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The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2

hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-

independent components- See Sec.B). Adding a contact term

to ensure that limp!0

DRn(p,! , 0) = 0[31], the action (9)

yields the di↵usive form [32]

DRn(p,!) =
�iNK!

i! � D'p2

+ NK =
�NKD'p2

i! � D'p2

. (11)

From this we identify NK and D' as the compressibility and

charge di↵usion constant, respectively. The electric conduc-

tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,

restoring all units,� = NKD' e2

~ a2�d
(a is lattice spacing).

Note the proportionality to N: in the standard non-linear

sigma model formulation, the dimensionless conductance is

large, suppressing localization e↵ects. This occurs because

both U and t interactions scatter between all orbitals, destroy-

ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since

energy is the generator of time translations, one considers the

time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q =

1

2

(✏+ ± ✏�). The e↵ective action for TRP

modes to the lowest-order in p,! reads (Sec. B)

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤

3

(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low

frequency, the correlation function integral, given in Sec. B,

behaves as ⇤
3

(!) ⇡ 2�D✏T 2!, which defines the energy dif-

fusion constant D✏ . This identification is seen from the corre-

lator for energy density modes "c/q ⌘ iN�S ✏
�✏̇c/q

,

DR"(p,!) =
i
2

h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2

, (13)

where we add a contact term to ensure conservation of energy

at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)

–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from

lim!!0

⇤
2/3(!)/!, expressed as integrals of real-time corre-

lation functions, and can be evaluated numerically for any

T, t
0

,U
0

. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t

0

,T ⌧ U
0

, they collapse to

universal functions of one variable,

⇢⇣(t0,T ⌧ U
0

) =
1

N
R⇣( T

Ec
) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.

This scaling collapse is verified by direct numerical calcula-

tions shown in Fig. 3a. From the scaling form (B2), we see the

low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

(a)

(b)

FIG. 3. (a): For t
0

,T ⌧ U
0

, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The

Lorentz ratio

⇢
T reaches two constants

⇡2

3

, ⇡
2

8

, in the two regimes.

The solid curves are guides to the eyes.

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)

2NE2

c
is

large due to small coherence scale in denominator, charac-

teristic of a strongly correlated Fermi liquid. Famously, the

Kadowaki-Woods ratio, A'/(N�)2

, is approximately system-

independent for a wide range of correlated materials[33, 34].

We find here

A'
(N�)2

=
R00' (0)

2[S0(0)]

2N3

is independent of t
0

and U
0

!

Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-

early with temperature: R⇣(T ) ⇠ c⇣ T . We analytically obtain

c' = 2p
⇡

and c" = 16

⇡5/2 (Supplementary Information), implying

that the Lorenz number, characterizing the Wiedemann-Franz

law, takes the unusual value L = 
�T ! ⇡2

8

for Ec ⌧ T ⌧ U
0

.

More generally, the scaling form (B2) implies that L is a uni-

versal function of T/Ec, verified numerically as shown in

Fig. 3b. The Lorenz number increases with lower tempera-

ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-

vides a soluble source of strong local interactions which,

when coupled into a higher-dimensional lattice by ordinary

but random electron hopping, reproduces a remarkable num-


