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Starting from the beginning . . .
1. Seeing the Unseen at Colliders: Scaling, Jets and the Birth of Quantum Chromodynnamics

We can sum it up with a picture worth a thousand words:

From SU(3) color through the Higgs into SU(2)L × U(1).

Every observed final state is the result of a quantum-mechanical set of stories, and so far the
stories supplied by the Standard Model, built on an unbroken SU(3) color gauge theory (very
much like the original Yang-Mills Lagrangian) and a spontaneously-broken SU(2)L×U(1),
account for essentially all observations at accelerators.
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• The Standard Model developed through the latter half of the Twentieth Century in par-
allel with modern field-theoretic ideas of flow: couplings within theories (renormalization
group) and between theories (Wilsonian).

• A primary theme of Twenty-first Century physics is strongly coupled theories with emer-
gent degrees of freedom. This is part and parcel of contemporary challenges.

• The mid-20th century picture of strong interactions: nucleons, nuclei bound by meson
exchange, with multiple excitations evolved into:

• THE QUARK MODEL, with (mostly) qqq′ baryons and qq̄′ mesons.

• QUANTUM CHROMODYNAMICS, a part of the Standard Model, is in some ways the
exemplary QFT, still not fully understood, but illustrating the fundamental realization
that quantum field theories are protean: manifesting themselves differently on different
length scales, yet experimentally accessible at all scales.
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• To make a long story short: Quantum Chromodynamics (QCD) reconciled
the irreconcilable. Here was the problem . . .

1. Quarks and gluons explain spectroscopy, but aren’t seen directly – confinement.

2. In highly (“deep”) inelastic, electron-proton scattering, the inclusive cross section
was found to be well-approximated by lowest-order elastic scattering of
point-like (spin-1/2) particles (=“partons” = quarks here) a result called “scaling”:
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• If the “spin-1
2
” is a quark, a paradox: how can a confined quark scatter freely?
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• This paradoxical combination of confined bound states at long distances and nearly free
behavior at short distances was explained by asymptotic freedom: In QCD, the force
between quarks behaves at short distances like

force(r) ∼ αs(r)

r2
, αs(r

2) =
4π

ln
(

1
r2Λ2

)

where Λ ∼ 0.2 GeV. For distances much less than 1/(0.2GeV ) ∼ 10−8cm the force
weakens. These are distances that began to be probed in deep inelastic scattering
experiments at SLAC in the 1970s.

• The short explanation of DIS scaling: Over the times t � h̄/0.2GeV it takes the
electron to scatter from a quark-parton, the quark really does seem free. Later, the
quark is eventually confined, but by then it’s too late to change the probability for an
event that has already happened. This is how inclusive can be given by elastic.

• The function F (x) is interpreted as the probability to find quark of momentum xP in a
target of total momentum P – a parton distribution.
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• Asymptotic freedom is a big deal:

Scaling

QCD
=

Elliptical Orbits

Newtonian Gravity

• A beginning, not an end.

• For Newtonian gravity, the three-body problem.

• For QCD . . . the challenge

Nuclear Physics

QCD
=

Chemistry

QED

• But can we

– Study the particles that give the currents (quarks)?

– Study the particles that give the forces (gluons)?

– Expand in number of gluons? Perturbation Theory
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• To explore further, SLAC used the quantum mechanical credo:
anything that can happen, will happen.

• Quarks have electric charge, so if they are there to be produced, they will be. This
can happen when colliding electron-positron pairs annihilate to a virtual photon, which
ungratefully decays to just anything with charge

3.0 STUDY OF QCD IN HADRON PRODUCTION 

3.1 Testing the QCD Differential Cross Section 

3.2 The Strong Interaction Coupling Constant 

3.3 Quark and Gluon Fragmentation 

3.4 Characteristics of the Final State Hadrons 

4.0 ELECTROWEAK INTERACTIONS 

4.1 Bhabha Scattering 

4.2 Muon and Tau Pair Production 

4.3 Charge Asymmetry 

4.4 Interpretation of Leptonic Data 

4.5 Electroweak Reactions of Quarks 

4.6 B Meson Lifetime Limit 

4.7 Production of Leptons in Hadronic Events 

4.8 Search for Structure in the Fermions 

4.9 Search for Symmetry Breaking Scalars. 

1.0 SIMPLE ELECTRON POSITRON INTERACTION 

At high energies, the dominant processes electron positron 

collisions are particularly simple. Most of the interactions which 

we measure are fermion pair production, calculable using the 

Feynman diagram below. 

f 
The electron and positron annihilate forming a virtual photon which 

has a mass equal to the center of mass energy. This photon may 

then decay into any pair of charged fermions that is energetically 

allowed. The processes of this sort which have been observed at 

PETRA are 

370 

j
EM

• Of course, because of confinement, it’s not really that simple. But more generally, we
believe that a virtual photon decays through a local operator: jem(x) .

• This enables translating measurements into correlation functions . . . In fact, the cross
section for electron-positron annihilation probes the vacuum with an electromagnetic
current.
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• On the one hand, all final states are familiar hadrons, with nothing special about them
to tell the tale of QCD, |N〉 = |pions, protons . . .〉,

σe+e−→ hadrons(Q) ∝ ∑

N
|〈0|jµem(0)|N〉|2 δ4(Q− pN)

• On the other hand,
∑
N |N〉〈N | = 1, and using translation invariance this gives

σe+e−→ hadrons(Q) ∝
∫
d4x e−iQ·x 〈0|jµem(0) jµem(x)|0〉

• We are probing the vacuum at short distances, imposed by the Fourier transform as
Q→∞. The currents are only a distance 1/Q apart.

• Asymptotic freedom suggests a “free” result: QCD at lowest order (“quark-parton
model”) at cm. energy Q

σtote+e−→hadrons =
4πα2

EM

3Q2

∑

q
e2
q
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• This works for σtot to quite a good approximation! (with calculable corrections)

51. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 51.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2015. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.))

Green line is 
parton model

• So the “free” theory again describes the inclusive sum over confined (nonperturbative)
bound states – another “paradox”.
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• Is there an imprint on these states of their origin? Yes. What to look for? The spin of
the quarks is imprinted in their angular distribution:

dσ(Q)

d cos θ
=

πα2
EM

2Q2

(
1 + cos2 θ

)

• It’s not quarks, but we can look for a back to back flow of energy by finding an axis that
maximizes the projection of particle momenta (“thrust”)

dσe+e−→ hadrons(Q)

dT
∝ ∑

N
|〈0|jµem(0)|N〉|2 δ4(Q− pN) δ


T − 1

Q
maxn̂

∑

i∈N
|~pi · n̂|




b

¡Q

• When the particles all line up, T → 1 (neglecting masses). So what really happens?
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• Here’s what was found (from a little later, at LEP):
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Figure 1: (a) Fit of equation (6) to the corrected data corresponding to the thrust bin
0.70 < T < 0.75; it has χ2/d.o.f.=79/90. The fitted region is −0.92 < cos θTh < 0.92. The
contributions from the longitudinal and transverse cross-sections are shown separately. (b)
The residuals from the fit.
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• For e+e−:

Y

X
Z

200. cm.

Cent re of screen i s ( 0.0000, 0.0000, 0.0000)

50 GeV20105

Run:event 4093: 1000 Date 930527 Time 20716

Ebeam45.658 Evis 99.9 Emiss -8.6 Vtx ( -0.07, 0.06, -0.80)

Bz=4.350 Thrust=0.9873 Aplan=0.0017 Oblat=0.0248 Spher=0.0073

Ct rk(N= 39 Sump= 73.3) Ecal (N= 25 SumE= 32.6) Hcal (N=22 SumE= 22.6)

Muon(N= 0) Sec Vtx(N= 3) Fdet (N= 0 SumE= 0.0)

• Thrust is peaked near unity and follow the 1 + cos2 θ distribution – reflecting the pro-
duction of spin 1

2
particles – back-to-back. All this despite confinement. Quarks have

been replaced by “jets” of hadrons. What could be better?
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• But what’s going on? How can we understand persistence of short-distance structure
into the final state, evolving over many many orders of magnitude in time? The particles
seen in the final states are pions and protons, not quarks and gluons.

• We are required to describe a theory with different degrees of freedom at different mo-
menta and length scale. Nature transitions between the two effortlessly, but we can’t yet.

• Setting this aside, what can we do with the tools at hand, and how can we seek to
improve them?

• More specifically, how can we use perturbative QCD to measure, if not understand, the
nonperturbative content of QCD?

• Can we characterize breakdowns of perturbation theory and use it to organize nonper-
turbative corrections?
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2. Infrared Safety: Finding Something We Can Calculate, Better and Better

Pre-gauge theory lessons for all perturbation theories: Even if a “final” theory isn’t known,
provisional or model Lagrangians can act as a valuable guide. And, if you know the La-
grangian, so much the better.

• Landau Equations – singularities in external momenta, pj are determined by linear equa-
tions in loop momenta. They occur when gradients with respect to loops lµc of a set of
propagator denominators k2

i (lm, pj) become linearly dependent

∑

lines i in loop c
αi k

µ
i (lc) = 0 .

• Coleman and Norton: the momenta of the on shell lines at Landau equations describe
physical processes.

• Singularities (= enhancements) in amplitudes “tell a story”.

• A tool for analyzing arbitrary diagrams in arbitrary theories.
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• Infrared safety: From analyticity and unitarity to jets and event shapes.

• For an arbitrary diagram, what is the source of long-distance behavior (infrared diver-
gences)? Consult the Coleman-Norton interpretation of Landau equations. For e+e−

annihilation to hadrons, the only phyiscal pictures are like these (illustrated for two
“jets” of collinear particles).

2776 GEORGE STERMAN

emitted at V.
Tree subdiagrams

Qn-shell tree subdiagrams fall into the same
physical picture. The vertices of any tree dia-
gram can always be ordered so that the diagram
realizes a physical process when external mo-
menta are real and physical. As with zero-mo-
mentum lines, the lack of constraints analogous
to (2.3) corresponds to the fact that the scale of
separation between each pair of connected ver-
tices is arbitrary.
III. PINCH SINGULAR POINTS OF CUT VACUUM

POLARIZATION DIAGRAMS

In this section I will discuss simple conse-
quences of the results of Sec. 0 for cross sections
calculated from cut two-point functions via un-
itarity. The idea is to look for pinch SP s iri ver-
tex functions (all describing 1-n processes)
which are generated by cutting an arbitrary time-
like two-point graph. The form of such pinch SP's
will be seen to be strongly restricted by the fore-
going considerations. Here, as in the preceding
section, the results do not depend on the details
of the theory used to generate the graphs in ques-
tion (aside, of course, from the masses involved}.

Massless theory

Suppose G is a graph in a massless theory, with
a single incoming line of timelike momentum q
and a number of on-shell outgoing lines. I will
refer to G as a "decay" graph. The results of
Sec. II lead easily to the following.
I.emma. Let p be a pinch SP of massless decay

graph G with reduced diagram R. Suppose the ex-
ternal momentum q enters Q at vertex V, . As-
sociate with R and I a physical process as in
Sec. G. Then, among vertices of R through which
finite energy flows, V, is the one with earliest
time, and every other vertex in R is soft.
Proof. p, is first because in a physical process

energy flows forward in time, and V, is the only
source of positive energy in R.
Consider the finite-energy internal lines of g

which emerge from V,. If two such lines l~ and

l, reinteract, they will do so at some vertex V'.
Both V, and V'are associated with points in space-
time, say x, and x' Ix', &(x')']. Since l, and 1,

begin and end at the same space-time point, their
spatial momenta must be collinear. The particles
a.ssociated with /, and l, are to be pictured as both
being emitted at V„ traveling with the speed of
light in the direction of x —x„and finally beirig
reabsorbed after a time x 0 —(x')' has elapsed.
Thus, finite-energy lines emerging from V, can
only reinteract if they have collinear spatial mo-

menta, and their interactions take place only at
soft vertices. But soft vertices preserve-mo. -
mentum flow, so finite-energy lines emerging
from soft vertices can still only reinteract mith
the same set of collinear lines, coming either
from V, or subsequent soft vertices. Zero-mo-
mentum lines can be emitted or absorbed any-
where in R, but all resulting vertices are by
definition soft.
This lemma results in a particularly simple

physical picture, which must be satisfied by the
reduced diagram of a pinch SP in any massless
decay graph, and which can be summarized in
the following points.
(a} The spatial momentum flow is determined

at the initial vertex V,. After V„only such in-
teractions occur which leave not only the total
momentum conserved, but also the quantities
g; ~k,". ~

where the sum is over all lines which co-
exist at any particular time after the action of V,.
(b) Aside from V„possible vertices are all

soft, describing the scatteririg of collinear finite-
momentum lines or the emission, absorption, and
scattering of zero-momentum lines.
(e) The reduced diagram may then be con-

sidered to describe the evolution of a series of
states. Each such state mill consist of a set of
"jets" of finite-momentum lines as we11 as a
"cloud" of zero-momentum lines. The number
and individual energies and momenta of the jets
are conserved by the action of soft vertices, and
thus are the same in each state, including the
final state, although the number of finite-momen-
tum lines which make up any jet will depend on
the state in general. Figure 3 illustrates a typi-
cal physical process satisfying points (a)—(c).
(c) implies that the momenta of the cut lines of

a vacuum polarization diagram determine the
number, energies, and directions of jets to be
the same at the pinch SP's of both the right-hand
and left-hand vertex functions in an expression
such as (1.1). This enables one to speak of pinch
SP's of the cut vacuum polarization graph, speci-

PIG. 3. Qlustration of a reduced diagram with two
jets, represented by sets of nearly parallel unbroken
lines. Soft lines are represented by dashed lines. A11

vertices may involve contracted off-shell lines.• all intermediate states have the same flow of momentum – it’s just redistributed between
collinear particles, with additional soft radiation. No momentum can flow from one jet
to another!

• Analytic calculations at one loop and beyond confirm this structure. Away from the
singularities, numerical evaluation is possible, and only recently being systematically
explored.

14



• For cross sections, cut diagrams and generalized unitarity

• Basic expression of unitarity at the level of diagrams:

• Or for e+e−,

π(q2)(qµqν − q2gµν) = i
∫
d4x eiqx < 0| T Jµ(x)Jν(0) |0 >

σ
(tot)
e+e−(q2) =

e2

q2
Imπ(q2) ,

The function π is defined in terms of the two-point correlation function of the relevant
electroweak currents Jµ (with their couplings included) as above.

15



• Singularities? The only physical pictures for 〈JJ〉 and hence for σ
(tot)
e+e−(q2):

• Power counting confirms finiteness.

• But the method is much more general – unitarity holds point-by-point in spatial loop
momenta ~l in the diagrams:

∑

all C
GC(pi, kj,~l ) = 2 Im

(
−iG(pi, kj,~l )

)
.
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• Proof (and the origin of jet analysis): Do the time integrals for a general amplitude in
part I, and get time-ordered perturbation theory (TOPT). This is equivalent to the sum
over Feynman diagrams. The amplitude and its complex conjugate are given by a sum
over virtual states:

∑

m
Γ∗mΓm =

A∑

m=1

A∏

j=m+1

1

Ej − Sj − iε
(2π)δ(Em − Sm)

m−1∏

i=1

1

Ei − Si + iε

= −i

−

A∏

j=1

1

Ej − Sj + iε
+

A∏

j=1

1

Ej − Sj − iε




• From

i




1

x+ iε
− 1

x− iε

 = 2πδ(x)

At the level of the loop integrands of TOPT.

For any cut, there are divergences only when virtual particles are collinear to final state
particles, but then the virtual particles appear in another final state and cancel. A cross
section that doesn’t distinguish between different collinear particle configurations will be
finite in perturbation theory even with massless particles: “infrared safety”.

• General condition for IR safety: treat states with the same flow of energy the same way.
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• Weight functions: en({pi}):

dσ

de
=

∑

n

∫

PS(n)
|M({pi})|2δ (en({p1 . . . pn})− e)

(We’re suppressing the initial state here.)

e is infrared safe if it satisfies

en(. . . pi . . . pj−1, αpi + δp, pj+1 . . .) =

en−1(. . . (1 + α)pi . . . pj−1, pj+1 . . .) +O





δp

Etot




t



for some t > 0.

In the spirit of yesterday’s and today’s talks, let’s define a final-state density matrix,

ρ =
∑

{pi}
|M({pi})|2 |{pi}〉 〈{pi}| .

(D. Neil, W. Waalewijn, 1811.01021). Then define another operator Ê(e), designed to measure
some weight for an arbitrary final state,

Ê(e)| |{pi}〉 = δ [e − e ({pi})] |{pi}〉 (1)

In these terms,

dσ

de
= Tr

[
ρ Ê(e)

]
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• We can avoid long times dynamics in the initial state by looking at e+e− annihilation:
event shapes and jet cross sections.

• Weight functions en can pick out jets and/or fix their properties.

• Some event shape and jet cross sections are known up to two and even three loops.
Generally, however, the full power of unitarity is not built into our calculations of cross
sections yet. We calculate infrared singularities and then cancel them. We know it’s
going to work and it does, but it’s a lot of work.
(Yao Ma and GS: try to formulate calculations so that they are manifestly finite at every step.)

• Anyway, whenever the event shape is extensive in phase space, we can define all sorts
of information correlations between observed (region Ω) and unobserved (Ω) regions of
radiation

ÊΩ(e)| |{pi}〉 = δ [eΩ − e ({pi ∈ Ω})] |{pj}〉 (2)

so that in these terms,

dσ

deΩ

= Tr
[
ρ ÊΩ(e)

]

• There is entropy and mutual entropy to be defined and computed perturbatively and
beyond.
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3. Factorizations and Evolutions: Perturbative tools for Nonperturbative physics

• Infrared safety order-by-order is great, but we know its not the whole story.

• A great example is in the total e+e− cross section above: the only Landau pinches: a
cloud of soft gluons attached at a point:

• (Mueller, 1985): Summed to all orders, this diagram is proportional to (“renormalon”):

∫
d4k αs(k

2)

Q4
σ0(Q) ↔ 〈0|F 2(0)|0〉

Q4
σ0(Q) (OPE)

• The LHS is not defined because the perturbative running coupling diverges at k2 = Λ2
QCD.

• Perturbation theory signals the necessity for nonperturbative corrections. The perturba-
tive door to vacuum dynamics . . . instantons, for example.

• Something analogous occurs in relation to the structure of hadrons . . .

20



• Here’s the general Coleman-Norton picture for a large momentum-transfer process in
hadron-hadron scattering:3254 STEPHEN B. LIBBY AND GEORGE STERMAN

p 1
I &(

divergences is discussed in the context of a totally
massless Abelian gauge theory in Sec. V, and it is
shown that for this theory moments also factorize
jet cross sections in hadron-hadron scattering.
The reasoning of Sec. V goes somewhat beyond the
standard treatment of IR divergences in massive-
fermion QED.'0

II. CONVOLUTION FORM FOR LEPTOPRODUCTION

p i(

FIG. 1. Typical reduced diagram of divergence point
for two-particle inelastic scattering with bvo jets at
wide angles in the final state.

chosen two nonforward jets J, and J~ for definite-
ness only; any number is possible. J, and J, will
be referred to as the "forward" jets. The wavy
lines represent the attachment of zero-momentum
("soft") lines, which themselves may interact in
subgraph S. 8 attaches to the jets only by vecto~
lines connected at three-point vertices.
There are two additional points to notice about
Fig. ~. The first ls that all finite-momentum
transfers take place at only one vertex (V~ or V„)
on either side of state C. V~ and V~ are in general
composite vertices, representing Feynman inte-
rals over restricted momentum-space regions.
The feature that "hard" momentum transfer takes
place at only a single vertex is gauge independent.
The second point is that each separate jet connects
to V~ and V~ by only a single line. The V's may
thus be considered as points in space-time" where
two fundamental particles (leptons or partons) col-
lide to produce the final state. Interaction between
the resulting jets is.via zero-momentum particles
only. The simplicity of this "parton-model" pic-
ture is a direct consequence of (1.3).
Figure 1 is the starting point for our discus'sion,

which is organized as follows. In Sec. II we treat
jet cross sections in leptoproduction and show how
a convolution form such as (1.1) can be derived in
the axial gauge. In Sec. III the consequences of this
convolution for high-energy jet cross sections are
developed, and- the role played by matrix elements
of twist-two operators is.brought out. Suitably
chosen moments are found to factorize jet cross .

sections. Section. IV deals with the question of ex-
tending these results to hadron-hadron scattering.
It is seen that this extension is trivia, l for theories
with no vector particles. The cancellation of IR

In this section we will show that leptoproduction
jet cross sections can be expressed in a convolu-
tion form. As is customary, we treat leptoproduc-,
tion in lowest order of the weak-electromagnetic
coupling e. Otherwise the diagrams contributing
to leptoproduction cross sections are just special
cases of the two-particle inelastic diagrams dis-
cussed in the Introduction. Reduced diagrams of
divergence points are of the form of Fig. 2. To
lowest order in e, there is only one nontrivial
forward jet J. h labels the incoming hadron below.
Let G be a graph for forward lepton-hadron scat-

tering. Cut graphs generated from G give the lep-
toproduction cross sections we are interested in.
Let 4 denote a surface of cut diagram divergence
points, all with the same reduced diagram, em-
bedded in the loop-momentum space of G. 4 will
be referred to as a "divergence surface. "
Our procedure is based on organizing the contri-

bution of G to the jet cross section into a finite
sum of terms, each of which has the factorization
property. Feynman integrals of cut diagrams are
split into sets of partial integrals, each over a re-
gion R(g) associated with a particular subgraph g
of G. {g)will be the set of all possible subgraphs
of G of the form of Fig. 2, with the understanding
that lines are contracted only into vertices V~~'

and V~~&. In the definition of g, no distinction is

FIG. 2. Reduced diagram of divergence point for lep-
toproduction of two jets at wide angles.
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• As an example, a factorized jet cross sections looks like this:

dσ(a+ b→ {pi}) =
∫
dxadxb fa/A(xapA) fb′/B(xbpB)

× C(xapa, xbpb, Q)ab→c1...cNjets+X

×d


Njets∏

i=1
Jci(pi)




(Amati, Petronzio, Veneziano; Ellis, Machachek, Efremov, Radyushkin; Politzer, Ross: Libby, GS (1979);

Bodwin; Collins Soper, GS (1985,1988), GS & Aybat (2009), Collins (2015))

• Parton distributions, short distance “coefficients” and functions of the jet momenta tell
a story.

• In short, the essence of factorization proofs:

– For an IR-safe sum over final states, the effects of final state interactions cancel,
including their interference with initial state interactions (so-called “Glauber” or
“Coulomb” exchanges).

– Remaining initial state interactions reproduce the same, factorized, parton distribu-
tions as in deep-inelastic scattering, as imposed by causality.
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Factorization follows new stories into the final state: Before the collision, there are lots
of stories inside the proton, but the probability for each is the same in every proton!

The essence of predictions for the Standard Model and proposed theories:

Q2σphys(Q,m, f) = σ̂(Q/µ, αs(µ), f) ⊗ fLD(µ,m) + O



1

Qp




µ = factorization scale; m= IR scale (m may be perturbative)

• “First this and then that” multiplication of probabilities – the essence of factorization.
It requires a “sufficiently” inclusive cross section, much as in the calculation of jets in
e+e− annihilation.

• Newly-minted jets and possible “new physics” are in σ̂; fLD “universal”
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• Again, the factorized cross section:

Q2σphys(Q,m, f) = σ̂(Q/µ, αs(µ), f) ⊗ fLD(µ,m) + O



1

Qp




• What we do:

– Compute σphys and fLD in an IR-regulated variant of QCD, where we can prove the
factorization explicitly, then extract σ̂, assuming it is the same in true QCD as in its
IR-regulated version.

– We compare the formula with unknown physical parton distributions to a suite of
data and do a “global fit” for the f(x, µ) for different quarks and the gluon.

• What we get (1): absolute predictions for the creation of jets and heavy particles from
QCD, and for new degrees of freedom in BSM hypotheses.

• What we get (2) : a measurement of how partons share the proton’s momentum.

• The process is a “bootstrap”, resulting in feedback between parton distributions, pre-
dictions and measurements.
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The range of these predictions is greatly extended by Evolution & Resummation: If
we have factorization, we can automatically extrapolate from one energy scale to another.

– Whenever there is factorization, there is evolution

0 = µ
d

dµ
lnσphys(Q,m)

µ
d ln f

dµ
= −P (αs(µ)) = −µd ln σ̂

dµ

– We can calculate P because we can calculate σ̂.
(Dokshitzer, Gribov, LIpatov, Altarelli, Parisi)

– Wherever there is evolution there is resummation,

σphys(Q,m) = σphys(q,m) ⊗ exp





∫ Q
q

dµ′

µ′
P (αs(µ

′))




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– In effective theories SCET (soft-collinear), these evolution equations typically appear
through renormalization group. A very efficient and flexible approach.
(Bauer, Fleming, Pirjol, Rothstein, Stewart (2002) Becher, Neubert (2006))

– Multiscale problems can be dealt with by extended factorization analysis
(“kT” and “threshold” resummations, for example: Dokshitzer, Diakonov, Troian; Parisi, Petronzio,

Chiapetta, Greco; Catani, Trentedue, Grazzini; Collins, Soper, GS, . . . )

– The same factorization → evolution step applies to our jets, and they “evolve”

J(scale µ2) ∼ J(scale µ1) exp



∫ µ2
µ1

dµ′

µ′
∫
dx P (x, αs(µ

′))




– Each term in the exponent corresponds to the potential emission of a new “sub-jet”,
which factors from the remaining jet and evolves nearly autonomously into the final
state, branching further sub-jets along the way. (This is what event generators do.)
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• Other measurements of the nonperturbative structure of nucleons using factorization:

• 1) Toward a more detailed picture of how quarks and gluons are distributed in the proton:
measure transverse momentum and/or position of partons in nuclei. Factorization into
measured spin and transverse-momentum distributions. “Generalized” parton distribu-
tions, involving elastic scattering of protons can probe orbital angular momentum.

• 2) Correlations between partons: multiparton distributions in the proton.
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4. Dialing into the Nonperturbative Regime.

• A sample of where all this leads . . . Much recent work has concentrated on jet substruc-
ture systematizing effects of hadronization.

• The thrust, with “averaged” nonperturbative input and best available
perturbative calculations: (From R. Abbate et al. 1006.3080.) 26
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FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (68). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

αs(mZ) is ±0.0009 compared to ±0.0021 with Ω̄1 in the
MS scheme. Also at NNLL′ and N3LL we see that the
removal of the O(ΛQCD) renormalon leads to a reduction
of the theoretical uncertainties by about a factor of two
in comparison to the results with Ω̄1 in the MS scheme
without renormalon subtraction. The proper treatment
of the renormalon subtraction is thus a substantial part
of a high-precision analysis for Ω1 as well as for αs.

It is instructive to analyze the minimal χ2 values for
the best fit points shown in Fig. 11. In Fig. 12 the dis-
tributions of the best fits in the αs-χ

2
min/dof plane are

shown using the color scheme of Fig. 11. Figure 12a dis-
plays the results in R-gap scheme, and Fig. 12b the ones
in the MS scheme. For both schemes we find that the
χ2

min values and the size of the covered area in the αs-
χ2

min/dof plane systematically decrease with increasing
order. While the analysis in the MS scheme for Ω̄1 leads
to χ2

min/dof values around unity and thus an adequate
description of the entire global data set at N3LL′ order,
we see that accounting for the renormalon subtraction in
the R-gap scheme leads to a substantially improved the-
oretical description having χ2

min/dof values below unity
already at NNLL′ and N3LL orders, with the N3LL′ or-
der result slightly lower at χ2

min/dof ≃ 0.91. This demon-
strates the excellent description of the experimental data
contained in our global data set. It also validates the
smaller theoretical uncertainties we obtain for αs and Ω1

at N3LL′ order in the R-gap scheme.

As an illustration of the accuracy of the fit, in Fig. 13
we show the theory thrust distributions at Q = mZ for
the full N3LL′ order with the R-gap scheme for Ω1, for
the default theory parameters and the corresponding best
fit values shown in bold in Tabs. IV and V. The pink

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

band displays the theoretical uncertainty from the scan
method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit
values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
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• Event shapes, generalizing thrust, e.g., “angularities”: (G. Bell et al 1808.07867.)
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Figure 1. Angularity distributions at NNLLÕ +O(–2
s) accuracy, convolved with a renormalon-free

non-perturbative shape function, whose calculation is the subject of this paper. We display the
predictions for three values of a (for now without uncertainties), illustrating roughly where two-jet
and three-or-more-jet events lie in each ·a spectrum. For this illustration, the boundary is drawn
at the value of ·a for a four-particle state that is grouped into pairs of jets with opening angle 30¶.
As a becomes larger (smaller), the peak region is more (less) dominated by purely two-jet events.

In the present work we analyze a class of event shapes known as angularities, which
are defined as [29]

·a = 1
Q

ÿ

i

|pi
‹| e≠|÷i|(1≠a) , (1.1)

where Q is the center-of-mass energy of the collision and the sum runs over all final-state
particles i with rapidity ÷i and transverse momentum pi

‹ with respect to the thrust axis.
The angularities depend on a continuous parameter a, and they include thrust (a = 0)
and total jet broadening (a = 1) as special cases. Whereas infrared safety requires that
a < 2, we restrict our attention to values of a Æ 0.5 in this work, since soft recoil e�ects
which complicate the resummation are known to become increasingly more important as
a æ 1 [30]. It is also possible to define ·a in Eq. (1.1) with respect to an axis other than
the thrust axis, such as the broadening axis or another soft-recoil-insensitive axis [31]. We
stick to the standard thrust-axis-based definition here, to coincide with the available data.
See [32] for a recent calculation with an alternative axis.

The phenomenological e�ect of varying a is to change the proportions of two-jet-like
events and three-or-more-jet-like events that populate the peak region of the ·a distribu-
tions (see Fig. 1). The relevant collinear scale that enters the factorization of angularity
distributions in the two-jet limit then varies accordingly with a, to properly reflect the
transverse size of the jets that are dominating each region of the distributions.

The resummation of Sudakov logarithms for the angularity distributions is based on
the factorization theorem [29, 33–35]

1
‡0

d‡

d·a
(·a) = H(Q2, µ)

⁄
dtan dt

a
n̄ dks J

a
n(tan, µ) Ja

n̄(tan̄, µ)Sa(ks, µ) ”
1
·a ≠ tan + tan̄

Q2≠a
≠ ks

Q

2
,

(1.2)
which arises in the two-jet limit ·a æ 0. Here H is a hard function that contains the
virtual corrections to e+e≠ æ qq̄ scattering at center-of-mass energy Q (normalised to the
Born cross section ‡0); Ja

n,n̄ are quark jet functions that describe the collinear emissions
into the jet directions, and are functions of a variable tan,n̄ of mass dimension (2 ≠ a); and
Sa is a soft function that encodes the low-energetic cross talk between the two jets and
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Figure 15. NNLLÕ resummed and O(–2
s) matched angularity distributions for all values of a con-

sidered in this study, a œ {≠1.0,≠0.75,≠0.5,≠0.25, 0.0, 0.25, 0.5}, at Q = mZ , with –s(mZ) = 0.11.
The blue bins represent the purely perturbative prediction and the red bins include a convo-
lution with a gapped and renormalon-subtracted shape function, with a first moment set to
�1(R�, R�) = 0.4 GeV. Overlaid is the experimental data from [48].
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• Distinguishing the stories of quark and gluon jets.
(Larkoski, Moult, Nachman, 1709.04464.)
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FIG. 12. Plot comparing the NNNLO prediction of Refs. [232,
233] (solid line) of quark (lower) and gluon (upper) jet mean
charged particle multiplicities as a function of jet pT to the
ATLAS measurement. Taken from Ref. [247].

change the charge of the jet. Furthermore, the pertur-
bative degrees of freedom have fractional charges, while
measured hadrons have integer charges.

The jet charge has been studied recently theoretically
[251, 252] and measured at the LHC [253]. It is one of the
more powerful probes for identifying the initiating quark
flavor of a jet and discriminating the hadronic decays of
W and Z bosons from one another. As with multiplicity,
only the evolution with energy of the jet charge can be
calculated perturbatively; the jet charge distribution at
a given energy is required non-perturbative input. Ad-
ditionally, the parameter  must be greater than 0 to
ensure that the jet charge is infrared (soft) safe. Then,
charged parton evolution can be described by Altarelli-
Parisi evolution of jet charge fragmentation functions.
These generalized fragmentation functions were defined
in Refs. [252] and used to predict moments of the jet
charge distribution, as a function of jet energy.

Working exclusively with charged particles has exper-
imental advantages. The angular resolution of charged
particles is substantially better than the resolution of the
calorimetry. This enables the collision origin of charged
particles to be uniquely identified, reducing e↵ects of con-
tamination from secondary proton collisions per bunch
crossing. Therefore, measuring more standard jet ob-
servables, like thrust, exclusively on charged particles
can be experimentally beneficial. This was studied in
Refs. [252, 254, 255] which defined track functions which
are fragmentation functions that follow charged parti-
cle production. Ref. [254] calculated the charged-track
thrust observable on a jet, and a plot from that paper
is shown in Fig. 13. Their calculations include evolution
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FIG. 8: Track thrust and calorimeter thrust at NLL. As ex-
plained in Sec. VI, these distributions are remarkably similar.
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FIG. 9: Track thrust distribution going from NLL to NLL0.
The bands encode perturbative uncertainties from RG scale
variations, but not uncertainties in ↵s or the track functions
themselves.
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FIG. 10: Track thrust distribution in the tail and far-tail
regions, illustrating the e↵ect of including the non-singular
contribution at NLL0 order. The full NLL0 distribution inter-
polates between the resummed and fixed-order results.
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FIG. 11: Track thrust at NLL0 adding the leading power cor-
rection.

The e↵ect of the non-singular terms on the tail and
far-tail regions are highlighted in Fig. 10. The inclusion
of these terms guarantees that the cross section merges
with the O(↵s) fixed-order result in the region where
the resummation is no longer important. It also ensures
that the cross section vanishes beyond the O(↵s) kine-
matic endpoint ⌧ = 1/3. (For this to happen, it is crucial
that the profile functions in App. B turn o↵ the resum-
mation at the endpoint.) As desired, the full NLL0 dis-
tribution interpolates between the NLL0 result (without
non-singular terms) at small ⌧ and the fixed-order result
at large ⌧ .

In Fig. 11, we augment the NLL0 results with the lead-
ing power correction ⌦̄�

1 . For track thrust, the dominant
e↵ect of ⌦̄�

1 is a shift, though there are important e↵ects
in the peak region which do not amount to a shift. (For
the calorimeter thrust distribution, the only e↵ect of ⌦�

1

is to shift the distribution.) Note, however, that the peak
region is also sensitive to higher-order power corrections
which we have not included. The comparison between
calorimeter and track thrust with the leading power cor-
rection is shown in Fig. 3.

In Fig. 12 we superimpose our theoretical predictions
for the calorimeter and track thrust distributions with
experimental data from the DELPHI collaboration. At
NLL0 order with the leading power correction ⌦̄�

1 , the
agreement is quite good, though we emphasize that we
chose values of ↵s and ⌦̄�

1 to ensure reasonable agreement
with the calorimeter thrust data. We show the e↵ect of
scale uncertainties in Fig. 3, which are in general larger
than the experimental uncertainties, motivating future
studies of track thrust with higher orders of resummation
and more accurate fixed-order corrections.

As a final cross check of our analysis, we show the
calorimeter and track thrust distributions from Pythia
in Fig. 13. Since Pythia has been tuned to LEP data,
it agrees well with the DELPHI measurements. There
is good agreement between Pythia and our NLL0 result
in the tail region, but there are di↵erence in the peak
region due to the fact that Pythia includes an estimate

FIG. 13. NLL and NLL0 calculations of the charged-track
thrust distribution for jets in e+e� collisions. Theoretical
uncertainties are represented by the shaded bands. Taken
from Ref. [254].

of the track functions to NLL and NLL0 accuracy. NLL0

accuracy includes the logarithms resummed at NLL, but
also the pure O(↵s) contribution (that contributes to the
total cross section corresponding to the C(↵s) term in
Eq. 2). This formally only contributes at NNLL accu-
racy, but by including it, theoretical uncertainties can be
significantly reduced, as illustrated in Fig. 13.

As mentioned above, collinear parton evolution is gov-
erned by the Altarelli-Parisi splitting functions [256–258],
which themselves cannot be directly measured in an IRC
safe way. While measuring the longitudinal momentum
fraction eliminates soft singularities, collinear singulari-
ties are exposed. Additionally, in a jet with many emis-
sions of many particles, it is not immediately clear how
to define the splitting that you want to measure. The
collinear splitting functions are a sensitive probe of fun-
damental interactions of partons and collective phenom-
ena, and so a theoretical framework to predict and mea-
sure them is desirable.

Both of the issues discussed above have resolutions.
To identify a well-defined splitting of partons in the jet,
we can exploit the mMDT groomer. In its algorithm,
mMDT orders particles in the jet by their relative an-
gle, and removes those wide angle emissions that fail the
hardness criteria. The branching that passes the criteria
can be defined to be the splitting of interest. We then
define the momentum sharing factor zg as the smallest
momentum fraction in the branching that passes:

zg =
min[pTi, pTj ]

pTi + pTj
> zcut , (23)

where i and j are the particles in the branching. Note
that because this passed the mMDT criteria and it is
the softer emission, zcut < zg < 1/2. Here, zcut is the
mMDT groomer parameter, and typically zcut is chosen
to be about 0.1.

To solve the collinear unsafety issue, there are two ways
forward that have been identified. First, we can measure
another quantity that regulates the collinear divergence;
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• There is a special interest in recognizing signs of new particles within jets (“boosted
decays”). Machine learning . . . (L. Olivera et al. 1511.05190.)

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet

radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is

mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before

(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.

The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is

normalization. A common normalization scheme is the L2 norm such that
P

I2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –
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Using resummation to push PT to the limit with available data.

• Get started: First – find a jet.

• Then assign an axis n̂J : by minimizing
∑
iEi cos θ(i,n̂J) for particles i in jet J .

• Thats the thrust again:

τ ≡ (1− T ) ≡ 1

QJ

∑

i inN
pT i e

−|ηi|

• pT i, ηi measured relative to jet axis (minimizes 1− T )
(can be chosen jet-by-jet).

• For multijet final states, define ηi relative to closest jet.

• Classify real and virtual quanta as in the jet, short distance, or part of the soft radiation.
These subprocesses factorize (effective theories for each).
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• Three-way factorization ⇒ CO/IR (“Sudakov”) resummation.

Two logarithmic integrals exponentiate:

σ(ν) =
∫

0
dτa e−ντJi

dσ

dτ
= e

1
2E(ν,Q)

E(ν,Q) = 2
1∫

0

du

u

uQ2
∫

u2Q2

dp2
T

p2
T

A (αs(pT ))
(
e−uν(pT /Q) − 1

)
+ . . .

• Expansion in αs(Q) finite at all orders. The “cusp” anomalous dimension A(αs) depends
on color representation of the parent parton, only.

• For u→ 0 find the same sort of “renormalon” singularity that gave the operator product
expansion, this time as

ν

∫
dpT αs(pT )

Q

Dial ν and again the breakdown of perturbation theory points to the structure of non-
perturbative corrections - additive in the exponent in transform space → a convolution
in event shapes, here with (just) 1/Q suppression.
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• Convolution with non-perturbative but universal “shape function:, fNP”, generically

dσ

de
=

∫
dξ fNP(e′)

dσPT(e− e′)
de′

• Dial the moment variable for infrared (in)sensitivity in single or multiple events.

• Shape function phenomenology for thrust at LEP. (Korchemsky, Gardi . . . )

• All these stories (like the power corrections) are additive in E(ν,Q).
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• On the horizon, the role of individual particles in jet structure.

• In principle, an analysis of shapes in ep, pp, eA and pA for thrust or other cleverly-chosen
event shapes could provide the transition between the vacuum cusp function A and the
quantum history of fast partons in a nuclear medium.

• The additive nature of the shape function, and its kinematic linkage with fragmentation
functions for z → 1 suggest a duality-based analysis, given sufficient data.

• Bloom-Gilman duality: Nonperturbative contributions act to ‘redistribute probability
around a smooth extrapolation of perturbation theory. How does this information flow?
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And last – is there a “geometric hint” in pQFT?

• Could we take the messy sum of Feynman diagrams and resolve them into contributions
that link external points? As in

G ({xd}out, {xc}in) = 〈0|T (
∏

d
φ(xd)

∏

c
φ(xc))|0〉 ?

• At tree level it’s pretty clear, just imagine possible momentum flows: 11
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FIG. 4: Equivalent momentum flows, given in Eq. (32) for the lowest-order four-point vertex.

and ⇡2 are defined by the integration variables

⇡1 : k1 = q31 ⇡2 : k1 = q31 + q41

k2 = q32 + q42 k2 = q42

l3 = q31 + q32 l3 = q31

l4 = q42 , l4 = q41 + q42 , (32)

with each of the qdc integrated from zero in infinity in both cases. The integrals are now trivial, leading to three
path denominators, as in the examples developed above, but now resulting directly from the qdc integrals. We note,
however, that we have made a choice in partitioning the integration space according to Eq. (31). We could equally
well have reversed the roles of the final vertices x3 and x4, or equivalently the light-cone energies l3 and l4.

Naturally, these two choices must give the same answer, because they are related by a change of variables, but only
after adding together the terms associated with the two paths in each case. Explicitly, we have

i3
Z 1

0

dq31 dq32 dq42 e�iq31(x�
3 �x�

1 �D31�i✏)e�iq41(x�
3 �x�

1 �D32�i✏)e�iq42(x�
4 �x�

2 �D42�i✏)

+ i3
Z 1

0

dq31 dq41 dq42 e�iq31(x�
3 �x�

1 �D31�i✏)e�iq41(x�
4 �x�

1 �D41�i✏)e�iq42(x�
4 �x�

2 �D42�i✏)

=
1

x�
3 � x�
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1

x�
3 � x�
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1

x�
4 � x�
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= i3
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dq41 dq42 dq32 e�iq41(x�
4 �x�

1 �D41�i✏)e�iq42(x�
4 �x�

2 �D42�i✏)e�iq32(x�
3 �x�

2 �D32�i✏)

+ i3
Z 1

0

dq41 dq31 dq32 e�iq41(x�
4 �x�

1 �D41�i✏)e�iq31(x�
3 �x�

1 �D31�i✏)e�iq32(x�
3 �x�

2 �D32�i✏) ,

(33)

with the Dba defined as in (23). The equality, as represented in the middle of (33), is confirmed algebraically, directly
from the identity, D41 �D42 = D31 �D32. This is the pattern we will find for any ordered diagram, and at any order
in perturbation theory. We now turn to the general construction.

E. The construction

We are ready to prove that any ordered diagram G(n,m)P can be written as a sum of terms with initial-to-final paths,
Eq. (22). For a general diagram, the choice of integration variables that produce paths from initial to final vertices is
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with the Dba defined as in (23). The equality, as represented in the middle of (33), is confirmed algebraically, directly
from the identity, D41 �D42 = D31 �D32. This is the pattern we will find for any ordered diagram, and at any order
in perturbation theory. We now turn to the general construction.

E. The construction

We are ready to prove that any ordered diagram G(n,m)P can be written as a sum of terms with initial-to-final paths,
Eq. (22). For a general diagram, the choice of integration variables that produce paths from initial to final vertices is

• In fact, it applies to any and all orders, in terms of specific sets of maps
πI : {xc}in → {xd}out,

A ({xd}out, {xc}in) =
∑

mapsπI
A(πI) ({xd}out, {xc}in)
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• Here, each map is associated with an infinite series in PT,

A(πI) ({xd}out, {xc}in) =
∑

graphsG

∑

vtx orderingsP
G

(πI)
P ({xd}out, {xc}in)

with terms given by

G
(πI)
P ({xd}out, {xc}in) = (2π)N

(−g)N

(4π2)L

∫


∏

i∈V
d3yi




∏

all j

θ(z+
j )

2z+
j

× ∏

{P (πI)
(ba) }

−1

x−b − x−a − D
(πI)
(ba) − iε

.

P
(πI)
(ba) is a path through internal vertices and for each such path

D
(πI)
(ba) =

∑

i∈P (πI)
(ba)

(zi⊥ − zi−1⊥)2

2(z+
i − z+

i−1)
. (3)

• Paths in coordinate space play the role of virtual states in momentum space, and energy
deficits are replaced by deficits in light-cone “distance”. (O. Erdoǧan, GS, 2017)

• It’s still very complicated, but the concept of paths can perhaps be lifted from a specific
choice of degrees of freedom, and might even transcend the perturbative/nonperturbative
dicotomy. Well, with that thought, maybe I should wrap it up . . .
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Conclusions

• The methods of perturbative QCD are powerful both in their flexibility and in their self-
consistent limitations. We are capable of improving its independent predictions, and
also in honing it as a tool to connect experiment to knowledge of the nonperturbative
structure of hadrons

• The way forward will be in a range of energy with luminosity to match, as at an EIC.
New observables that are sensitive to nonperturbative effects in a controllable fashion,
combined with more sophisticated control over perturbation theory will lead to new
insights,

• And perhaps to breakthroughs in understanding.
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