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Topological equivalence
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® geometric properties (such as curvature) are
local properties

® but integrals over local geometric properties may
characterize global topology!

Gauss-Bonnet (for a closed surface)

/ d*r(Gaussian curvature) = 47 (1 — genus)

/

= 27 (Euler characteristic)

47‘("]"2 X — = 477(]. — O)

® trivially true for a sphere, but non-trivially true
for any compact 2D manifold



® A more abstract generalization of the Gauss-
Bonnet formula due to Chern found its way

into quantum condensed-matter physics in
the 1980’

® Quantum states are ambiguous up to a phase:

® Physical properties are defined by expectation
values (qf\é|\y>that are left unchanged by

) — ')

® As noticed by Berry, this has profound consequences for a family

of quantum states parametrized by a continuous d-dimensional

coordinate x 1n a parameter space.



e |U(x))can be expanded in a fixed
orthonormal basis

V(x)) = Zuxw)m (t]7) = 03

<\IJ(a3)‘D’u\Ij(w)> — 0 projects out parts of |0,V (x))

parallel transport not orthogonal ©o | (1))



® The gauge-covariant derivative can also be written

D,¥(x)) =10,V (7)) — iAu(x)|¥(z))

\

Lots of analogies an analog of the

with electromagnetic

gauge fields in eIectro.ma%gnetlc vector
Euclidean space! potential in the parameter
space

® Berry’s phase factor for a closed path /'in parameter
space is the analog of a Bohm-Aharonov phase

el = expi% dxt A, ()
T



® The key gauge-invariant quantity is

(DY ()| D, (x)) = % (Guv () +iF ()

Real symmetric positive Real anzisymmetric

Fubini-study metric Berry curvature
(defines “quantum geometry”) Fuw =0,A, —0,A,

Chern’s generalization of Gauss-Bonnet

/ dx N dx” F,(x) = 2mCy
M A

| “Chern number”
integral over a closed first Chern class (an

orientable 2-manifold integer) replaces Euler’s
characteristic




® |n quantum mechanics, ‘geometry” relates to
energy, “local deformations” become
adiabatic changes of the Hamiltonian, and
“smoothness” (short-distance regularization)
of the manifold derives from an energy gap

® the topology of quantum states is conserved
so long as energy gaps do not close.

Now we know to look for topology, one can see
that it the past its effects were noticed on an ad

hoc basis as “oddities’ !



® Tamm (1932),Shockley (1939)ID edge states
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® |f the bulk solid has inversion centers, bands effect of tsp
have parity quantum numbers at ka = 0 and

. (vanishes at k=0,7)
T, cannot mix there.

A A A
® As the atoms get closer, the magnitude of 1
the hopping amplitude increase. At some > —+
point, the gap at ka = 1 will close, as the / +
opposite-parity levels pass through each 1.

other without mixing!
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between the trivial vacuum and a Symmetry-
Protected Topological (S5PT) state

® The symmetry is inversion symmetry in the
bulk solid: without this there would be no
qualitative difference between the two limits, and
no closing of the gap

no continuous path

E (k) — that maintains —

E "-{‘:}m__""inversionsymmetry ____:’:\:/m"x(:_".
- SECT —>& a2

a
Trivial SPT



® Inversion symmetry Is semi-iragile
(electric fields break it). The Tamm-
Shockley edge state remained an obscure
oddity for years. Only now can we see it
as a simple example of a general principle.

® The edge-state is modeled quite generally
by a Dirac-like equation where the “mass:

changes sign (Jackiw-Rebbi)

H = ( oo X ) — A(z)o? — ilwo! &

0 —F——
—/\ bound state amplitude




® 2D and 3D Time-reversal-Invariant
topological insulators are SPT protected by
fermionic time-reversal symmetry (Kramers
degeneracy)

® The Z2 invariant was obscure until Kane and
Fu considered inversion symmetry as an
extra feature: The Z2 classification then is
simple: just examine inversion symmetry of
occupied bands at the 29 inversion-
symmetric points in k-space, just like for
Tamm-Shockley effect!

Product = +1| or -1



® Another instructive example of an SPT state

is the spin-1 chain “Ha

dane gap” state,

® This exhibits fractiona

ization, topological

order and entanglement, characterized by
the entanglement spectrum (Li and FDMH

2008) which has become an impotant tool
for investigating Topological Order.

® VWen clarified that is is

an SPT with respect

to Inversion and Time-reversal, and a key

prototype for SPT’s.

A spin-1 degree of freedom can be

represented as tWO spin-

1/2 degrees of

freedom, projected into a symmetric state.



half-integer spin = fermion number!
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® The stability of topologically ordered states
generally arises because no local
modification can cause a change between
topologically-distinct states

A D second-order critical point where
localization of the fractionalized spin
at the edge fails, gap collapses

pump a 2nd * -
domain pump a domain
wall from L to R wall from L to R,
to get back to topologically- by changing xo
ordered bulk
>
Z, pump! 0 inversion-symmetry-breaking

fermion parity! D >D. for x <x0, D< D. for x > xo
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valence bond picture (AKLT) spin
2x2 Matrix product state)
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gapped (incompressible) state,unbroken symmetry
free spin-(1/2) states at free ends!

H=% JS; Siy1+ D(S;)’

® |arge D favours a state with S5 = 0, all i.



® topological order = long-range entanglement
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Bipartite Schmidt-decomposition of

ground state reveals entanglement

a gapless “topological entanglement spectrum”
separated from other Schmidt eigenvalues by an

“entanglement gap” is characteristic of long-range
topological order (Li + FDMH, PRL 2008)
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The 2D Chern insulator

® This was a model for a
“quantum Hall effect without
Landau levels” (FDMH 1988),
now variously known as the
“quantum anomalous Hall
effect” or “Chern insulator”.

® Previously, Thouless, Kohmoto,
Nightingale and den Nijs
(TKNN) had analysed the QHE
in the Hofstadter model,and £
found the invariant
subsequently identified by
Simon as the Chern number.

A

colored by Avron et al.



® quantum Hall state must have chiral edge states to

eyl

< Hall

- electrical
current

<€

Chern-Simons

Luttinger showed that thermal transport
coefficients could be formally obtained as a

linear response to gravity, using

absorb discontinuities in Hall currents if electric or
gravitational fields are applied parallel to the edge

X Hall
energy

- (thermal)

< current

Gravitational Chern
Simons ???

(Ludwig, Riu)
g VT

c2 T



Hall effects as anomalies

62

J' =v——eVE, «

2mh

Virasoro anomaly

6 (27T]€BT)2 Eab Jp -

Electric current

Electrical force
on unit charge

Energy (heat)current

J& —
E"19 0 onh 2

For 2D band
electrons,

UV = C
= sum of Chern

numbers of
occupied bands

TKNN

gravitational force
on unit energy!!!
g VT
c2 T
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Kane and Mele 2005

® Two conjugate copies of the 1988 spinless
graphene model, one for spin-up, other for

in-down
>P oW Zeeman coupling

B=0 opens gap

E \%(J
=

If the 2D plane is a plane of mirror symmetry, spin-
orbit coupling preserves the two kind of spin.
Occupied spin-up band has chern number +1,

occupied spin-down band has chern-number -1.

At edge, spin-up moves
one way, spin-down
the other way

k



® This looks “trivial”, but Kane and Mele found
that the gapless “helical” edge states were
still there when Rashba spin-orbit coupling

that mixed spin-up and spin-down was
added.

They found a new “Z2” topological invariant
of 2D bands with time-reversal symmetry

that takes two values, +1 or -|.The invariant
derives from Kramers degeneracy of
fermions with time-reversal symmetry.

® Is launched the new topologica
insulator” revolution when an experimental
realization was demonstrated.



An explicitly gauge-invariant ..,

unpub.

rederivation of the Z2 invariant

® |[f inversion symmetry is absent, S
2D bands with SOC split except
at the four points where the
Bloch vector is 1/2 x a reciprocal
vector. The generic single genus- |
band becomes a pair of bands
joined to form a genus-5 manifold

® This manifold can be cut into two
Kramers conjugate parts, each is a =
torus with two pairs of matched Dl é;,\cmes
punctures. In each pair, one B Clocizs\ PRETAeS
puncture boundary is open one is
closed.




2 open pPun chures

® on a punctured 2-manifold D el penchss

exp i / Ik F2 (k) =] ]

product of Berry phase-factors

1 .
of puncture boundaries

® without punctures,

/ d’k F'?(k) = 2nC

2n n 2
. . H €i¢i _ H 67»957:
® punctures come In Kramers palrs: o

!

a perfect square, so
we can take a
square root!




® |f inversion symmetry is present, the bands
are unsplit and doubly-degenerate at all
points in k-space, so the Berry curvature is
undefined.

® Fu and Kane found a beautiful formula

H H In g+ = £1 =the Z> invariant
AN

n k*

occupied ) )
P T+l-invariant

bands Inversion quantum number =

(about any inversion center)

k-points



Fractional QHE

® There is a mysterious connection to
conformal field theory, even though there is
no conformal invariance or scale invariance

® |n critical phenomena, the conformal metric
(that defines the conserved angles) is
defined at large distance scales. In the
FQHE, it seems to be defined at short-
distance scales

® TheVirasoro algebra seems to be the
common feature of cft and fghe



some related “mysteries”

Why are model wavefunctions related to
(Euclidean) 2+0 d cft good models for the
FQHE!?

If the Laughlin state is a “lowest Landau level
Schroedinger wavefunction” why does it
occur in the second Landau level?

Why is it “holomorphic™?

What aspects of |+1d cft apply to edge
states!



® The conformal group is the group of
coordinate transformations that preserve
the unimodular part of a metric

ds? = e 2¢(@:t) (fu_ldaiQ — vdt2) (1+1)d
7

“universal speed of massless particles”

ds? = e 2¢(T) (gabdxada’;b) (2+0)d
7

“Euclidean metric,det g = 1"



® model FQH “wavefunctions” (Laughlin, Moore-
Read, Read-Rezayi,...) are related to Euclidean 2D
conformal theories characterized by a unimodular

2D Euclidean metric ¢, det ¢ = 1, that

determines the shape of their guiding-center
correlation functions

® The metric defines dimensionless complex
coordinates 2, z*

1 . Ao\
gz, T = )

® The metric is a continuously-variable “hidden”
variational parameter determined by minimizing
the correlation energy of the FQH state



® after Landau quantization, residual guiding center degrees of

freedom are non-commutative .
Landau orbit

radius vector

eliminated e B

> classical @

—_ <= 4 AR
r =R+ by L?nd?’u coordinate .Y &
quantization o !

.
"""""

antisymmetric guiding center
symbol 0 coordinate

R*, R’ = —izQBﬁab

guiding centers

® isomorphic to phase space, the :
P P P 4 cannot be localized

obey an uncertainty principle

within an area less
than 2%523




® The metric defines the shape of the coherent state at the center
of the “symmetric gauge” basis of guiding-center states

different choices of metric;:
(“squeezed” relative to each other)

® Guiding-center “spin” (rotation

operator) is defined by the metric [L(g),a'(9)] = a'(g)
Jab pa a(9)$o(g)) =0
Lo) = o B o)y
B [Um(9)) = —— 1 —[¥ol9))



® Model cft-based states such as the Laughlin state
have a constant (flat, rigidly-fixed) metric

® |n real FQH states of electrons contained in a
non-uniform background potential, the metric
varies locally and dynamically to allow the
incompressible fluid to adjust to non-uniform
flow induced by the background.

® The metric g,(7,t) then becomes an emergent
dynamical collective degree of freedom of the

FQH state.

FDMH, Phys. Rev. Lett. 107, 16801 (201 1)



holomorphicity:

® coherent state basis

alz) = z|z) |z) = 7@ —27a)0)

S(E,Z*,_l —>|<) < | > —5(2 * 5 —I—E*Z)

® non-null eigenstates of the overlap define an
orthonormal basis

=/ J=/%*
/dziz S(z,z5 2,2 (Z',27) = (2, 2%)

® non-null eigenstates are degenerate with A = 1

= = ~%\,— 22"z | “accidentally” coincid
¥(2,27) = F(Z7)e>" 7 [ iihiowest-Landau leve

holomorphic! wavefunctions if z = z™!!!




This is the true origin of holomorphic
functions in the theory of the FQHE

NOTHING to do with lowest Landau level
states, derives from overlaps between states
in 2 non-orthogonal overcomplete basis!

Has obvious paralle
Chern insulators, w
site basis is non-ort

dz; dzz

) H/ :

. .

“Laughlin /

wavefunction”

—>|<

s in theory of flat-band
nere the projected lattice-
nogonal and overcomplete

1 % 5

—z2)" || e %7z, 22, ..., 2N)

Z‘ \
many-particle
coherent state

ai|Z1, 22, .-, 2ZN) = Z;i|Z1, 22,1 ..., ZN)



® |t is a common misconception that the Laughlin
state is fundamentally “a lowest Landau-level
wavefunction” of Galileian-invariant Landau levels

® The similarity to a lowest-LL wavefunction is entirely
accidental, as should have been clear when it was
also found in the second LL. The recent discovery
that Laughlin-like states occur in “flat band” Chern
insulators now makes this entirely clear!

® The holomorphic character of the Laughlin state is
entirely a property of the “quantum geometry” of the

flat band (Landau level) encoded in s(71,72), which in
turn depends on the choice of metric gqy.




Origin of FQHE incompressibility is analogous to
origin of Mott-Hubbard gap in lattice systems.

There is an energy gap for putting an extra particle
in a quantized region that is already occupied

On the lattice the “quantized
region” is an atomic orbital with

a fixed shape €

In the FQHE only the area of

the “quantized region” is fixed. GZZFEY galp Tre:ents
. additional electrons

The shape must adjust to M ring the

minimize the correlation energy. region covered by the

composite boson
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® The metric (shape of the composite boson) has a
preferred shape that minimizes the correlation ! >

e
energy, but fluctuates around that shape \
§E o< (distortion)?

® The zero-point fluctuations of the metric are seen
as the O(¢") behavior of the “guiding-center

structure factor” (Girvin et al, (GMP), 1985)

® |ong-wavelength limit of GMP collective mode is
fluctuations of (spatial) metric (analog of “graviton”)

FDMH, Phys. Rev. Lett. 107, 116801 (2011)



1/3 Laughlin state If the central orbital is filled,
the next two are empty

The composite boson
has inversion symmetry

------

FUNE about its center
It has a “spin”
1 3 5
2 2 2
1
170701 .... L=1
_[ITI12 _ =3
ITITI] . 3

the electron excludes other particles from
a region containing 3 flux quanta, creating a
potential well in which it is bound



® crucial new physics:

composite bosons couple to the combination

Gaussian curvature
of metric

charge of composite

boson guiding-center

“spin”’ of boson
g gauge field is peA,u (T) o hSQM (T)
A

related to analog of spin-connection
Wen and Zee 992

+ Chern-Simons



® metric deforms (preserving det g =1)in
presence of non-uniform electric field

fluid
compressed

by Gaussian
curvature!

potential \

near edge

produces a dipole momemt



® multicomponent quantum Hall edge states
do not have a universal speed, so are not
Lorentz and conformally invariant.

® components of the cft energy momentum
tensor:

Momentum density is independent of

T) =T T
Energy density and stress are proportional to v

15 = -TF =v(T +T)
Tracelessness (in flat space-time) is independent of v
Ty + T =0

Energy current density is proportional to *

T35 =v*(T - T)



The only speed-independent properties are

® The (signed) Virasoro algebra of the Fourier
components of the momentum density (with the
topologically-conserved chiral central charge

cC=c¢C—C

This is a fundamental quantity that has_nothing to

do with conformal invariance (and in fact must
vanish in a “true” (modular-invariant) |+1d cft)

¢ . . 1) 1 ~
It controls a “Casimir momentum ﬂh(ﬁ/[z

® Tracelessness of the energy-momentum tensor (1d

pressure = energy density), which is true for linearly-
dispersing modes, independent of their speed.



® Tracelessness of the 2D stress tensor in the
Euclidean field theory is the absence of
hydrostatic 2D pressure

P=—5(T:+TY)=0

® |ncompressible 2D quantum fluids at T = 0 do
not transmit pressure through their bulk
because of their energy gap (no gapless sound
modes) - they only transmit pressure around
their edges via gapless edge excitations.

® The traceless stress tensor of Euclidean 2d
conformal field theory (and its dependence on
a metric) may explain its applicability to FQHE



One final result

® |n the “trivial” non-topologically-ordered
integer QHE (due to the Pauli principle)

¢ = 1 = Chern number

c—1v =1

® the (guiding-center) “orbital entanglement
spectrum’ of Li and Haldane is insensitive to
filled (or empty) Landau levels or bands, and
allows direct determination of non-zero ¢ — v

previous methods used the onerous calculation of

~

the“real-space” entanglement spectrum to find C
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® Hall viscosity gives “thermally excited

momentum density on entanglement cut,

relative to “vacuum’”, at von Neumann

temperature T = 1




Yeje Park, Z Papic, N Regnault
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Matrix-product state calculation on cylinder with circumference L
(“plevel” is Virasoro level at which the auxialliary space is truncated)



® How universal is the Thermal Hall effect
formula? It also depends on

® |f Lorentz invariance is present, itg essentially
the same calculation as Casimir momentum

® When Lorentz invariance is broken by
different speeds for different modes, but the
remain independent, the result still stands

® How much information about the
Hamiltonian (T% ) is needed? Is there a
clean “gravitational” derivation just based on
the momentum T% Virasoro anomaly?

—

C (27T]€BT)2 ab db g o \ A
€ —- 5 — T

J& —
E"19 0 onh 2 &



Momentum density is universal:
o_ 1 -
T, = 7 Z T, exp(2mix /L)
™m

T, Th] = (m—n)Thni, + 1—126m(m2 — 1)0m+n.0

\

chiral central charge

Can we obtain the Thermal

Hall effect just from this plus
“gravity!




