Looking for answers into the dunes of neutrinos: Deep Underground Neutrino Experiment

Miquel Nebot-Guinot

Looking for answers into the dunes of neutrinos: Deep Underground Neutrino Experiment

Miquel Nebot-Guinot

Neutrino scenario - Open questions

- Current knowledge of neutrino 'misfit' into the SM indicating physics BSM
 - Neutrino oscillates

• Neutrinos have mass and mix

- Measure MH, CPV, and neutrino mixing parameters.
- Neutrino mass, nature and mass origin.

Sources of neutrinos

- Radioactive decays
- Nuclear reactions (Solar, Reactors, Supernova...)
- Particle collisions

 (cosmic rays causing atmospheric neutrinos, neutrino beam produces by particle accelerators..)

DUNE's scientific goals

- Origin of matter
 Discover what happened
 after the big bang: Are
 neutrinos the reason the
 universe is made of matter?
- Unification of forces Move closer to realizing Einstein's dream of a unifiec theory of matter and energy
- Black hole formation
 Use neutrinos to look into the
 cosmos and watch the
 formation of neutron stars
 and black holes in real time

Primary science goals

Beam neutrino oscillations Measure MH, CPV, and neutrino mixing parameters Ancillary science program

Other accelerator neutrino physics: BSM, NSI, Lorentz violation, CPT violation, sterile neutrinos, large extra dimensions, heavy neutral leptons, tau appearance Neutrino oscillation using atmospheric and solar neutrinos

Search for proton decay

Neutrino cross sections, nuclear effects

Supernova neutrino detection

Searches for dark matter

DUNE experiment

DUNE experiment

Sanford Underground Research Facility, South Dakota

DUNE

>1000 collaborators & 32 countries

Fermi National Accelerator Laboratory, Illinois

LBNF

LBNF Beam

- 60-120 GeV proton beam
- 1.2 MW, upgradeable to 2.4 MW
- Horn-focused neutrino beam line optimized for CP violation sensitivity.
- Neutrino (FHC) and antineutrino (RHC) modes.

LBNF Beam

Near detector

- Primary purpose is to constrain systematic uncertainty for long-baseline oscillation analysis as well as flux, cross-section, and detector uncertainties.
- DUNE ND Conceptual Design Report (CDR) planned for 2019
- •DUNE ND design concept is an integrated system composed of multiple detectors:
 - Highly segmented LArTPC
 - Magnetized multi-purpose tracker
 - Electromagnetic calorimeter
 - Muon chambers
 - Conceptual design will preserve option to move ND for off-axis measurements

Far detector (facilities)

Sanford **Far detector (facilities)** Underground Research • 4x10-kt (fiducial) liquid argon TPC modules: Facility • Single Phase Dual Phase • Prob. Single Phase • Cryogenic facilities.

Far detector (Single Phase)

Far detector (Single Phase)

12m Cathode Plane Assembly (2 CPA)

Anode Plane Assembly

TPC-wires

TPC Particles interact in the LAr Ionised electrons drifted towards the APA

TPC-wires

With the waveforms from the wire planes precise 2D images can be reconstructed

PD bars inserted in the APA Arapucas

PDS

3D reconstructed tracks

		Supernova Bursts	Nucleon Decays	Atm. Neutrinos	Beam Neutrinos
T0 for	fiducial volume		Х	Х	
	TPC drift correction	Х	Х	Х	
	sub-ms timing	Х			
	Triggering	х	Х	Х	
Direct calorimetry		Х	Х		Х
Position Reconstruction		Х	Х	Х	
Michel <i>e</i> Detection			Х	Х	Х

Far detector (Dual Phase)

Physics sensitivity

Oscillation Supernova

Oscillation Sensitivity

- Reconstructed spectra based on GEANT4 beam simulation, GENIE event generator, and Fast MC using detector response parameterized at the single particle level
- Efficiency tuned using hand scan results
- Order 1000 v_e appearance events in ~7 years of equal running in neutrino and antineutrino mode
- Simultaneous fit to four spectra to extract oscillation parameters
- Systematics approximated using normalization uncertainties
- GLoBES configurations arXiv: 1606.09550

DUNE Conceptual Design Report (CDR) arXiv:1512.06148

Oscillation: CP Violation Sensitivity

mixing angles and δ_{CP}

Oscillation: MH and octant sensitivity

Width of band indicates variation in possible central values of θ_{23}

DUNE Sensitivity 7 years (staged) Normal Ordering $\sin^2 2\theta_{13} = 0.085 \pm 0.003$ 10 years (staged) NuFit 2016 (90% C.L.) A п ь 0.35 0.4 0.45 0.5 0.55 0.6 0.65 $sin^2\theta_{23}$

Octant Sensitivity

Width of band indicates variation in possible true value of δ_{CP}

Supernova sensitivity

 $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

- Early alert
- Supernova physics: core collapse mechanism, time evolution, cooling of supernova protostar, nucleosynthesis of heavy nuclei, black hole formation

Supernova sensitivity

 Neutrino physics: flavour transformation in SN core/Earth, absolute mass, sterile, magnetic moment, axions, extra dimensions

 $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

protoDUNE

Benchmark the design

protoDUNE

The most complicated unboxing ever filmed! HUGE delivery at CERN! https://www.youtube.com/watch?v=zDA0cc6W2yQ&feature=youtu.be

protoDUNE

In the EHN1 at CERN

protoDUNE SinglePhase

protoDUNE DualPhase

Thank you!

Backup

https://arxiv.org/abs/1807.10327 https://arxiv.org/abs/1807.10340

Solar neutrinos in DUNE

Data rates

Energy (MeV)

Summary Table

Event Type	Data Volume PB/year	Assumptions	
Beam-related Events	0.04	926 beam and 2000 dirt muons;	
		10 MeV threshold	
		in coincidence with beam time;	
		include 2800 accidental cosmics	
Cosmics	10	10MeV threshold,	
		anti-coincident with beam time	
Front-end calibration	0.004	Existing test-stand scheme	
Atmospheric <i>nus</i>	0.007	CDR interaction rates	
Solar ν s	0.07	Upper limit assuming rate	
		above 4.5 MeV ν energy	
Radioactive source calibration	0.2	Source rate ≤ 10 Hz;	
		single fragment readout; lossless readout,	
		4 times/year	
Laser calibration	0.184	800,000 total laser pulses, lossy readout	
Supernova candidates	1.4	seconds full readout,	
		average once per month	
Random triggers	0.1	45 per day	
Trigger primitives	8	All three wire planes;	
	-	12 bits per primitive word;	
		4 primitive quantities; ³⁹ Ar-dominated	

Noise

DAQ

