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The quantum many body problem

• Quantum physics of the 1920’s:

– Hilbert space is endowed with a tensor product structure

– “The underlying physical laws necessary for the mathematical 
theory of a large part of physics and the whole of chemistry 
are thus completely known, and the difficulty is only that the 
exact application of these laws leads to equations much too 
complicated to be soluble. It therefore becomes desirable that 
approximate practical methods of applying quantum 
mechanics should be developed, which can lead to an 
explanation of the main features of complex atomic systems 
without too much computation.”  [Dirac ‘29]



Quantum many body problem

• Large part of theoretical physics /chemistry in last 90 years has focused on realizing Diracs
dream:

– Hartree-Fock
– Perturbation theory, Feynman diagrams
– Coupled cluster theory
– Density Functional Theory

• All of those methods rely on the existence of a good fiducial noninteracting state

• Many strongly interacting quantum many body systems of interest do not have such a fiducial 
state
– E.g. Hubbard model:

– Quantum Monte Carlo can sometimes help, but in many cases of interest sign problem 



• Finding ground states of (quasi-)local quantum Hamiltonians is very 
different from diagonalizing a random matrix:

– LOCALITY of interactions impose that the ground state of my system 
has extremal local density matrices compatible with the symmetries of 
the system (translation invariance, SU(N), …)

– Unlike the random matrix case, once I know the eigenvector 
corresponding to extremal eigenvalues (= ground state), I basically 
know the full spectrum of my system (quasiparticles / correlation 
functions)

• Why is many body physics possible at all? Because there is a lot of 
structure in the ground states

– They exhibit an area law for the entanglement entropy

=> Possible to compress the description!



Area Laws for the entanglement entropy

• Ground and Gibbs states of interacting quantum many body Hamiltonians with 
local interactions have very peculiar properties

– Area law for the entanglement entropy (ground states) or for mutual 
information (Gibbs states)

1. Ground states:

2. Gibbs states:

Holzhey, Larsen, Wilczek ‘94; …

Wolf, Hastings, Cirac, FV ‘08

Srednicki ’93; Hastings ’07; …



The illusion of Hilbert space 

Exponentially large 
Hilbert space

Part that 
physics is 
about

Poulin, Qarry, Somma, FV: PRL ‘11



Monogamy of Entanglement

• Consider the Heisenberg antiferromagnet on 3 spin ½’s:

• What is the ground state?
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Monogamy of Entanglement

• Consider the Heisenberg antiferromagnet on 3 spin ½’s:

• What is the ground state?

• Monogamy: impossibility of sharing a singlet with two spin ½’s

– Mathematically: there does not exist a density matrix                which is 
positive such that its marginals and          are singlets

– All interesting long range physics / entanglement in quantum spin 
systems is a consequence of this optimal trade-off in local marginals

_



Tensor Calculus for Quantum Spin Chains

• Systematic way of creating states which have extremal local marginals but 
keep translational invariance: matrix product states
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Tensors for Quantum Spin Chains

• Systematic way of creating states which have extremal local marginals but 
keep translational invariance: matrix product states



FV, I. Cirac  ‘04

S. White ‘92K. Wilson ’70s

M. Fannes, B. Nachtergaele, 
R. Werner ‘91

I. Affleck, T. Kennedy, 
E. Lieb, H. Tasaki ‘87

G. Vidal ‘04



Path Integral representation of ground states

• Let us consider an arbitrarily Hamiltonian of a quantum spin system, and a
path integral                              representing the ground state for

Physical 
spins



Wilson’s RG for quantum impurities

• Let us consider 1 column in this transfer matrix picture:

• The physical spin can be understood as a Kondo like impurity 
attached to a translational invariant system (“conduction electrons”)

• The crucial question that we tackle here: can we compress the 
information on the “virtual” links such as to obtain a more 
economical representation of the ground state?

– Just like Wilson, we can indeed envision devising an RG 
transformation “compressing” the information of the conduction 
electrons 

– The dimension of the compressed Hilbert space will be related to 
the amount of quantum entanglement in the system

Physical 
spin



M. Bal et al., arXiv:1408.5140

Wilson RG for impurity:
Finite bond dimension 
corresponds to introducing 
a cut-off, but for a gapped 
system this cut-off is given 
by the gap and hence does 
not introduce an extra 
approximation



Matrix Product States

• The picture that is emerging is that any ground state of a quantum spin 
chain can be presented by a MPS:

Virtual bond 
dimension D



Higher dimensions: Projected Entangled Pair States

• Key: all many body information is stored in single tensor acting on 
correlation space

FV, Cirac ‘04



Multiscale Entanglement Renormalization Ansatz

Scale invariant (critical) systems

G. Vidal ‘07



• Crucial ideas in tensor networks:

– Tensors model the entanglement structure: modelling correlations makes 
much more sense than modelling wavefunction directly

• Tensors dictate the entanglement patterns

– Tensor networks can be efficiently contracted due to holographic 
property: map quantum 3D -> 2D -> 1D -> 0D problems, and this can be 
done efficiently due to area laws

– States are defined in thermodynamic limit; finite size scaling is replaced by 
finite entanglement scaling

– Local tensor contains all global information about quantum many body     
state

• different phases of matter can be distinguished by symmetries of 
those local tensor, including topological phases

• Tensor networks provide a natural way of dealing with gauge theories: 
enforcing symmetries



Feynman on the quantum many body problem:

One of Feynman’s last talks: “Difficulties in Applying the Variational
Principle to Quantum Field Theories” (Wangerooge ‘87)



Tensor Networks

Computational aspects:

• MPS

• PEPS

• MERA

Conceptual aspects: the shadow world

• Area laws and the corner of Hilbert space: 
the manifold of ground states of local 
Hamiltonians

• Modelling the entanglement degrees of 
freedom: symmetries

• Symmetry fractionalization, 
classification of SPT phases

• Topologically ordered matter: 
holographic Landau type order 
parameters

Vidal, Evenbly

Marien ‘16

Vanderstraeten ‘15



1D systems: matrix product states

• MPS form a representation of the manifold of all states in 1D satisfying an 
AREA law

• Ground states of quantum spin chains satisfy such an area law:

– Entropy of the reduced density matrix of a halve infinite chain is finite 
(gapped) or exponentially smaller than number of spins (critical)

– Hence MPS parameterize the corner in Hilbert space representing all 
ground states of gapped spin chains 

• This means that the MPS formalism allows for an exponential compression 
of ground states in terms of 1 simple tensor (uniform MPS or uMPS) 

=

FV, Cirac ‘05, Hastings ‘07



• Instead of working in the exponentially large Hilbert space, we do the physics 
on the low-dimensional manifold of MPS

– We get effective nonlinear differential equation: symplectic, Poisson 
brackets, …

– DMRG, TEBD, TDVP, iPEPS…:  variations on how to split this differential 
equation in terms of different Trotter steps

– Tangent planes: effective Hamiltonians and elementary excitations

Haegeman et al. ‘10



Manifold of MPS

• There is a clear redundancy in the MPS parameterization

• Due to the parameter this “gauge” redundancy in the matrix product state 
representation, matrix product states have the mathematical structure of 
a (principal) fiber bundle, giving rise to a so-called Kahler manifold



Elementary excitations: post-MPS methods

• The tangent plane on the manifold around the ground state on the system 
defines a linear subspace of interest; we can project the many body 
Hamiltonian on that subspace, and get an effective Hamiltonian of 
dimension  (d-1)D2 . This allows to extract dispersion relations to an 
unreasonable accuracy

• Lieb-Robinson bounds yield a proof that elementary excitations in gapped 
systems must indeed be of that form: follows from locality of interactions



Spin 1 Heisenberg model:



•

• If there is symmetry breaking, then the elementary excitations will be “domain walls”: 
topologically nontrivial excitations (cfr. Solitons in Mandelstam ansatz or eg. Jordan-
Wigner) where the operators u transform one vacuum in the other one

– Although topologically nontrivial, this is still “local” : the only relevant information 
is at the end point; what happens is of course that those excitations always come in 
pairs (cfr. spinons in Heisenberg antiferromagnet)

Topological nontrivial excitations

Haegeman et al. ‘13



What is the spin of a spin wave?

• Spinon:

Transforms according to half-integer!

Singlets (Wigner 3j-symbols)

Zauner-Stauber et al., “On the nature of holons and spinons”, PRB ‘18



Scattering of elementary excitations

• How do those elementary excitations interact with each other?

– Natural MPS ansatz for scattering:

Vanderstraeten et al.,‘15



• Example: scattering of magnons in the spin 1 Heisenberg model



Tensor networks at work: Schwinger model

• Kogut-Susskind staggered formulation with

• Entanglement spectrum in continuum limit 

Buyens, Van Acoleyen, FV ‘13-’17 



• Cutting off the electrical field:

– This justifies “qubit” approach to Schwinger model



• Excitation spectrum: continuum limit



• Entanglement entropy in presence of test charges Q=4.5 as function of L



• Quark-antiquark potential for Q=1



Continuous MPS

• The scaling is chosen such as to guarantee a finite density

• We can explicitely take the limit epsilon -> 0:

– The variational parameters are the matrix fields Q(x),Rα(x) and B

FV, Cirac ’10; Haegeman, FV ’11; …



Continuous MPS: variational methods in the continuum



PEPS as variational ansatz

• PEPS is  higher D version of MPS

– Many problems in condensed matter remain unsolved: Hubbard, … 

– Big advantage over Monte Carlo: no sign problem

– State of the art variational energies

– Biggest asset of PEPS: once the optimal tensors are found, we can start 
doing physics with them (symmetries, entanglement spectrum, …)



• Order parameter for 2D Heisenberg antiferromagnet



Shastry model:





2D Heisenberg antiferromagnet : spin wave velocity 



• We can equally well use PEPS to calculate free energies for 3D classical 
statistical mechanical models 

• Example: residual entropy of ice

Vanderstraeten et al, ‘18



Tensor networks: theoretical aspects

• Holographic property:

– All the interesting physics of quantum many body ground states can be 
described by looking at “effective” theories arising on the virtual 
degrees of freedom of the MPS/PEPS/…

– Physics of virtual degrees of freedom describe entanglement 
Hamiltonians in a lower dimensional space: dimensional reduction



AdS/CFT correspondence and Ryu-Takayanagi conjecture

• Connection between geometry and entanglement entropy: minimal cut



Entanglement Spectroscopy

• CFT content from the Schmidt eigenvalues of a Bose-Hubbard spin chain

Lauchli ‘13



Topological phases of Matter

• Last decades has seen a revolution understanding 
topological phases of matter

– Realization in Quantum Hall systems, observation of                            
Majorana fermions, …

– Topological phases of matter: there is no LOCAL order parameter 
distinguishing topological phases from trivial ones

• Phase is characterized by long range entanglement

• This entanglement can be used to built a fault-tolerant quantum 
computer

• Tensor network approach: topological order is all about symmetries of the 
entanglement degrees of freedom

– Landau paradigm of order parameters is recovered in symmetries of 
LOCAL tensors



1D interacting SPT phases of matter: MPS 

• Classification of phases of matter of 1-D spin chains under adiabatic paths 
preserving a symmetry: manifold breaks into pieces (symmetry protected 
topological order) 

– Different phases are characterized by projective representations of 
physical symmetry group (H2(G,U(1)))

– In case of fermions: graded tensor algebras, and already topological 
phases without imposing symmetries (Majorana / Kitaev spin chain)

Ug

= Vg V-1
g

Cirac, Pérez-García, FV, Wolf ’08 
Pollmann et al. ‘10; 
Chen, Wen  ‘11 
Cirac, Pérez-García, Schuch ‘11



Symmetries in PEPS

• Symmetries and topological order is much richer in 2 dimensions: 
existence of anyons, Wilson loop operators, …

– 2 dimensions is where the most surprising things can happen: 2 is low 
enough to have a lot of entanglement (3 dimensions is already much 
closer to mean field theory), but 2 is large enough to have nontrivial 
statistics (e.g. fractional quantum Hall effect)

– All those exotic materials exhibit a special entanglement structure 
which is locally reflected in symmetries of the microscopic tensors

– Probing entanglement reveals nonlocal order parameters: Landau  
symmetry breaking, but now on the entanglement degrees of freedom



• Those symmetries give rise to Wilson loops that can be pulled through the 
tensor network:



• Elementary excitations (anyons) in the system consist of end points of 
those strings: those necessarily come in pairs (cfr. Fermions: simplest type 
of anyon)

= 



• Entanglement spectrum and confinement/deconfinement phase transition 
by anyon condensation in a Z2 gauge theory (Shenker/Fradkin == toric
code with string tension)

Haegeman, Zauner, Schuch, FV ‘15



Topological Quantum Computation in the shadow world

Braiding 
tensor is F-
symbol

a

b

c

a’

Controlled-Controlled-U gate

a

b

c

a’

Freedman, Kitaev, Wang, …

We can identify a tensor product structure of logical qubits with the 
entanglement (virtual) degrees of freedom; e.g. Fibonacci string net



From TQFT to CFT

• There is a very rich mathematical structure underlying the algebra of 
those symmetry operators: they form a representation of so-called tensor 
fusion categories.

• Those tensor fusion categories form the mathematical foundation of both 
topological quantum field theory and of conformal field theory

– From the point of view of tensor networks, TQFT = CFT : same tensor 
network, just a different interpretation!

– Having nontrivial MPO order implies critical and/or topological

– Provides a new perspective on modular transformations, boundary 
conformal field theory, …: it’s all about symmetries in the 
entanglement degrees of freedom

Vanhove et. al., PRL ‘18



Classical Ising model from SET

• Partition function of classical Ising can exactly be written as a strange correlator 
of the Ising SET, including all defects (duality defects)

– The product state by the requirement of the Z2 symmetry

– By including MPOs, we can realize all 9 topological/conformal sectors

– All information about scaling exponents, primary fields, etc. is encoded 
algebraically in the MPO tube-algebras





• All characters of the CFT can now be expressed as a linear combination of the 
ones of the idempotents; Dehn twists etc give rise to transformation 
properties of those charactrers (Verlinde S matrix, T-matrix, …)



Entanglement Matters and Tensor Networks

Quantum Computation

Bosonic SPT phases

Quantum Topological Order

Quantum Spin Liquids

Fractional Quantum Hall

Lattice Gauge Theories

Cold Atomic Gases Hubbard Model

Quantum Quenches

Projected Entangled Pair States

Multiscale Entanglement 
Renormalization Ansatz

Matrix Product States

Non-Commutative Gross-Pitaevskii

Anyon Condensation

Holographic Principle

Renormalization Group

Quantum Phase Transitions

Lieb-Robinson bounds

Quasi-Particles (Virtual) Order Parameter

Entanglement



QED in 2+1 D

Zohar, Burrello, Wahl, Cirac ‘16


