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The guantum many body problem

* Quantum physics of the 1920’s:
- ) = Hl[)
e’

— Hilbert space is endowed with a tensor product structure

" — “The underlying physical laws necessary for the mathematical
| theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum
mechanics should be developed, which can lead to an
explanation of the main features of complex atomic systems
without too much computation.” [Dirac ‘29]




Quantum many body problem

* Large part of theoretical physics /chemistry in last 90 years has focused on realizing Diracs
dream:

— Hartree-Fock

— Perturbation theory, Feynman diagrams
— Coupled cluster theory

— Density Functional Theory

» All of those methods rely on the existence of a good fiducial noninteracting state

* Many strongly interacting quantum many body systems of interest do not have such a fiducial
state

— E.g. Hubbard model: U

t
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— Quantum Monte Carlo can sometimes help, but in many cases of interest sign problem




* Finding ground states of (quasi-)local guantum Hamiltonians is very
different from diagonalizing a random matrix:

H=> 0
ij

— LOCALITY of interactions impose that the ground state of my system
has extremal local density matrices compatible with the symmetries of

the system (translation invariance, SU(N), ...)

— Unlike the random matrix case, once | know the eigenvector
corresponding to extremal eigenvalues (= ground state), | basically
know the full spectrum of my system (quasiparticles / correlation
functions)

*  Why is many body physics possible at all? Because there is a lot of
structure in the ground states

— They exhibit an area law for the entanglement entropy
=> Possible to compress the description!



Area Laws for the entanglement entropy

 Ground and Gibbs states of interacting quantum many body Hamiltonians with
local interactions have very peculiar properties

— Area law for the entanglement entropy (ground states) or for mutual
information (Gibbs states)

2 1. Ground states:

AN . S(pa) = c.0A

e e e Srednicki ‘93; Hastings '07; ...
®e e ® c

o o S(pa) = é.log(A/e)

Holzhey, Larsen, Wilczek ‘94; ...

e 2. Gibbs states:

& I(A,B) = S(pa)+S(ps)—S(paB)
° = c.0A

Wolf, Hastings, Cirac, FV ‘08



The illusion of Hilbert space

Exponentially large
Hilbert space

Part that
physics is
about

Poulin, Qarry, Somma, FV: PRL ‘11



Monogamy of Entanglement

* Consider the Heisenberg antiferromagnet on 3 spin %4’s:

MY 55,

 What is the ground state?
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* Consider the Heisenberg antiferromagnet on 3 spin %4’s:
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Monogamy of Entanglement

* Consider the Heisenberg antiferromagnet on 3 spin %4’s:
i

 What is the ground state?
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*  Monogamy: impossibility of sharing a singlet with two spin %4’s
— Mathematically: there does not exist a density matrix 7123 = 0 which is
positive such that its marginals pi12 = Tr3 (p123) and po3 are singlets

— All interesting long range physics / entanglement in quantum spin
systems is a consequence of this optimal trade-off in local marginals



Tensor Calculus for Quantum Spin Chains

e Systematic way of creating states which have extremal local marginals but
keep translational invariance: matrix product states
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Tensor Calculus for Quantum Spin Chains

e Systematic way of creating states which have extremal local marginals but
keep translational invariance: matrix product states

9060006 0060

7

a3




Tensors for Quantum Spin Chains

Systematic way of creating states which have extremal local marginals but
keep translational invariance: matrix product states
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Path Integral representation of ground states

* Let us consider an arbitrarily Hamiltonian of a quantum spin system, and a

path integral exp (—5H) [159) representing the ground state for 5 — ~

e
i e e e e




Wilson’s RG for quantum impurities

* Let us consider 1 column in this transfer matrix picture:

* The physical spin can be understood as a Kondo like impurity
attached to a translational invariant system (“conduction electrons”)

* The crucial question that we tackle here: can we compress the
information on the “virtual” links such as to obtain a more
economical representation of the ground state?

— Just like Wilson, we can indeed envision devising an RG

transformation “compressing” the information of the conduction
electrons

— The dimension of the compressed Hilbert space will be related to
the amount of guantum entanglement in the system

Physical
spin
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Finite bond dimension

corresponds to introducing

off, but for a gapped
system this cut-off is given

a cut-

by the gap and hence does
not introduce an extra

approximation

M. Bal et al., arXiv:1408.5140



Matrix Product States

* The picture that is emerging is that any ground state of a quantum spin
chain can be presented by a MPS:

Virtual bond i
dimension D Df.B
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Higher dimensions: Projected Entangled Pair States
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Key: all many body information is stored in single tensor acting on

correlation space

FV, Cirac ‘04



Multiscale Entanglement Renormalization Ansatz
G. Vidal ‘07

Scale invariant (critical) systems
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e Crucial ideas in tensor networks:

— Tensors model the entanglement structure: modelling correlations makes
much more sense than modelling wavefunction directly

 Tensors dictate the entanglement patterns

— Tensor networks can be efficiently contracted due to holographic
property: map quantum 3D -> 2D -> 1D -> 0D problems, and this can be
done efficiently due to area laws

— States are defined in thermodynamic limit; finite size scaling is replaced by
finite entanglement scaling

— Local tensor contains all global information about quantum many body
state

» different phases of matter can be distinguished by symmetries of
those local tensor, including topological phases

* Tensor networks provide a natural way of dealing with gauge theories:
enforcing symmetries



Feynman on the quantum many body problem:

“Now, in field theory, what’s going on over here and what’s going on over there and all over
space 1s more or less the same. Why do we have to keep track in our functional of all things
going on over there while we are looking at the things that are going on over here? ... It’s really
quite insane, actually: we are trying to find the energy by taking the expectation value of an
operator which is located here and we present ourselves with a functional which is dependent on
everything all over the map. That’s something wrong. Maybe there is some way to surround the
object, or the region where we want to calculate things, by a surface and describe what things are

coming in across the surface. It tells us everything that’s going on outside.”

“I think it should be possible some day to describe field theory in some other way than
with the wave functions and amplitudes. It might be something like the density matrices where
you concentrate on quantities in a given locality and in order to start to talk about it you don’t

immediately have to talk about what’s going on everywhere else ...”

One of Feynman'’s last talks: “Difficulties in Applying the Variational
Principle to Quantum Field Theories” (Wangerooge ‘87)




Tensor Networks

Computational aspects: Conceptual aspects: the shadow world
L * Area laws and the corner of Hilbert space:
_ | the manifold of ground states of local
« MPS Hamiltonians
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1D systems: matrix product states

S

 MPS form a representation of the manifold of all states in 1D satisfying an
AREA law

* Ground states of quantum spin chains satisfy such an area law:

— Entropy of the reduced density matrix of a halve infinite chain is finite
(gapped) or exponentially smaller than number of spins (critical)

— Hence MPS parameterize the corner in Hilbert space representing all

ground states of gapped spin chains
FV, Cirac ‘05, Hastings ‘07

* This means that the MPS formalism allows for an exponential compression
of ground states in terms of 1 simple tensor (uniform MPS or uMPS)

Alg = a—-—ﬁ
;



* Instead of working in the exponentially large Hilbert space, we do the physics
on the low-dimensional manifold of MPS

d | d , d ., ;
_?EM,) = Hl1)) — —f-é\t"(ﬂn = Pr(A)H[v(A)) & EA = F (4)

18,%(2)) =
18,0(z))

— We get effective nonlinear differential equation: symplectic, Poisson
brackets, ...

— DMRG, TEBD, TDVP, iPEPS...: variations on how to split this differential
equation in terms of different Trotter steps

— Tangent planes: effective Hamiltonians and elementary excitations

Haegeman et al. ‘10



Manifold of MPS
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There is a clear redundancy in the MPS parameterization
A" XA X!

Due to the parameter this “gauge” redundancy in the matrix product state
representation, matrix product states have the mathematical structure of
a (principal) fiber bundle, giving rise to a so-called Kahler manifold



Elementary excitations: post-MPS methods

* The tangent plane on the manifold around the ground state on the system
defines a linear subspace of interest; we can project the many body
Hamiltonian on that subspace, and get an effective Hamiltonian of

dimension (d-1)D?. This allows to extract dispersion relations to an
unreasonable accuracy

* Lieb-Robinson bounds yield a proof that elementary excitations in gapped
systems must indeed be of that form: follows from locality of interactions
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Spin 1 Heisenberg model:

excitation energy
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Topological nontrivial excitations

' gaes . . L O 0

e If there is symmetry breaking, then the elementary excitations will be “domain walls”:
topologically nontrivial excitations (cfr. Solitons in Mandelstam ansatz or eg. Jordan-
Wigner) where the operators u transform one vacuum in the other one

O(n)= 0, H i,
m>n

— Although topologically nontrivial, this is still “local” : the only relevant information
is at the end point; what happens is of course that those excitations always come in
pairs (cfr. spinons in Heisenberg antiferromagnet)

Haegeman et al. ‘13



What is the spin of a spin wave?

1 1
1%, * J J !'! ) Singlets (Wigner 3j-symbols)

J -!- k Transforms according to half-integer!

1/2

Zauner-Stauber et al., “On the nature of holons and spinons”, PRB ‘18



Scattering of elementary excitations

* How do those elementary excitations interact with each other?
— Natural MPS ansatz for scattering:
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Example: scattering of magnons in the spin 1 Heisenberg model
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D = 120]1.94475|-4.51330|-2.35951
D = 142[1.94777]-4.51535-2.30559
D = 162]1.94493]-4.51561]-2.30491
D = 192]1.94454|-4.51527|-2.30586
D = 208[1.94470[-4.50912|-2.30587
D = 220]1.94492|-4.51537|-2.30598
| | 1.945 | -4.515 | -2.306 |

Table I. Convergence of the scattering length for different val-
ues of the MPS bond dimension D.



Tensor networks at work: Schwinger model

Buyens, Van Acoleyen, FV “13-'17

 Kogut-Susskind staggered formulation with =z = 1/¢%a?

) 2N \/I 2N 2N -1 _
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n=1

* Entanglement spectrum in continuum limit
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Cutting off the electrical field:
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m/g = 0.3, x = 100

— This justifies “qubit” approach to Schwinger model



Excitation spectrum: continuum limit
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Entanglement entropy in presence of test charges Q=4.5 as function of L
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Quark-antiquark potential for Q=1
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Continuous MPS
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* The scaling is chosen such as to guarantee a finite density
* We can explicitely take the limit epsilon -> O:
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— The variational parameters are the matrix fields Q(x),R(x) and B

FV, Cirac '10; Haegeman, FV '11; ...



Continuous MPS: variational methods in the continuum
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PEPS as variational ansatz

* PEPSis higher D version of MPS

— Many problems in condensed matter remain unsolved: Hubbard, ...
— Big advantage over Monte Carlo: no sign problem
— State of the art variational energies

— Biggest asset of PEPS: once the optimal tensors are found, we can start
doing physics with them (symmetries, entanglement spectrum, ...)



Order parameter for 2D Heisenberg antiferromagnet
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S = 1/2 Heisenberg antiferromagnet: iPEPS data for the ground-state energy per site e (left-hand panel) and the order

parameter squared m? (right-hand panel). We plot the data as a function of the expected 1/&* (for ¢) and 1/¢ (for m?) dependence. The
linear fits to the D = 3, 4, 5 results in the left-hand and all D > 2 in the right-hand panel extrapolate closely to the high-precision
quantum Monte Carlo reference results [56]. The inset in the left-hand panel highlights the overall 1/& convergence of the
energy per site.

MICHAEL RADER and ANDREAS M. LAUCHLI

PHYS. REV. X 8, 031030 (2018)




week ending

PRL 111, 137204 (2013) PHYSICAL REVIEW LETTERS 27 SEPTEMBER 2013

Magnetization of SrCu,(B0;), in Ultrahigh Magnetic Fields up to 118 T

Y. H. Matsuda,l’* N. Abe,l S. Takeyamd H. Kdoeydmd P Corb(),: A. Honeaker > S.R. Manmmm,4
G.R. Foltm,6 K.P. S(,hﬂlldt, and F. Mila’
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FIG. 4 (color online). Comparison between the experimental
magnetization curve and the iPEPS simulation results for J'/J =
0.63. The extent of the 1/3 and 1/2 plateaus predicted by the
other methods is shown on top of the plateaus.



RESEARCH

PHYSICS

Stripe order in the underdoped

region of the two-dimensional
Hubbard model

Bo-Xiao Zheng,"#*{ Chia-Min Chung,** Philippe Corboz,*** Georg Ehlers,5*
Ming-Pu Qin,”* Reinhard M. Noack,® Hao Shi,”* Steven R. White,*
Shiwei Zhang,” Garnet Kin-Lic Chan'}

Fig. 1. Ground-state energies.
Best estimates of ground-state
energy for the 1/8-doped 2D
Hubbard model at U/t = 8 from
DMET, AFQMC, iPEPS, and
DMRG in units of £ Inset shows
best estimates of ground-state
energy for the halffilled 2D
Hubbard model at U/t = 8.
Here and elsewhere, error bars
indicate only the estimable
nurmerical errors of each
method; uncontrolled system-
atic errors are not included. For
details, see (30).

Fheng et al., Science 358, 1155-1160 (2017)
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Simulating excitation spectra with projected entangled-pair states

Laurens Va,ndcrstraeten._l' Jutho Haegeman,! and Frank Verstraete!:?

2D Heisenberg antiferromagnet : spin wave velocity

il

(dw/a, v i) {w,w)

FIG. 3. The dispersion relation of the Heisenberg
model approaching the gapless point (7, 0) with bond
dimension ) = 3 (blue) and I} = 4 (red) and environ-
ment bond dimension up to y = 100, as compared to
the linear dispersion relation with v, = 1.6584722 (yel-
low). Clearly, the finite bond dimension of the PEPS
induces an artificial gap, which grows smaller as ) in-
creases. If we estimate the spin-wave velocity as the
slope at the inflection point in the DD = 4 curve, we

find v, == 1.638.



Residual entropies for three-dimensional frustrated spin systems with tensor
networks

Laurens Vanderstraeten,!** Bram Vanhecke,! and Frank Verstraete!:?

 We can equally well use PEPS to calculate free energies for 3D classical

statistical mechanical models
* Example: residual entropy of ice

MA v s
2 PR y. ./\\ X
7 AR LN\ A
gy Ve d._

mean field 1.5

Nagle!'® 1.50685(15)
Berg et.al.'” 1.507117(35)
Herrero et.al.'® |num. integration 1.50786(12)

Pauling'®

series expansion

multicanonical

Kolafa!” num. integration|1.5074660(36)

PEPS D=2 1.50735
D=3 1.507451
D=4 1.507456

Table II. The residual entropies for ice I, as computed
from a mean-field approach, series expansion, multi-
canonical Monte Carlo and numerical integration us-
ing Monte Carlo, compared to our variational PEPS
results.

Vanderstraeten et al, ‘18



Tensor networks: theoretical aspects

* Holographic property:

— All the interesting physics of quantum many body ground states can be
described by looking at “effective” theories arising on the virtual
degrees of freedom of the MPS/PEPS/...

— Physics of virtual degrees of freedom describe entanglement
Hamiltonians in a lower dimensional space: dimensional reduction



AdS/CFT correspondence and Ryu-Takayanagi conjecture

* Connection between geometry and entanglement entropy: minimal cut




Entanglement Spectroscopy

CFT content from the Schmidt eigenvalues of a Bose-Hubbard spin chain
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Topological phases of Matter

* Last decades has seen a revolution understanding
topological phases of matter

— Realization in Quantum Hall systems, observation of
Majorana fermions, ...

— Topological phases of matter: there is no LOCAL order parameter
distinguishing topological phases from trivial ones

* Phase is characterized by long range entanglement

* This entanglement can be used to built a fault-tolerant quantum
computer

* Tensor network approach: topological order is all about symmetries of the
entanglement degrees of freedom

— Landau paradigm of order parameters is recovered in symmetries of
LOCAL tensors



1D interacting SPT phases of matter: MPS

e Classification of phases of matter of 1-D spin chains under adiabatic paths
preserving a symmetry: manifold breaks into pieces (symmetry protected
topological order)

A

Cirac, Pérez-Garcia, FV, Wolf ‘08
Pollmann et al. ‘10;

Chen, Wen ‘11

Cirac, Pérez-Garcia, Schuch ‘11

— Different phases are characterized by projective representations of
physical symmetry group (H?(G,U(1)))

— In case of fermions: graded tensor algebras, and already topological
phases without imposing symmetries (Majorana / Kitaev spin chain)



Symmetries in PEPS

* Symmetries and topological order is much richer in 2 dimensions:
existence of anyons, Wilson loop operators, ...

— 2 dimensions is where the most surprising things can happen: 2 is low
enough to have a lot of entanglement (3 dimensions is already much
closer to mean field theory), but 2 is large enough to have nontrivial
statistics (e.g. fractional quantum Hall effect)

— All those exotic materials exhibit a special entanglement structure
which is locally reflected in symmetries of the microscopic tensors

— Probing entanglement reveals nonlocal order parameters: Landau
symmetry breaking, but now on the entanglement degrees of freedom



Those symmetries give rise to Wilson loops that can be pulled through the
tensor network:
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* Elementary excitations (anyons) in the system consist of end points of
those strings: those necessarily come in pairs (cfr. Fermions: simplest type
of anyon)

vy A

vy A

vy Ny
N

A

A A A v

Il
o)




in a Z2 gauge theory (Shenker/Fradkin == toric

Entanglement spectrum and confinement/deconfinement phase transition
ion)

by anyon condensation
code with string tens

TP
R T L

0.0 0.5

Momentum (k/z)

-0.5

ko] [vIBor-

-1.0

Haegeman, Zauner, Schuch, FV ‘15
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Topological Quantum Computation in the shadow world

We can identify a tensor product structure of logical qubits with the _:7LUY],_f = g
entanglement (virtual) degrees of freedom; e.g. Fibonacci string net  —9\ ?C"‘r— = e
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From TQFT to CFT

* There is a very rich mathematical structure underlying the algebra of
those symmetry operators: they form a representation of so-called tensor
fusion categories.

* Those tensor fusion categories form the mathematical foundation of both
topological quantum field theory and of conformal field theory

— From the point of view of tensor networks, TQFT = CFT : same tensor
network, just a different interpretation!

— Having nontrivial MPO order implies critical and/or topological

— Provides a new perspective on modular transformations, boundary
conformal field theory, ...: it’s all about symmetries in the
entanglement degrees of freedom

Vanhove et. al., PRL ‘18



Classical Ising model from SET

* Partition function of classical Ising can exactly be written as a strange correlator
of the Ising SET, including all defects (duality defects)

— The product state by the requirement of the Z, symmetry
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— By including MPOs, we can realize all 9 topological/conformal sectors

— All information about scaling exponents, primary fields, etc. is encoded
algebraically in the MPO tube-algebras
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* All characters of the CFT can now be expressed as a linear combination of the
ones of the idempotents; Dehn twists etc give rise to transformation
properties of those charactrers (Verlinde S matrix, T-matrix, ...)



Entanglement Matters and Tensor Networks

Quantum Computation

. . Lattice Gauge Theories
Projected Entangled Pair States

Anyon Condensation

Multiscale Entanglement /
Renormalization Ansatz J. \1\

Matrix Product States e.. '
BogSse
Lieb-Robinson bounds " &, ’ -
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Holographic Principle

Quantum Topological Order

Renormalization Group

Fractional Quantum Hall

Quantum Quenches -7 ‘ 3 Oy Bosonic SPT phases
\ /\/
Cold Atomic Gases Hubbard Model
Quasi-Particles Quantum Phase Transitions (Virtual) Order Parameter

Quantum Spin Liquids

Non-Commutative Gross-Pitaevskii
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