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Topological equivalence
• inequivalent 

objects cannot 
be continuously 
transformed into 
each other

Topology promises to solve the 
problem of errors that inhibit 

the experimental realisation of 
quantum computers… 

Topological quantum computers: Why? 

…and it is a lot of fun :-) 
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• these 2D surfaces 

are classified by an 
integer, their genus 
(number of handles)

genus 0

genus 1

genus 2

genus 3

topology (genus) is
a global property

mug

coffee cup

“loving cup”

???

(or soup?)



• geometric properties (such as curvature) are 
local properties

Gauss-Bonnet (for a closed surface)

• trivially true for a sphere, but non-trivially true 
for any compact 2D manifold

• but integrals over local geometric properties may 
characterize global topology!

Z
d2r(Gaussian curvature) = 4⇡(1� genus)

= 2⇡(Euler characteristic)

4⇡r2 ⇥ 1

r2
= 4⇡(1� 0)

1

R1R2



• A more abstract generalization of the Gauss-
Bonnet formula due to Chern found its way 
into quantum condensed-matter physics in 
the 1980’s

• Quantum states are ambiguous up to a phase:

• Physical properties are defined by expectation 
values              that are left unchanged byh |Ô| i

| i 7! ei'| i

• As noticed by Berry, this has profound consequences for a family 
of quantum states parametrized by a continuous d-dimensional 
coordinate x in a parameter space.



•            can be expanded in a fixed 
orthonormal basis
| (x)i

| (x)i =
X

i

ui(x)|ii hi|ji = �ij

|@µ (x)i ⌘
X

i

@ui(x)

@x

µ
|ii

• we need a “gauge-covariant”derivative               

|Dµ (x)i = |@µ (x)i � | (x)ih (x)|@µ (x)i

projects out parts of
not orthogonal to

|@µ (x)i
| (x)i

h (x)|Dµ (x)i = 0
parallel transport



• The gauge-covariant derivative can also be written

|Dµ (x)i = |@µ (x)i � iAµ(x)| (x)i

an analog of the
electromagnetic vector 
potential in the parameter 
space x

• Berry’s phase factor for a closed path Γ in parameter 
space is the analog of a Bohm-Aharonov phase

e

i��
= exp i

I

�
dx

µAµ(x)

Lots of analogies 
with electromagnetic  

gauge fields in 
Euclidean space!



• The key gauge-invariant quantity is

hDµ (x)|D⌫ (x)i = 1
2 (Gµ⌫(x) + iFµ⌫(x))

Real symmetric positive
Fubini-study metric

Real antisymmetric
Berry curvature

integral over a closed
orientable 2-manifold

Z

M2

dx

µ ^ dx

⌫Fµ⌫(x) = 2⇡C1

“Chern number”
first Chern class (an 
integer) replaces Euler’s
characteristic

(defines “quantum geometry”)

Chern’s generalization of  Gauss-Bonnet

Fµ⌫ = @µA⌫ � @⌫Aµ



• In quantum mechanics, “geometry” relates to 
energy,  “local deformations” become 
adiabatic changes of the Hamiltonian, and 
“smoothness” (short-distance regularization) 
of the manifold derives from an energy gap

• the topology of quantum states is conserved 
so long as energy gaps do not close.

Now we know to look for topology, one can see 
that it the past its effects were noticed on an ad 
hoc basis as “oddities” !



•  Tamm (1932), Shockley (1939)1D edge states  
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FIG. &. The potential in the one-dimensional lattice.
(+) A periodic potential. (b) The potential corresponding
to Goodwin's "tight binding" approximation.

from the surface, The difference between the
two surface waves is one of symmetry y: The type
of crystal envisaged here possesses a center of
symmetry and the wave functions are therefore
either symmetrical or antisymmetrical, depend-
ing upon whether they have the same or opposite
signs on the two edges of the crystal.
The equations for the boundary curves of

Fig, 2 are similar to those met with by applying
Slater's method of finding three-dimensiona1
wave functions. ' The wave function in an in-
dividual cell is expanded in terms of two func-
tions g and u which are symmetrical and anti-
symmetrical about the center of the cell. If the
wave function is required to be of the form
/=exp (ikx)s(x) where v(x) has the period "a"
of the lattice, one finds by a familiar process that

tan' (ka/2) =—(g'/g) /(u'/u),
where g and I are the values at the edge of the
cell of the functions g and I and g' and u' are
corresponding derivatives. The allowed band's of
energies occur where only one of the ratios (g'/g)
and (u'/u) is negative; the forbidden regions
occur where neither or both are negative. Certain
crossings of the curves of Fig. 1 are possible;
these may occur between g'/g= ~ and u'/u=0
and between g'/g=0 and u'/u= ~; no other
crossings are possible. It is, therefore, seen that
all possibilities for the occurrence of surface
states are represented in Fig. 2.

7 J. C. Slater, Phys. Rev. 45, 794 (1934).

In Goodwin's work surface states have been
found to occur for the case of "tight binding"—
that is, the case of large lattice constant and
uncrossed bands. Goodwin's states arise from his
use of a potential which is more realistic than
ours; his potential is shown in Fig. 1(b). We see
that it is periodic except for the outer edges of
the end cells, where it is somewhat higher than
in the other cells. If we make his potential
periodic as indicated by the dotted lines, then the
diagram for the states will be as in Fig. ~. If we
now correct the energies of these wave functions
by taking as a perturbation the difference be-
tween the periodic potential and Goodv in's, we
hnd that two of the wave functions acquire
energies above the boundary curves. These two
functions will be surface states having wave
functions damped towards the interior of the
crystal. The origin of.. these states is essentially
different from the origin of the states occurring
after the bands have crossed. They will always
lie near the band from which they originate. If
we had used Goodwin's potential, we should
have found these surface states lying just above
each energy band in both the case of uncrossed
and crossed bands. In the case of crossed bands
there would then be four surface states. Goodwin,
following the treatment of Maue, has also con-
sidered the case of almost free electrons. He uses a"'

periodic potential without edge effects in the end
cells. The surface states he obtains in this way
are of the same type as ours, and in Appendix 5
we show that the conditions under which he
obtains them are equivalent to the crossing of

I

I
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FIG. 2. Energy spectrum for a one-dimensional lattice with
eight atoms.
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• If the bulk solid has inversion centers, bands 
have parity quantum numbers at ka = 0 and 
π, cannot mix there.

• As the atoms get closer, the magnitude of 
the hopping amplitude increase.   At some 
point, the gap at  ka = π will close, as the 
opposite-parity levels pass through each 
other without mixing!



• The Tamm-Shockley edge state is a boundary 
between the trivial vacuum and a Symmetry-
Protected Topological (SPT) state

• The symmetry is inversion symmetry in the 
bulk solid:  without this there would be no 
qualitative difference between the two limits, and 
no closing of the gap 

+

k⇡
a�⇡

a
0

E(k)

+

_

+

_

k⇡
a�⇡

a
0

_
+

+

_

Trivial SPT

no continuous path
that maintains

inversion symmetry

EF



• Inversion symmetry is semi-fragile  
(electric fields break it).    The Tamm-
Shockley edge state remained an obscure 
oddity for years.   Only now can we see it 
as  a simple example of a general principle.

• The edge-state is modeled quite generally 
by a Dirac-like equation where the “mass: 
changes sign (Jackiw-Rebbi)

H =

✓
�(x) vp

x

vp(x) ��(x)

◆
= �(x)�3 � i~v�1

d

dx

�(x)

�(�1)

�(1)
0 x

bound state amplitude



• 2D and 3D Time-reversal-Invariant 
topological insulators are SPT protected by 
fermionic time-reversal symmetry (Kramers 
degeneracy)

• The Z2 invariant was obscure until Kane and 
Fu  considered inversion symmetry as an 
extra feature:   The Z2 classification then is 
simple: just examine inversion symmetry of 
occupied bands at the 2d  inversion-
symmetric points in k-space, just like for 
Tamm-Shockley effect!

Product = +1 or -1



• Another instructive example of an SPT state 
is the spin-1 chain “Haldane gap” state, 

• This exhibits fractionalization, topological 
order and entanglement, characterized by 
the entanglement spectrum (Li and FDMH 
2008) which has become an impotant tool 
for investigating Topological Order.

• Wen clarified that is is an SPT with respect 
to Inversion and Time-reversal, and a key 
prototype for SPT’s.

A spin-1 degree of freedom can be 
represented as two spin-1/2 degrees of 

freedom, projected into a symmetric state. 



• The stability of topologically ordered states 
generally arises because no local 
modification can cause a change between 
topologically-distinct states
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localization of the fractionalized spin 
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by changing x0 
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 gapped (incompressible) state,unbroken symmetry
free spin-(1/2) states at free ends!
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• Large D favours a state with Szi = 0, all i.   
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• topological order = long-range entanglement

| i =
X

�

e�⇠�/2| L
� i ⌦ | R

� i

Bipartite Schmidt-decomposition of 
ground state reveals entanglement

⇠�

“entanglement
gap”

doublet
(S=1/2)

• a gapless “topological entanglement spectrum” 
separated from other Schmidt eigenvalues by an 
“entanglement gap” is characteristic of long-range 
topological order (Li + FDMH, PRL 2008)

(a)

(b)

“Left” “Right”

("# � #") ("# � #")("# � #") ("# � #")("# � #")
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 present.



Gunnar Möller Cargèse, Juin 2013

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum with Chern 
indices [Avron et al.]

E

n�

n�

n

• Interactions stabilize fractional 
quantum Hall liquids in these bands!

• CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL’s with 
additional pseudospin index
R. Palmer & D. Jaksch PRL 2006
L. Hormozi et al, PRL 2012

1

2

-1

-2

• the Hofstadter spectrum provides bands of all Chern numbers

• This was a model for a 
“quantum Hall effect without 
Landau levels” (FDMH 1988), 
now variously known as the 
“quantum anomalous Hall 
effect” or “Chern insulator”.

• Previously,  Thouless, Kohmoto, 
Nightingale and den Nijs 
(TKNN) had analysed the QHE 
in the Hofstadter model, and 
found the invariant 
subsequently identified by 
Simon as the Chern number.

The 2D Chern insulator 

colored by Avron et al.



~E

Hall
electrical
current

Hall
energy 

(thermal)
currentor

~g

c2
Chern-Simons

Gravitational Chern-
Simons ???

(Ludwig, Riu)

�~rT

T

Luttinger  showed that thermal  transport 
coefficients could be formally obtained as a 
linear response to gravity, using    

~g

c2
= �

~rT

T

• quantum Hall state must have chiral edge states to 
absorb discontinuities in Hall currents if electric or 
gravitational fields are applied parallel to the edge



Electric current

Electrical force 
on unit charge

Hall effects as anomalies

TKNN

Ja = ⌫
e2

2⇡~✏
abEb

Ja
E =

c̃

12

(2⇡kBT )2

2⇡~ ✏ab
gb
c2 gravitational force 

on unit energy!!!

Energy (heat)current

For 2D band 
electrons,

= sum of Chern 
numbers of 

occupied bands

⌫ = c̃

Virasoro anomaly

~g

c2
= �

~rT

T



• gapless graphene “zig-
zag” edge modes

Broken
inversion

Broken
time-reversal

(Chern insulator)



Kane and Mele 2005
• Two conjugate copies of the 1988 spinless 

graphene model, one for spin-up, other for 
spin-down

At edge,  spin-up moves
 one way, spin-down

the other way

If the 2D plane is a plane of mirror symmetry, spin-
orbit coupling preserves the two kind of spin.   
Occupied spin-up band has chern number +1, 

occupied spin-down band has chern-number -1.

E

k k

B=0
Zeeman coupling 

opens gap



• This looks “trivial”, but Kane and Mele found 
that the gapless “helical” edge states were 
still there when Rashba spin-orbit coupling 
that mixed spin-up and spin-down was 
added.

• They found a new “Z2” topological invariant 
of 2D bands with time-reversal symmetry 
that takes two values, +1 or -1. The invariant 
derives from Kramers degeneracy of 
fermions with time-reversal symmetry.

• This launched the new “topological 
insulator” revolution when an experimental 
realization was demonstrated. 



An explicitly gauge-invariant 
rederivation of the Z2 invariant

• If inversion symmetry is absent, 
2D bands with SOC split except 
at the four points where the 
Bloch vector is 1/2 x a reciprocal 
vector.  The generic single genus-1 
band becomes a pair of bands 
joined to form a genus-5 manifold

• This manifold can be cut into two 
Kramers conjugate parts, each is a 
torus with two pairs of matched 
punctures. In each pair, one 
puncture boundary is open one is 
closed.

FDMH
unpub.



• on a punctured 2-manifold

exp i

Z
d2kF12

(k) =
Y

i

ei�i

product of Berry phase-factors 
of puncture boundaries• without punctures, Z

d2kF12(k) = 2�C

• punctures come in Kramers pairs: 

2nY

i=1

ei�i =

 
nY

i=1

ei�i

!2

✓
exp i

1

2

Z
d2kF12

(k)

◆ nY

i=1

e�i�i
= ±1

a perfect square, so
we can take a
square root!



• If inversion symmetry is present, the bands 
are unsplit and doubly-degenerate at all 
points in k-space, so the Berry curvature is 
undefined.

• Fu and Kane found a beautiful formula
Y

n

Y

k⇤

In,k⇤ = ±1

occupied 
bands

T+I-invariant
 k-points

= the Z2 invariant

Inversion quantum number  
(about any inversion center)

±1



Fractional QHE
• There is a mysterious connection to 

conformal field theory, even though there is 
no conformal invariance or scale invariance

• In critical phenomena, the conformal metric 
(that defines the conserved angles) is 
defined at large distance scales.   In the 
FQHE, it seems to be defined at short-
distance scales 

• The Virasoro algebra seems to be the 
common feature of cft and fqhe



some related “mysteries”

• Why are model wavefunctions related to 
(Euclidean) 2+0 d cft good models for the 
FQHE? 

• If the Laughlin state is a “lowest Landau level 
Schroedinger wavefunction” why does it 
occur in the second Landau level?

• Why is it “holomorphic”?

• What aspects of 1+1d cft  apply to edge 
states?



• The conformal group is the group of 
coordinate transformations that preserve 
the unimodular part of a metric 

ds

2 = e

�2'(x,t)
�
v

�1
dx

2 � vdt

2
�

“universal speed of massless particles”

(1+1)d

ds

2 = e

�2'(x)
�
gabdx

a
dx

b
�

“Euclidean metric, det g = 1”

(2+0)d



• model  FQH “wavefunctions” (Laughlin, Moore-
Read, Read-Rezayi,...) are related to Euclidean 2D 
conformal theories characterized by a unimodular 
2D Euclidean metric  gab, det g = 1,  that 
determines the shape of their guiding-center 
correlation functions

• The metric defines dimensionless complex 
coordinates z, z*

• The metric is a continuously-variable “hidden” 
variational parameter  determined by minimizing 
the correlation energy of the FQH state

1

2`2B
gabr

arb = z⇤z `B =

✓
~

|eB|

◆ 1
2



• after Landau quantization, residual guiding center degrees of 
freedom are non-commutative

r = R+ R̃
eliminated
by Landau 

quantization

[Ra, Rb] = �i`2B✏
ab

• isomorphic to phase space, they 
obey an uncertainty principle

guiding centers 
cannot be localized 
within an area less 
than 2⇡`2B

Landau orbit
radius vector

⇥

O

r
R

R̃classical
coordinate

guiding center
coordinate

e�

antisymmetric 
symbol



• The metric defines the shape of the coherent state at the center 
of the “symmetric gauge” basis of guiding-center states

central
coherent

state

| m(g)i = (a†(g))mp
m!

| 0(g)i

a(g)| 0(g)i = 0
L(g) =

gab
2`2B

RaRb

[L(g), a†(g)] = a†(g)
• Guiding-center “spin” (rotation 

operator) is defined by the metric

different choices of metric:
(“squeezed” relative to each other)

| 0(g)i



• Model cft-based states such as the Laughlin state 
have a constant (flat, rigidly-fixed) metric

• In real FQH states of electrons contained in a 
non-uniform background potential, the metric 
varies locally and dynamically to allow the 
incompressible fluid to adjust to non-uniform 
flow induced by the background.

• The metric                then becomes an emergent 
dynamical collective degree of freedom of the 
FQH state.

gab(r, t)

FDMH, Phys. Rev. Lett. 107, 116801 (2011)



• coherent state basis

ā|z̄i = z̄|z̄i |z̄i = ez̄ā
†�z̄⇤ā|0i

• non-null eigenstates of the overlap define an 
orthonormal basis
Z

dz̄0dz̄0⇤

2⇡
S(z̄, z̄⇤; z̄0, z̄0⇤) (z̄0, z̄0⇤) = � (z̄, z̄⇤)

S(z̄, z̄⇤; z̄0, z̄⇤) = hz̄|z̄0i = ez̄
⇤z̄0� 1

2 (z̄
0⇤z̄0+z̄⇤z̄)

• non-null eigenstates are degenerate with λ = 1

holomorphic!

 (z̄, z̄⇤) = f(z̄⇤)e�
1
2 z̄

⇤z̄ “accidentally” coincide
with lowest-Landau level
wavefunctions if            !!!z̄ = z⇤

holomorphicity:



• This is the true origin of holomorphic 
functions in the theory of the FQHE

• NOTHING to do with lowest Landau level 
states, derives from overlaps between states 
in a non-orthogonal overcomplete basis!

• Has obvious parallels in theory of flat-band 
Chern insulators, where the projected lattice-
site basis is non-orthogonal and overcomplete

many-particle
coherent state

āi|z̄1, z̄2, . . . , z̄N i = z̄i|z̄1, z̄2, l . . . , z̄N i

“Laughlin 
wavefunction”

| q
Li =

Y

i

Z
dz̄⇤i dz̄i
2⇡

Y

i<j

�
z̄⇤i � z̄⇤j

�q Y

i

e�
1
2 z̄

⇤
i z̄i |z̄1, z̄2, . . . , z̄N i



• It is a common misconception that the Laughlin 
state is fundamentally “a lowest Landau-level 
wavefunction” of Galileian-invariant Landau levels 

• The similarity to a lowest-LL wavefunction is entirely 
accidental, as should have been clear when it was 
also found in the second LL.   The recent discovery 
that Laughlin-like states occur in “flat band” Chern 
insulators now makes this entirely clear!

• The holomorphic character of the Laughlin state is 
entirely a property of the “quantum geometry” of the 
flat band (Landau level) encoded in s(r1,r2), which in 
turn depends on the choice of metric gab.



• Origin of FQHE incompressibility is analogous to 
origin of Mott-Hubbard gap in lattice systems.

• There is an energy gap for putting an extra particle 
in a quantized region that is already occupied

• On the lattice the “quantized 
region” is an atomic orbital with 
a fixed shape

• In the FQHE only the area of 
the “quantized region” is fixed.  
The shape  must adjust to 
minimize the correlation energy.

e-

energy gap prevents 
additional electrons 
from entering the 

region covered by the 
composite boson



• The metric (shape of the composite boson) has a 
preferred shape that minimizes the correlation 
energy, but fluctuates around that shape

• The zero-point fluctuations of the metric are seen 
as the O(q4) behavior of the “guiding-center 
structure factor” (Girvin et al, (GMP), 1985)

• long-wavelength limit of GMP collective mode is 
fluctuations of (spatial) metric (analog of “graviton”) 

�E / (distortion)

2
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e

the electron  excludes other particles from 
a region containing  3 flux quanta, creating a 
potential well in which it is bound

1/3  Laughlin state If the central orbital is filled, 
the next two are empty

The composite boson
has inversion symmetry

about its center

It has a “spin”

.....

.....−
1 0 0
1
3

1
3

1
3

1
2

3
2

5
2

L = 1
2

L = 3
2−

s = �1



• crucial new physics: 

composite bosons couple to  the combination

peB(r)� ~sK(r)

charge of composite
boson guiding-center

“spin” of boson

Gaussian curvature
of metric

* gauge field is peAµ(r)� ~s⌦µ(r)

analog of spin-connectionrelated to
Wen and Zee 1992

+ Chern-Simons



• metric deforms (preserving det g =1)in 
presence of  non-uniform electric field

potential 
near edge

fluid 
compressed
by Gaussian 
curvature!

produces a dipole momemt



• multicomponent quantum Hall edge states 
do not have a universal speed, so are not 
Lorentz and conformally invariant.

• components of the cft energy momentum 
tensor:

Momentum density is independent of v:

Energy density and stress are proportional to v

Tracelessness  (in flat space-time) is independent of  v
T 0
0 + T x

x

= 0
Energy current density is proportional to v2

T x

0 = v2(T � T̄ )

T 0
0 = �T x

x

= v(T + T̄ )

T 0
x

= T � T̄



The only speed-independent properties are

• The (signed) Virasoro algebra of the Fourier 
components of the momentum density (with the 
topologically-conserved chiral central charge

c̃ = c� c̄
This is a fundamental quantity that has nothing to 
do with conformal invariance (and in fact must 
vanish in a “true” (modular-invariant) 1+1d cft )

• Tracelessness of the energy-momentum tensor (1d 
pressure = energy density), which is true for linearly-
dispersing modes, independent of their speed. 

It controls a “Casimir momentum”
1
24~c̃/L



• Tracelessness of the 2D stress tensor in the 
Euclidean field theory is the absence of 
hydrostatic 2D pressure

• Incompressible 2D quantum fluids at T = 0 do 
not transmit pressure through their bulk 
because of their energy gap (no gapless sound 
modes) - they only transmit pressure around 
their edges via gapless edge excitations.

• The traceless stress tensor of  Euclidean 2d 
conformal field theory (and its dependence on 
a metric) may explain its applicability to FQHE

P = � 1
2

�
T x

x

+ T y

y

�
= 0



One final result

• In the “trivial” non-topologically-ordered 
integer QHE (due to the Pauli principle) 

c̃ = ⌫ = Chern number

c̃� ⌫ = 0

• the (guiding-center) “orbital entanglement 
spectrum” of Li and Haldane is insensitive to 
filled (or empty) Landau levels or bands, and 
allows direct determination of non-zero c̃� ⌫

previous methods used the onerous calculation of 
the“real-space” entanglement spectrum to find c̃



• Hall viscosity  gives “thermally excited” 
momentum density on  entanglement cut,  
relative to “vacuum”,  at von Neumann 
temperature T = 1 
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• How universal is the Thermal Hall effect 
formula?  It also depends on

• If Lorentz invariance is present, its  essentially 
the same calculation as Casimir momentum

• When Lorentz invariance is broken by 
different speeds for different modes, but the 
remain independent, the result still stands 

• How much information about the 
Hamiltonian (T00  ) is needed?    Is there a 
clean “gravitational” derivation just based on 
the momentum T0x Virasoro anomaly?

c̃

Ja
E =

c̃

12

(2⇡kBT )2

2⇡~ ✏ab
gb
c2

~g

c2
= �

~rT

T



T

0
x

=

1

L

X

m

T

m

exp(2⇡ix/L)

[Tm, Tn] = (m� n)Tm+n + 1
12 c̃m(m2 � 1)�m+n,0

chiral central charge

Can we obtain the Thermal 
Hall effect just from this plus 

“gravity”?

Momentum density is universal:


