Théorique UMR-5152, CNRS and Université de Toulouse, F-31062 France
2ISC-CNR and Department of Physics, Sapienza University of Rome, Ple A. Moro 2, 00185 Rome, Italy
3Tata Institute of Fundamental Research, Homi Bhabha Rd., Colaba, Mumbai 400005, India
*Institut Fiir Physik, BTU Cottbus, P.O. Box 101344, 03013 Cottbus, Germany
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Ubiquity of Tracy-Widom distribution

S\Q&‘f\kﬂ IC 64’17;1/,4/

“Homcanon

Olena Shmahalo/Quanta Magazine

“Equivalence Principle”, M. Buchanan, Nature Phys. 10, 543 (2014)

“At the far ends of a new universal law”, N. Wolchover, Quanta Magazine (October, 2014)
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Why is Tracy-Widom ubiquitous?

A natural question: Why is Tracy-Widom distribution so ubiquitous?
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Why is Tracy-Widom ubiquitous?

A natural question: Why is Tracy-Widom distribution so ubiquitous?

Critical Phenomena : universality <= phase transition

microscopic details become irrelevant near a critical point

Questions:

Where to look for a phase transition?
Where is the critical point ?

What are the two phases ?
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Large deviations and 3-rd order phase transition

typical fluctuations of size ~ N~2/3 — Tracy-Widom distributed
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Atypical rare fluctuations of size ~ O(1)
= not described by Tracy-Widom
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Large deviations and 3-rd order phase transition

typical fluctuations of size ~ N~2/3 — Tracy-Widom distributed

Atypical rare fluctuations of size ~ O(1)
= not described by Tracy-Widom

= rather by large deviation functions

Pr( Amax) typical
TRACY-WIDOM
N2
large
(left) large
/ (right)
e N 0o / e N0,
V2o
Iy —_—
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Large deviations and 3-rd order phase transition

typical fluctuations of size ~ N~2/3 — Tracy-Widom distributed

Atypical rare fluctuations of size ~ O(1)
= not described by Tracy-Widom

= rather by large deviation functions

Pr( Apax) icz
max T;}ggg{ﬂ S Pr( Amax) |  critical point
N2
large large
(left) large (left)
/ (rieht \

N0 J N0, 0

V2

Iy —_—
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Large deviations and 3-rd order phase transition

typical fluctuations of size ~ N~2/3 — Tracy-Widom distributed
Atypical rare fluctuations of size ~ O(1)

= not described by Tracy-Widom

= rather by large deviation functions

Pr( Apax) icz
max T;}g)éc;l S Pr( Amax) |  critical point
N2
large large
(left) large (left)
/ (right)
N0 J N0, 0
N2
}\‘ —_—

e General large deviation principle:  Ben-Arous & Guionnet 1997
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Large deviations and 3-rd order phase transition

typical fluctuations of size ~ N~2/3 — Tracy-Widom distributed

Atypical rare fluctuations of size ~ O(1)
= not described by Tracy-Widom

= rather by large deviation functions

Pr( Apax) icz
max T;}g)éc;l S Pr( Amax) |  critical point
N2
large large
(left) large (left)
/ (right)

N0 J N0, 0

N2

}\‘ —_—

e General large deviation principle:  Ben-Arous & Guionnet 1997
e nonanalytic behavior of the large deviation functions

at the critical point v/2 = 3-rd order phase transition
— Review: S.M. & G. Schehr, J. Stat. Mech. P01012 (2014)
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Large deviations of A\

via
Coulomb Gas




Distribution of )\ .. via Coulomb gas

ZN(W)
ZN(OO)

Prob[Amax < w, N] =Prob[A; <w, Ao <w,.... Ay < w] =

w w ﬁ N
ZN(W):/_ /_ {Hd)\,-}exp -5 NS A= log|Aj — Al

i=1 Jj#k

S.N. Majumdar Extreme Value Statistics for Random Matrices



Distribution of )\ .. via Coulomb gas

Z
Prob[Amax < w, N] = Prob\s < w, do < w, ..., Aw < w] = 2MW)
ZN(OO)
w w ﬁ N
ZN(W):/_OO.../_OO{HCI/\,-} exp | =5 NZ)\,?—Zlog|)\j—)\k|
! i=1 i#k
Denominator Numerator
WALL—
o o o o o & o0 000000 '
w
N ——
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Phase transition

}L max = W
W< \2 W=\2 w> 2
-Lw) w \2 -2 N\
pushed critical pulled
w=\2 CRITICAL POINT

S.N. Majumdar Extreme Value Statistics for Random Matrices



Saddle point density

DY

deformed density

semi-circle

0 }\.:W V2

max

e For w > /2, the density is given by Wigner semicircle law:

) = VTN
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Saddle point density

M

deformed density

semi-circle

0 }\.:W V2

max

e For w > /2, the density is given by Wigner semicircle law:
pw(A) = %Vz_)‘z
. VA+L(w)
e For w < /2, the deformed density: p,()\) = T [w+ L(w) — 2)]
where L(w) = [2vVw? +6 — w]/3
D.S. Dean and S.M., PRL, 97, 160201 (2006); PRE, 77, 041108 (2008)

S.N. Majumdar Extreme Value Statistics for Random Matrices



Large Deviation Tails of : Summary
e f5(x) — Tracy-Widom

p(AN) TRACY-WIDOM
WIGNER SEMI-CIRCLE

o O (w) — left and right ‘rate’

=213 .
N functions

— exactly computable

Dean & S.M., PRL, 97, 160201 (2006)
S.M & Vergassola, PRL, 102, 060601 (2009)
Borot, Eynard, S.M., Nadal, JSTAT P11024 (2011)

RIGHT
LARGE DEVIATION

Prob. density of the top eigenvalue: Prob. [Ay.x = w, N| behaves as:

P(w, N) ~ exp[-BN>®_(w)] for V2 —w~ O(1)
~ N VRN (W= V2)| for (w V2~ O(NTPR)

~ exp[-BN®,(w)] for w—+v2~ 0(1)
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:
e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2

[D. S. Dean & S.M., PRL, 97, 160201 (2006)]
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2
[D. S. Dean & S.M., PRL, 97, 160201 (2006)]

In particular, as w — /2 (from left), & (w) — W (V2 —w)?
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2
[D. S. Dean & S.M., PRL, 97, 160201 (2006)]

In particular, as w — /2 (from left), & (w) — W (V2 —w)?

e Right large deviation function:
_ 2_9
WW} where w > /2

1
=-wyw?2—2+1In
2 V2

[Ben Arous, Dembo, Guionnet 2001, S.M. & Vergassola, PRL, 102, 060601 (2009)]
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2
[D. S. Dean & S.M., PRL, 97, 160201 (2006)]

In particular, as w — /2 (from left), & (w) — W (V2 —w)?

e Right large deviation function:
_ 2_9
WW} where w > /2

1
=-wyw?2—2+1In
2 V2

[Ben Arous, Dembo, Guionnet 2001, S.M. & Vergassola, PRL, 102, 060601 (2009)]

As w — /2 (from right), <1>+( ) — & (w —/2)3/2




Large Deviation Functions

These large deviation functions ® 1 (w) have been found useful in a large
variety of problems:

[Fyodorov 2004, Fyodorov & Williams 2007, Bray & Dean 2007, Auffinger, Ben Arous & Cerny
2010, Fydorov & Nadal 2012.... —— stationary points on random Gaussian
surfaces and spin glass landscapes]

[Cavagna, Garrahan, Giardina 2000, Parisi & Rizzo 2008,... —— Glassy systems]

[Susskind 2003, Douglas et. al. 2004, Aazami & Easther 2006, Marsh et. al. 2011, ../
String theory & Cosmology]

[Beltrani 2007, Dedieu & Malajovich, 2007, Houdre 2011, Chiani 2012...——
Random Polynomials, Random Words (Young diagrams) ]
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-rd order phase transition

p(,N) TRACY-WIDOM

Cumulative distribution:
WIGNER SEMI-CIRCLE
N—2/3

Prob.[Amax < w, N] ~ e~ N & (w)

®_(w) — energy cost in pushing the
gas of Coulomb charges to the left of /2

RIGHT
LARGE DEVIATION
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-rd order phase transition

p(,N) TRACY-WIDOM

Cumulative distribution:
WIGNER SEMI-CIRCLE
N—2/3

Prob.[Amax < w, N] ~ e~ N & (w)

®_(w) — energy cost in pushing the
gas of Coulomb charges to the left of /2

RIGHT
LARGE DEVIATION

3-rd order phase transition:

| . O (W)~ (V2—w) as w2
Nlll;noc—W In [P()\max < w, N)] =

0 as w%\@Jr

— analogue of the free energy difference

3-rd derivative — discontinuous
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Transition between

strong
coupling

N

and I ERES

P()\maxa N)

weak

couplin
/ P\ g
A

7
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PHYSICAL REVIEW D VOLUME 21, NUMBER 2 15 JANUARY 1980

Possible third-order phase transition in the large-N lattice gauge theory

David J. Gross
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540

Edward Witten
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 10 July 1979)

The large-N limit of the two-dimensional U(N) (Wilson) lattice gauge theory is explicitly evaluated for all
fixed A=g?N by steepest-descent methods. The A dependence is discussed and a third-order phase
transition, at A =2, is discovered. The possible existence of such a weak- to strong-coupling third-order
phase transition in the large-N four-dimensional lattice gauge theory is suggested, and its meaning and
implications are discussed.

Volume 93B, number 4 PHYSICS LETTERS 30 June 1980

N =2 PHASE TRANSITION IN A CLASS OF EXACTLY SOLUBLE
MODEL LATTICE GAUGE THEQRIES *

Spenta R. WADIA
The Enrico Fermi Institute, University of Chicago, Chicago, Il 60637, USA

Received 27 March 1980

Review of large-N gauge theory: M. Marino, arXiv:1206.6272
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Gross-Witten-Wadia model (1980)

Z = [[DU] exp[S(V) o,
U P U
S(W) =T [[U+he ’ ’
P U
g — coupling strength

‘ double scaling -

STRONG %, ; WEAK

"
0 1 /gU
inverse coupling strength ~ 1/€
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Large // Phase Transition: Phase Diagram

U(N) lattice gauge theory in 2—d
GROSS-WITTEN-WADIA transition (1980)
I/N
crossover
WEAK . {/  STRONG
N
0 g

coupling strength & —
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Large // Phase nsition: Phase Diagram

U(N) lattice gauge theory in 2—d
GROSS-WITTEN-WADIA transition (1980)
I/N I/N K
crossover \, crossover
PUSHED ./ PULLED
WEAK STRONG

- (strongly interacting )
N

0 g,

coupling strength

(weakly interacting)

0
g —
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Large // Phase Transition: Phase Diagram

U(N) lattice gauge theory in 2—d
GROSS-WITTEN-WADIA transition (1980)
l/N - l/N . /]
crossover .* '\, crossover
PUSHED %/  PULLED
WEAK Y STRONG v eakly interacting
. (strongly interacting ) (weakly interacting)
{ i
0 g 0 J2 A =w — =

coupling strength & —

PUSHED phase = Strong coupling phase of Yang-Mills gauge theory
PULLED phase = Weak coupling phase of Yang-Mills gauge theory

Tracy-Widom = crossover function in the double scaling regime
(for finite but large N)
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Tracy-Widom and 3-rd order phase transition

Tracy-Widom is accompanied by a 3-rd order phase transition between a
strong coupling and a weak coupling phase
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Tracy-Widom and 3-rd order phase transition

Tracy-Widom is accompanied by a 3-rd order phase transition between a
strong coupling and a weak coupling phase

° Iarge N YI\/I—gauge theory in 2-d Gross-Witten-Wadia '80, Douglas-Kazakov '93,
Gross-Matytsin, '94
° Complexity in Spin glass models Auffinger, Ben Arous, Cerny '10, Fyodorov, Nadal '13
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Tracy-Widom and 3-rd order phase transition

Tracy-Widom is accompanied by a 3-rd order phase transition between a
strong coupling and a weak coupling phase

° Iarge N YI\/I—gauge theory in 2-d Gross-Witten-Wadia '80, Douglas-Kazakov '93,
Gross-Matytsin, '94
° Complexity in Spin glass models Auffinger, Ben Arous, Cerny '10, Fyodorov, Nadal '13

In addition, we have found similar 3-rd order phase transition in:
e Conductance and Shot Noise in Mesoscopic Cavities
e Entanglement entropy of a random pure state in a bipartite system
e Maximum displacement in Vicious walker problem
e Cold atoms: free fermions in a 1-d harmonic trap at T =0
e Height distribution in (1 + 1)-d KPZ growth models
e 1d Plasma: position of the rightmost charge
Bohigas, Comtet, Dean, Forrester, Le Doussal, Nadal, Schehr, Texier, Vergassola, Vivo+S.M. ('08-'17)

Review: S.M. & G. Schehr, J. Stat. Mech. P01012 (2014)



Wherever Tracy-Widom distribution occurs, there is an accompanying
3-rd order phase transition

TW — finite-size crossover function at a 3-rd order critical point

Review: S.M. & G. Schehr, J. Stat. Mech. P01012 (2014)
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Wherever Tracy-Widom distribution occurs, there is an accompanying
3-rd order phase transition

TW — finite-size crossover function at a 3-rd order critical point

Review: S.M. & G. Schehr, J. Stat. Mech. P01012 (2014)

Not all 3-rd phase transitions are accompanied by Tracy-Widom crossover

e 1-d jellium model
Dhar, Kundu, S.M., Sabhapandit, Schehr, PRL, 119, 060601 (2017)

e Complex Ginibre ensemble

Cunden, Mezzadri, Vivo, J. Stat. Phys. 164, 1062 (2016); Cunden, Facchi, Ligabo, Vivo, J.
Phys. A: Math. Theor. 51, 35LT01 (2018).
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Experimental Verification with Coupled Lasers

Measuring maximal eigenvalue distribution of Wishart random matrices with coupled

lasers

Moti Fridman, Rami Pugatch, Micha Nixon, Asher A. Friesem, and Nir Davidsor{’|
Weizmann Institute of Science, Dept. of Physics of Complex Systems, Rehovot 76100, Israel
(Dated: May 30, 2011)

‘We determined the probability distribution of the combined output power from twenty five coupled
fiber lasers and show that it agrees well with the Tracy-Widom, Majumdar-Vergassola and Vivo-
Majumdar-Bohigas distributions of the largest eigenvalue of Wishart random matrices with no
IIUUIE Pparameters. 11015 wds acnieved witll ouU, DOU easurerienis O e Comoinea output power
from the fiber lasers, that continuously changes with variations of the fiber lasers lengths. We
show experimentally that for small deviations of the combined output power over its mean value
the Tracy-Widom distribution is correct, while for large deviations the Majumdar-Vergassola and
Vivo-Majumdar-Bohigas distributions are correct.
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Experimental Verification with Coupled Lasers

laser1 gV

Laser2

Detector

Laser 25

combined output power from fiber lasers oc A\ ax
Amax — top eigenvalue of the Wishart matrix W = XX

where X — real symmetric Gaussian matrix (8 = 1)
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Experimental Verification with Coupled Lasers

Probability distribution

-2 0 2
Scaled output power

(@)
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Experimental Verification with coupled lasers
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Tracy-Widom density with 7 =1
Fridman et al. @rXiviiol2.1282

Probability density

oo

-6 -4 -2 0 2 4 6
Scaled output power
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