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Searches using jets

- New physics can
manifest as “jets,” e.q.
Dark Matter mediator
particles

Search for "bumps” in
mass spectrum

Challenge: Distinguishing
rare, new physics from
vast Standard Model
background

Andreas Segaard / University of Edinburgh
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Jet substructure

- Typically:
- searching for resonant hadronic two-body decay (X — qq’)
- background from non-resonant, single-parton emission

- Use the substructure of the jet to perform distinction: more
two- (signal) or one- (background) “subjet-like”?

Small-radius jets : Large-radius jet
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Jet classification

Substructure observables measure radiation patterns directly

For instance, N-subjettiness measures likelihood of N-subjet

hypothesis 65 GeV < m <95 GeV
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Jet classification

- To improve classification further, use densely-connected
neural network to combine Nreat jet substructure observables
(“weak discriminators”) to single, powerful jet classifier

Classifier
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Jet classification

- In practice:

- Data is regular numpy data array of shape (Njets, Nfeat)

- Classifler is created with Keras, trained with binary cross-
entropy loss (signals jet vs. background jets)

- Typically using Nreat = 10 high-level features as input

Classifier
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Jet classification

- Compared to individual substructure observables (here: D2),
NN classifiers increase background rejection (y-axis) at
similar levels of signal efficiency (x-axis)
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Problem

* Neural networks are smart... £ 1| ATLAS Smulation Preliminary :
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- Mass is good predictor! 100" 150 200 250 300
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- NN classifier output is highly correlated with the jet mass

|nd|st|ngU|shabIe from signal = “bump” search impossible!
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Aside: Generative adversarial NNs

- In computer vision, adversarial neural networks have been
used to generate synthetic images of people

- Generator produces synthetic images, N
. — . P andom code
discriminator tries to guess if it's real or not z

— These are not real people —

Generator
(€

Real images

Real or

fake? Discriminator

D
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Mass-decorrelation

- |ldea: Use adversarial architecture to remove correlation of
NN jet classifier with jet mass

1. Pit classifier network against adversary
2. Classifier tries to guess jet label y (0 or 1) from inputs x
3. Adversary tries to guess jet mass from classifier output

4. If possible, the two are correlated and the clf. is penalised
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Mass-decorrelation

- Adversary NN parametrises p.d.f. in the jet mass m
conditional on classifier output z, i.e. paacv(m | z)

» Trained with loss Ladgv = — log paav(m | )

* If pacv(m | Z) is able to do better than prior, i.e. dNjets/dm|,
the classifier output carries information about the jet mass

- Gradient minimising Lagv is propagated back to the classifier
through a gradient reversal layer, leading to an inverse effect
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Mass-decorrelation

- Both networks trained simultaneously with loss

min max Lclf(eclf) - /lLadv(gclf, Hadv)
oclf Oadv

- Adversary tries to improve mass-prediction

- Classifier tries to improve classification and make the
adversary’s job harder

- Trade-off controlled by parameter A
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Fraction of jets

Results

(A)NN classifier distributions

Stand-alone NN
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Fraction of jets

Adversarial NN

—
<

1072

IIII|IIII|IIII|IIII|IIII|IIII|IIII| IIIIIIIIIIII
. ATLAS Simulation Preliminary |

. Vs=13TeV 7] Multijets
W jet tagging W jets

> |

0O 01 02 03 04 05 06 07 08 09 1
Large-R jet zU:50

17



Background efficiency, ef5,

Results

* (A)NN classifier background selection efficiencies
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Background rejection 1/efs

Results

- Receiver-operator characteristic (ROC) curves

Without jet mass-selection With jet mass-selection
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Results

- Combined (classification, mass-decorrelation) performance
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Mass-decorrelation

- Result:

- Standard clf. (—) sculpts background, mass-
decorrelated one (----) doesn't!
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- Balance between objectives (classification and mass-
decorrelation) to be determined on a case-by-case basis
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Companion notebook

* Prepared notebook adversarial.ipynb provides a
examples of how to train stand-alone classifiers and how to
use adversarial architecture to impose mass-decorrelation

~ Jupyter adversarial @uosaved @ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted & | Python2 O
+ 2 @ B |4 ¥  MRun B |C M| Code 4| e

Adversarial neural networks for pivotal features

This example notebook illustrates the use of adverarial neural network architectures for constructing
classifier variables which are pivotal with respect to/independent of certain other feature(s). The
example uses a dataset from Ref. 1, which contains 5M hadronic jets characterised by their
invariant mass in addition to five high-level jet substructure observables. The jets are either
produced in the decay of a W boson into a quark pair (signal, y = 1) or by the non-resonant
emission of single partons (background, y = 0). This notebook will show, first, how to create a
neural network W-boson jet classifier using the five jet substructure observables as input features
and, second, how to use and adversarial neural network architecture to make this classifier
indepedent of the jet mass. \

Further reading

1. Baldi et al., Jet Substructure Classification in High-Energy Physics with Deep Neural Networks
(2016)

+ Location: http://github.com/asogaard/ep2mlf
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