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Outline

1. Quick introduction to some topological phases

2. How is the TI surface or edge fundamentally different in 
transport measurements from a normal metal or graphene?
Unconventional magnetotransport in 3D TI nanowires
(J. Bardarson, P. Brouwer, JEM, PRL 2010)

Toward superconducting state transport: understanding perfect 
transmission and Majoranas in SC/3DTI/SC junctions.
(R. Ilan, J. Bardarson, H.-S. Sim, JEM, arXiv 2013)
Impurity effects in nonequilibrium QSH edge state transport via integrability
(R. Ilan, J. Bardarson, J. Cayssol, JEM, PRL 2012)

Two old problems now approachable with new methods:
3. Strong interactions: the fractional quantum Hall edge
(J. Kjäll, JEM, PRB 2011; D. Varjas, M. Zaletel, JEM, arXiv 2013).

4. A basic problem of non-equilibrium in many-electron systems
(C. Karrasch, R. Ilan, JEM, arXiv 2013).
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“Integer” topological phases in 2D:
IQHE and 2D topological insulator

The integer quantum Hall effect is induced by a strong 
magnetic field.  It is recently understood that there are 
similar one-electron phases from spin-orbit coupling.

Spin-orbit coupling appears in nearly every atom and 
solid.  Consider the standard atomic expression

For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a 
magnetic field.

The spin-dependence means that the time-reversal 
symmetry of SO coupling (even) is different from a real 
magnetic field (odd).

spin-up and spin-down electrons are in IQHE states, 
with opposite “effective magnetic fields”.

n=1
IQHE

Ordinary insulator

e

HSO = �L · S

2D topological
insulator

Ordinary insulator
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The 2D topological insulator
People were somewhat skeptical until it was 
shown in 2005 (Kane and Mele) that, in real 
solids with all spins mixed and no “spin 
current”, edge physics survives.

Kane and Mele found a new topological 
invariant in time-reversal-invariant systems 
of fermions.

It isn’t isn’t an integer.  It is a Chern parity 
(“odd” or “even”), or a “Z2 invariant”.

2D topological
insulator

Ordinary insulator

Systems in the “odd” class are “2D topological insulators”

1. Where does this “odd-even” effect come from?
2. How can this edge be seen?
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The 2D topological insulator
Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).

But this rule does not protect
an ordinary quantum wire
with 2 Kramers pairs:

E

k

E

k

✓

The topological vs. ordinary distinction depends on time-reversal symmetry.
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The 2D topological insulator
Key: the topological invariant predicts the existence of “quantum wires”.

While the wires are not one-way, so the Hall conductance is zero, they still contribute to 
the ordinary (two-terminal) conductance.

There should be a low-temperature edge conductance from one spin channel at each edge:

G =
2e2

h

This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.

König et al., 
Science (2007)

Laurens 
Molenkamp
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Topological insulators in 3D
In 3D, there are 4 band structure invariants: 3 “weak” invariants and 1 “strong”. 
(JEM-Balents, Roy, Fu-Kane-Mele, Fu-Kane, summer 2006)

The fourth gives a robust 3D phase whose metallic surface state in the simplest case is a 
single massless “Dirac fermion”

Surface state = “1/4 of graphene”: no spin or valley degeneracy

2. Some fairly standard 3D materials turn out to be topological insulators!
Claim:
Certain insulators will always have metallic surfaces with strongly spin-dependent structure

kx

ky

E

EF

kx

ky

(a) (b)
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ARPES of topological insulators
First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.

This is later data on Bi2Se3 from the same group in 2009:

The states shown are in the “energy gap” of the bulk material--in general no 
states would be expected, and especially not the Dirac-conical shape.
Supported by STM measurements, optics, magnetotransport in best materials.
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Topological	  Insulators	  from	  Spin-‐orbit	  Coupling
Semiclassical	  picture

1D edge of Quantum Hall Effect

1D edge of “Quantum Spin Hall 
Effect” (discovered 2007)

2D surface of 3D Topological 
Insulator (discovered 2008)

How do these topological states connect to other physical properties?

3D topological insulators
have a special metallic 2DEG 
at any surface
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Beyond just having Dirac fermions, we would like a way to count 
them that does not require achieving quantized Hall conditions. 

How can we tell in normal-state transport 
that the 3D TI surface is different from both 

graphene and conventional 2DEGs?

Theme: When is the factor of 2 between an 
ordinary metal and the 2D and 3D edge/

surface states more than just a factor of 2?
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H. Peng et al. (Y. Cui group), Nature Materials 9, 225 (2010)

Conductance along a Bi2Se3 nanoribbon pierced by magnetic flux

Use geometry to isolate surface even when bulk is conducting.
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Aside from the original 
experimental motivation, 
piercing the TI surface by a 
flux is an interesting system:

putting π flux through a hole 
in a 3D TI, or through a TI 
nanowire, leads to a 
protected mode analogous to 
the “helical edge” of the 2D 
QSHE.

Conductance along a Bi2Se3 nanoribbon pierced by magnetic flux
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Berry phases in transport
Puzzle: Stanford nanowire experiment (Yi Cui et al., Nature Materials)

sees Aharonov-Bohm (h/e) oscillations, as expected for a clean system, rather than Sharvin & 
Sharvin (h/2e), as expected for a diffusive metallic cylinder.

The sign is also not what is expected
in the strong-disorder limit: the Berry
phase protects a mode at pi flux, rather
than 0 flux as in a nanotube.

Intuition: spin-momentum locking means that
spin direction rotates through 2π as electron
circles the cylinder.  This gives a - sign that is
compensated by the π flux.

(Bardarson, Brouwer, JEM, PRL 2010;
Zhang and Vishwanath, PRL 2010)

K0 = disorder strength

Scaled chemical potential relative to Dirac point
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SC/3DTI/SC junctions
At certain fields and phase differences, there are bound “Majorana 
fermions” at the SC/3DTI interface.  (Fu-Kane, Sato, ...)

Majoranas=the most interesting factor of 2; “half” of a two-level system

Majoranas in vortex cores:

How can this be probed experimentally?

Majorana states

SC

TI
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At π flux, the 3D TI nanowire mimics the perfect 
helical edge.  The latter has been proposed as a 

platform for Majoranas, so...

Alternately, view this nanowire as a vortex, except that 
the empty region is outside rather than inside.
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“Whereas bulk transport tends to obscure
the observation of surface state transport in the normal state, the
supercurrent is found to be carried mainly by the surface states”

Majorana states �� = ⇡

[Veldhorst et al. Nature Mater.  2012]

[Fu and Kane, PRL 2008]

[ Alicea Rep Prog Phys (2012), Beenakker, Annu. Rev. Cond. Mat. Phys. 2013, Grosfeld and Stern 2011, Potter and Fu 2013, Weider et al 2013]
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3DTI and Majorana fermions

En(�) = �
q
1� ⌧n sin

2 (�/2)

� = ⇡

⌧ = 1

E = 0

+

Zero energy Majorana state requires a 
perfectly transmitted mode

L ⌧ ⇠Short JJ
[Beenakker 2006, 

Titov and Beenakker 2006]
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Current Phase relation - disorder

� = �0/2 µW/~v = 20

hV (r)V (r0)i = g
~v

2⇡⇠2D
e|r�r0|/2⇠2D [Bardarson et al. PRL 2007]

[RI, Jens Bardarson, H.S. Sim, Joel Moore,2013]
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            - disorder

g = 2

[RI, Jens Bardarson, H.S. Sim, Joel Moore,2013]

IcRN
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Experimental feasibility

Short junction limit L ⌧ ⇠

L/W ⇠ 1Mode suppression

Flux through wire � > �0/2

Distance from Dirac point µ⇠D/~v

B ⇡ 0.2T

Disorder strength

g ⇡ 1 n ⇠ 8⇥ 1010 cm�2

[Sacepe et al. Nature Commun 2011, Kong et al. Nano Letters 2010, Beidenkophf et al. 2011, ,Williams et al. PRL 2012, 
Tian et al. Sci. Rep.  2012,  Veldhorst et al Nature Mater. 2012, Kim et al Nature Phys. 2012, Cho et al. Nature Commun 2013...]

W ⇠ 400nm

g

⇠D ⇠ 10nm
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 The perfectly transmitted mode at π 
flux is a Majorana signature that:

1. has fewer competing explanations than the zero-bias 
anomaly;

2. appears under conditions when the Fraunhofer 
pattern is ordinary;

3. can be realized with existing large-bandgap materials.

So far, nearly free electrons at equilibrium.
What can we say more generally?
1. Analytical: effects of a magnetic perturbation at QSHE edge.
2. Numerical: FQHE edge & steady-states.
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The 2D topological insulator
Key: the topological invariant predicts the existence of “quantum wires”.

While the wires are not one-way, so the Hall conductance is zero, they still contribute to 
the ordinary (two-terminal) conductance.

There should be a low-temperature edge conductance from one spin channel at each edge:

G =
2e2

h

This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.

König et al., 
Science (2007)

Laurens 
Molenkamp
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What about QSHE edge transport?
When is the factor of 2 interesting?

Question: if the measured two-terminal conductance is

with no factor of K (Luttinger parameter),
then is the edge non-interacting?

G =
2e2

h

Not necessarily (Maslov-Stone, Safi-Schulz, 1995): Fermi-liquid contacts mean that the 
conductance is not the naive value Ke2/h, but just e2/h.

K=1 K<1 K=1

1. What are effects of interactions at the QSHE edge?
2. How can we verify time-reversal protection?
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Note that this is not a point contact between edges but point backscattering at 
a single edge (as can happen in non-chiral FQHE states).

We want to include back-scattering at a single point, generated by a T-breaking impurity potential 
(not a Kondo impurity with a degree of freedom).

A remarkable non-equilibrium transport solution exists for one impurity in a spinless Luttinger 
liquid, with conductance interpolating from Ke2/h to 0 as temperature is lowered, for repulsive 
interactions.  (Fendley-Ludwig-Saleur, Fendley-Lesage-Saleur, 1995)
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Impurity in a QSHE edge via integrability

So we need to do the following (Ilan, Cayssol, Bardarson, JEM, arxiv:1206.5211):

1. Do a mesoscopic calculation of the non-interacting edge to find the backscattering induced by a 
tunable T-breaking impurity.

2. Use this as input to the Fendley-Lesage-Saleur solution for K = 1-1/m.

3. Solve self-consistently the combined set of TBA equations and the “contact correction” (Egger-
Grabert, 1998) to obtain the current I(T,V).

Why do all this work?  We believe that this experiment would prove “Z2-ness”, measure K at the 
edge, and provide the first test of the contact correction and the FLS solution for non-quantized K.
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Semiclassical	  picture	  of	  some	  one-‐par(cle	  phases

1D edge of Quantum Hall Effect

1D edge of “Quantum Spin Hall 
Effect” (discovered 2007)

2D surface of 3D Topological 
Insulator (discovered 2008)

What can happen as a result of strong Coulomb interactions?

3D topological insulators
have a special metallic 2DEG 
at any surface
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The fractional quantum Hall effect and “anyons”

Experiment: in good samples, there are quantum Hall plateaus at “fractional” values that 
cannot be understood in a non-interacting model.

Early samples: few plateaus Modern samples: lots!
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The fractional quantum Hall effect and “anyons”

Figure from “Quantum Computing with Knots”, Sci. Am.

Why is there so much effort going into making these complicated fractional states?

Theory says they have new kinds of quasiparticles with fractional statistics
“anyons” = neither bosons nor fermions

Key idea: proper statistics in 2D is about “braiding”, not just permutations->very 
complicated mathematical structure.

ei�

There are even “non-Abelian” states, with a ground-
state degeneracy: representation of braiding is a matrix, 
not just a scalar, and can implement quantum gates.
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Topological edges via exact diagonalization

Ex: the square lattice with constant flux per plaquette.
Can do band projection if
(maximum interaction energy) < (interband splitting) 
and then have essentially the standard FQHE problem.

Put on a trap and look for edge states.
(Laughlin 1/2 state of bosons)

n=1
IQHE

Ordinary insulator

e
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Lesson:

Small systems are enough to see incompressibility, but not 
fractionalization (at least in the neutral sector).

Incompressibility is already a surprise for bosons--

For fermions, edge spectrum looks exactly the same for 
Laughlin 1/3 state as for IQHE n=1 state.

Point: one can see the edge state, even for a small number of 
particles, but the spectrum doesn’t really tell us anything 
about fractional charge or statistics.

Need something better: can we approach thermodynamic limit 
for a gapless system?
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Summary of FQHE experiments

1. There is indeed a gapless edge state.
2. It is certainly not an ordinary metal (“Fermi liquid”).

3. However, it isn’t very close to what standard theory 
predicts either.
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Model: field theory of QHE
How can we describe the topological order in the quantum Hall effect, in the way that 
Landau-Ginzburg theory describes the order in a superconductor?

Standard answer: Chern-Simons Landau-Ginzburg theory

There is an “internal gauge field” a that couples to electromagnetic A.

Integrating out the internal gauge field a gives a Chern-Simons term for A, which just 
describes a quantum Hall effect:

There is a difference in principle between the topological field theory and the topological 
term generated for electromagnetism; they are both Chern-Simons terms.

LCS = � k

4⇡
"µ⌫�aµ@⌫a� + jµaµ, jµ =

1

2⇡
"µ⌫�@⌫A�

LQHE = � 1

4k⇡
"µ⌫�Aµ@⌫A�
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Topological field theory of QHE
What good is the Chern-Simons theory? (Wen)

The bulk Chern-Simons term is not gauge-invariant on a manifold with boundary.

It predicts that a quantum Hall droplet must have a chiral boson theory at the edge:

For fractional quantum Hall states, the chiral boson is a “Luttinger liquid” with strongly non-
Ohmic tunneling behavior.

Experimentally this is seen qualitatively--perhaps not quantitatively.

LCS = � k

4⇡
"µ⌫�aµ@⌫a� + jµaµ, jµ =

1

2⇡
"µ⌫�@⌫A�

S =
k

4⇡

Z
@

x

�(@
t

�� v@

x

�) dx dt
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Problems in FQHE theory vs. experiment
(1990-present)

1. Edge tunneling I-V exponent (Chang et al.)
Fitting required even to see plateaus clearly, and the exponents in some samples are displaced relative to 
theory; other samples seem roughly to agree with theory.

2. Fractional charge measured via shot noise at 2/3 (Heiblum et al.)

3. Conductance through constrictions at 2/3

4. “Upstream” (non-chiral) heat flow at 1/3 ?! 

How can we study theoretically a gapless edge in the 
thermodynamic limit to understand what’s going on? 
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Studying quantum correlations with classical 
algorithms: applied entanglement entropy

Basic (hazy) concept: “Entanglement entropy determines how much 
classical information is required to describe a quantum state.”

Example:
how many classical real numbers are required to describe a product (not 
entangled) state of N spins?

Answer: ~ N    (versus exponentially many for a general state)

How do we efficiently manipulate/represent moderately entangled states?

|ψ〉 = As1
As2

As3
As4

|s1s2s3s4〉simple product
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Applied entanglement entropy

The remarkable success of the density-matrix renormalization 
group algorithm in one dimension (White, 1992; Ostlund and 
Rommer, 1995) can be understood as follows:

DMRG constructs “matrix product states” that retain local 
entanglement but throw away long-ranged entanglement.

Graphical tensor network representation:

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉

|ψ〉 = As1
As2

As3
As4

|s1s2s3s4〉simple product

matrix product

Example states for four spins:

A
i j

A
j k

A
k l

s1 s2 s3

...
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• find the ground state of a system by using imaginary time 
evolution (almost unitary for small time steps)

• parallel updates for infinite/translational invariant 
systems: iTEBD [Vidal ‘07]

• example,  transverse Ising model:         H =
⇤

i

�
J�z

i �z
i+1 + g�x

i

⇥

−0.05 0 0.05

10−10

10−5

100

[g−gc]/J

[E
0−

E 0ex
ac

t ]/J

 

 
χ=4
χ=8
χ=12
χ=16

➡convergence of wave 
function is worst at the
critical point

➡conformal invariance

Good news: can make “finite-entanglement” theory of 
convergence at critical points; they are hardly inaccessible.
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Momentum distribution n(k)

Tests of Luttinger liquid behavior in the XXZ model

(C. Karrasch and JEM, PRB)

Check of leading staggered and uniform 
correlators against Lukyanov and Terras

Later: try to solve open problems of dynamical properties at finite temperature.
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DMRG for FQHE edges: 2D -> 1D
Put LL on a cylinder: get an unusual spinless fermion model
with interaction range determined by the cylinder size.

Add a confining potential around the cylinder to create a strip,
with edges: now a 1D CFT.

1/3 state:
density profile

electron density 
nonuniform
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DMRG for FQHE edges

Wen’s theory predicts that the edge electrons should have
strongly non-Fermi liquid correlations.

With ED, one gets a discrete spectrum; hard to confirm expt.

Now the edges run along the infinite cylinder: continuous spectrum

1/3 edge:
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entanglement scaling to count 
number of edge modes
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DMRG for FQHE edges

Can observe more complicated multicondensate behavior and
nonuniversality of edge exponent: 2/3 spin-polarized state

2/3 density:
1/3 gas of holes

in filled Landau level
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State of the art with DMRG-type methods
(Some) ground states in 2D:
Quantum Hall states
Spin liquids
(not yet) doped Hubbard model

(Some) dynamical problems in 1D:
Quenches and sweeps
Many-body localization
Linear-response transport

Can we say anything about non-equilibrium transport (steady states)?

Challenge: at least classically, there are few guiding principles for steady 
states; each is non-equilibrium in its own way.

Some work near quantum critical points (cf. Green, Sondhi et al.)
Let’s start as simply as possible...
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Luttinger’s theorem and reconstruction
Generalized Luttinger’s theorem: there are singularities (1D 
versions of Fermi surfaces) at certain momentum values.  There is 
a sum rule relating their locations to the density.

Central charge estimate lets us figure out how many propagating modes there are.

Current work: quantify how edge potential leads to extra modes suggested by 
experiments.
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What about non-equilibrium transport?

1. Create two different temperatures in two 
disconnected, infinite 1D “leads”.
2. Connect them by a finite region (e.g., one bond).
3. Evolve in time for as long as possible.

Is a steady-state heat current reached?

When is non-equilibrium (finite bias) thermal transport determined by linear-
response thermal conductance?

We observe two different outcomes, depending on integrability of the leads and 
whether the connected system is homogeneous.

T1 T2

T1 T2

T3
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Non-equilibrium in the early 
days of quantum mechanics

Stefan-Boltzmann law = integrated Planck distribution

Practical efficiency limit on 
concentrating solar plants:

concentration point radiates

P = �T 4 in d = 3

P / T 2 in d = 1
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Linear and non-linear transport: summary

When the final H is a homogeneous XXZ model, (integrable; 
conserved energy current) there is a “generalized Stefan-
Boltzmann law” to high accuracy, to be defined in a moment.

Main goal: analytical explanation and calculation

For final H homogeneous and non-integrable, we do not observe a 
steady state.  We believe that the temperature gradient is 
decreasing and Fourier’s law is setting in, but cannot access very 
long times.

For final H inhomogeneous, there can be a steady state if the leads 
are integrable, but there is not an f-function; J is a function of both 
temperatures separately.

We can see the onset of the nontrivial power-laws in tunneling 
between Luttinger liquids as temperature is lowered.
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Stefan-Boltzmann picture

Idea: the right lead is prepared at one temperature and 
the left lead at a different temperature.

In a ballistic system like a CFT, there is no local 
temperature at x=0 at later times; rather the right-
movers are at a different temperature than the left-
movers.  The thermal current is the difference between 
total radiation from left and right.
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Linear and non-linear response

When the finite system is homogeneous and 
integrable, with a conserved energy current, we find:

1. there is a steady state;
2. there is a Stefan-Boltzmann function f such that

In other words, linear response
is sufficient to determine non-linear response.

For a CFT (Sotiriadis & Cardy, Bernard & Doyon), this 
was known, and f goes as T2 for small T, 1/T for large T.
(“1D black-body”)

lim
t!1

hJE(n, t)i = f(TL)� f(TR)

G = @T f
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Linear and non-linear response

2. there is a Stefan-Boltzmann function f such that

Makes testable predictions, e.g.,

lim
t!1

hJE(n, t)i = f(TL)� f(TR)

JE(T1 ! T3) = JE(T1 ! T2) + JE(T2 ! T3)
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One quantity with a “cyclic rule”

Cyclic form of integrated currents:
(exact at all times for large reservoirs)

T1 T2

T1 T2

T3

Global energy current conservation 
connects what happens at 3 
interfaces:

any change at just 1 interface cannot 
affect spatially integrated current at 
that interface

j⌃E(T1 ! T2, t) + j⌃E(T2 ! T3, t) + j⌃E(T3 ! T1, t) = 0
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Je

Je

(a)

(b) 1 1

L0

2 23 3

Adding a “spacer” region makes no difference in the 
time evolution of integrated energy current:

j⌃E(T1 ! T2, t) = j⌃E(T1 ! 0, t)� j⌃E(T2 ! 0, t)

There is an interesting new universal function.
But can we say anything about steady-state current 
(non-integrated)?
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But can we say anything about steady-state 
current at a point (i.e., non-integrated)?
Getting from spatially integrated current to a point requires a length scale: 
natural guess is

f =

Total right-moving energy current as t ! 1
Length of reservoir

For free systems, even with a dispersion of velocities, 
differences of f indeed describe the steady-state.

Might think interactions must violate this: effective velocity of one excitation is 
modified by presence of others, for example.

But energy current conservation is very powerful...
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Claim: there is a translation-invariant steady state 
whose energy current is given precisely by differences 
of f, even in the presence of interactions.

An explicit protocol to make a final state with this 
current:

Cannot prove that the same steady-state current 
applies as the long-time limit of original geometry,
but the two initial conditions look very similar in 
momentum space.

Je

absorbers

t < ta

W���Wa

1. absorb hot left-movers and cold 
right-movers

2. remove absorbers and let system 
evolve; energy current conservation 
uniquely fixes final translation-
invariant steady-state.
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0.1 1 10
T

0

0.05f(T
)

DMRG
Bethe

ferromagnetic
chain

Bethe-ansatz estimate of SB f for XXX ferromagnet

Compute using “bare” magnon/string velocity

(But fails even at low T for XXX antiferromagnet--not 
“elementary excitations”)Z

dx ⇢ngn, not

Z
dx ⇢nvngnBare/dressed equivalence for
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Conclusions

1. 3DTI nanowires in magnetic fields offer a useful platform for 
both Majorana physics and unusual normal-state transport.

2. Transport at the QSHE edge with a magnetic impurity is a 
realization of the Fendley-Ludwig-Saleur problem, with some 
interesting differences from the FQHE realization.

3. The chiral Luttinger liquid theory of Abelian edges is almost 
certainly correct for a broad class of short-range interactions.

4. Non-equilibrium steady-states are generated by a thermal 
boundary in the XXZ model.  Within numerical accuracy, these 
are consistent with a generalized Stefan-Boltzmann law.
Analytical arguments prove “cyclic law” for a related quantity and suggest 
possible steady state satisfying SB law.  (C. Karrasch, R. Ilan, JEM, arXiv 2013)
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