Physics of biological tissues

J.F. Joanny

Physico-Chimie Curie Institut Curie

New directions in theoretical physics, Edimbourg, January 2019

Outline

2 Tissue Monolayers with nematic order

- Defects in nematic tissue monolayers
- Spontaneous flow

2 Tissue Monolayers with nematic order

- Defects in nematic tissue monolayers
- Spontaneous flow

Multicellular spheroids

Intestinal epithelia

pare 11-5a The Biology of Cancer (0 Gardanal Science 2007)

Figure 11-5b The Biology of Cancer |© Garland Science 2007

Confluent monolayers

D Active matter

Tissue Monolayers with nematic order

- Defects in nematic tissue monolayers
- Spontaneous flow

3 Multicellular spheroids

Active Systems

- Tissues
- Bacterial colonies Kessler, Goldstein
- Vibrated granular materials Menon et al.
- Active colloids, Active nematics Ramaswamy et al.
- Bird flocks, Fish shoals Vicsek, Toner, Chaté, Carere

• Marchetti et al, Rev.Mod.Phys. 2013

Cell division and Homeostatic pressure

Cell division and apoptosis

- Division rate $k_d(\rho, \text{biochemical state})$
- Apoptosis rate k_a $\frac{\partial \rho}{\partial t} + \partial_{\alpha}(\rho v_{\alpha}) = (k_d(\rho) k_a(\rho))\rho$

Tissue Pressure

- Pressure exerted by the cells
- Division rate k_d decreases with pressure
- Apoptosis rate k_a increases with pressure

Homeostatic pressure

- Steady state pressure of a tissue P_h
- $k_d k_a(P_h) = 0$

3 > < 3 >

Homeostatic Pressure Basan

- Permeable compartments
- Fluctuations due to cell divisions

Cell division and Homeostatic pressure

Cell division and apoptosis

- Division rate $k_d(\rho, \text{biochemical state})$
- Apoptosis rate k_a $\frac{\partial \rho}{\partial t} + \partial_{\alpha}(\rho v_{\alpha}) = (k_d(\rho) k_a(\rho))\rho$

Tissue Pressure

- Pressure exerted by the cells
- Division rate k_d decreases with pressure
- Apoptosis rate k_a increases with pressure

Homeostatic pressure

- Steady state pressure of a tissue P_h
- $k_d k_a(P_h) = 0$

3 > < 3 >

Curie

8/26

Constitutive equations of an isotropic tissue J. Ranft

"Shear" stress

- Elastic stress $\tilde{\sigma}^{el}_{\alpha\beta} = 2Eu_{\alpha\beta}$
- Stress relaxation by oriented cell divisions Fink
- Total stress

$$\frac{d\tilde{\sigma}_{\alpha\beta}}{dt} + \frac{\tilde{\sigma}_{\alpha\beta}}{\tau_a} = 2E\tilde{v}_{\alpha\beta}$$

• Maxwell viscoelastic model with relaxation time $\tau_a \sim 1/k_d$

• Shear viscosity $\eta \sim Ek_d^{-1}$

Pressure Relaxation

- Near homeostatic condition $(k_d k_a)(\rho) = -\frac{1}{\tau} \frac{\delta \rho}{\rho}$
- Stress relaxation to homeostatic pressure P_h
- Infinitely compressible system with large fluctuations

(4) E (4) E (4)

Curie

9/26

Active liquid behavior of polarized tissues

Polarized tissues

- Cells aligned along a direction p
- Orientational tensor $q_{\alpha\beta} = \langle p_{\alpha}p_{\beta} \frac{1}{d}\delta_{\alpha\beta} \rangle$
- Spontaneous orientation $q^0_{lphaeta}$

Active behavior of tissues

- Orientation by stress $\tilde{\sigma}_{\alpha\beta} = \sigma_0(q_{\alpha\beta} q_{\alpha\beta}^0)$
- Constitutive equation $(1 + \tau_a(D/Dt))\tilde{\sigma}_{\alpha\beta} = 2\eta\tilde{v}_{\alpha\beta} \zeta\Delta\mu\tilde{q}_{\alpha\beta}^0$
- Active stress

Active Matter

- Energy consumption at local scale
- Orientational order
- Fluid-like behavior

イロト イヨト イヨト イヨト

Spontaneous flow Frederiks transition

Parallel anchoring conditions

Flow bifurcation R. Voituriez

- Same anchoring condition on both surfaces
- Active stress equivalent to an external magnetic field along *x* axis

$$L_{c} = \left(-\frac{\pi^{2} \mathcal{K}(\frac{4\eta}{\gamma} + (\nu+1)^{2})}{2\zeta \Delta \mu(\nu+1)}\right)^{1/2}$$

Active matter

2 Tissue Monolayers with nematic order

- Defects in nematic tissue monolayers
- Spontaneous flow

3 Multicellular spheroids

Examples of tissue monolayers

Intestinal epithelium

Confluent Layers on a solid substrate Trepat

Active matter

2 Tissue Monolayers with nematic order

- Defects in nematic tissue monolayers
- Spontaneous flow

Confluent elongated cells G. Duclos, P. Silberzan

Nematic order of Spindle shaped cells

- Spindle-shaped cells: NIH 3T3, RPE1, C2 C12
- Elongated cells show nematic order: head-tail symmetry
- Different defects expected for polar and nematic cells
- Spontaneous cell flow due to activity
- Defect motion

500 um

Defect motion in cell monolayers

- Only +1/2 and -1/2 defects
- Spontaneous motions of +1/2 defects
- -1/2 defects do not move
- Annihilation between +1/2 and -1/2 defects

Joanny (Institut Curie)

Density of defects (mm⁻²)

Time (h)

Active matter

Tissue Monolayers with nematic order
Defects in nematic tissue monolayers

Spontaneous flow

3 Multicellular spheroids

Spontaneous tissue flow G. Duclos, V. Yashunsky, P. Silberzan

Velocity and cell orientation

Active gel theory C. Blanch-Mercader

• Fredericks transition $\begin{array}{c} \int_{0.0}^{1.5} \\ 0.0 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \\ 120 \\ 140 \\ 160 \\ 180 \\ 200 \end{array}$

Theoretical developments

• Substrate friction: screening length $\lambda = \left(\frac{4\eta + \gamma(\nu+1)^2}{\xi}\right)^{1/2}$

$$\frac{1}{L_c^2} = \frac{1}{L_c^2} (\xi = 0) - \frac{1}{\lambda^2}$$

- Transverse flow related to cell division L. Brézin
- Chiral effects

Active matter

Tissue Monolayers with nematic order

- Defects in nematic tissue monolayers
- Spontaneous flow

3 Multicellular spheroids

F. Brochard

Spheroid growth F.Montel, M.Delarue

Surface growth

$$\partial_t V = (k_d - k_a)V + 4\pi (\frac{3}{4\pi})^{2/3} \delta k_s \lambda V^{2/3}$$

Interaction spheroid-macrophages P. Benaroch, J. Nikolic

Multicomponent spheroid M. Benamar, J. Ackermann

- Cancer Immunotherapy
- Cancer cells, Interstitial fluid and extracellular matrix, Dead cells

Heterogeneous spheroid

Spinodal decomposition

- Interacting components, effective free energy for two components
- Include cell division
- Unstable composition inside the spheroid
- 3 component systems; non dividing macrophages

Joanny (Institut Curie)

Tissues as active nematic liquids

- Defect dynamics
- Spontaneous flow
- Multicellular spheroids
- Spheroid instabilities due to macrophages
 - Multicomponent tissues and phase separations
 - Cell extrusion from monolayers and 3 dimensional tissues
 - Transverse orientational fields
 - Coupling to population dynamics and genetics

