# LLP Experimental Overview

John Stupak University of Oklahoma



11/20/19

### Overview

- Introduction
- Search results
  - Indirect detection
  - Direct detection
- Summary
- Future prospects
- Conclusion



"There he goes. One of God's own prototypes. A highpowered mutant of some kind never even considered for mass production. Too weird to live, and too rare to die." -Hunter S. Thompson

#### Experimentalist's motivation for LLPs searches



#### Experimentalist's motivation for LLPs searches

#### **Overview of CMS EXO results**



Very extensive program of searches for prompt and stable particles

#### Experimentalist's motivation for LLPs searches







- Long-lived particles often have striking signatures with no irreducible SM backgrounds
  - For ~zero background searches, sensitivity scales with L<sub>int</sub>
- Backgrounds are generally from non-collision sources or instrumental effects (typically quite rare)
  - Monte Carlo not appropriate
  - Data-driven techniques required
- Triggering and reconstruction of unconventional signatures can be highly non-trivial

## **Decay Position**

# For a given proper lifetime LP decays occur in variety of detector systems



[Heather Russell]

# Detector Signatures

#### Each subsystem has a different signature

#### Flavors of displaced jets:



## **Recent LLP Results**

| Date  | Experiment | Reference           | LLP                                    | Signature                                                           |
|-------|------------|---------------------|----------------------------------------|---------------------------------------------------------------------|
| 10/19 | LHCb       | 1910.06926          | dark photon                            | dimuon DV                                                           |
| 9/19  | CMS        | 1909.06166          | neutralino                             | non-pointing photon (elliptical shower and delayed arrival in ECAL) |
| 9/19  | ATLAS      | 1909.01246          | dark photon                            | displaced lepton jet                                                |
| 7/19  | ATLAS      | 1907.10037          | gluino/squark R-hadron                 | dilepton ID DV                                                      |
| 6/19  | CMS        | 1906.06441          | gluino R-hadron                        | displaced jet (delayed arrival in ECAL)                             |
| 5/19  | ATLAS      | 1905.10130          | monopole/multi-charged particle        | high-ionization (TRT, ECal)                                         |
| 5/19  | ATLAS      | 1905.09787          | heavy neutral lepton                   | dilepton ID DV                                                      |
| 3/19  | ATLAS      | ATLAS-CONF-2019-006 | stop R-hadrons                         | displaced jet (ID DV) + displaced muon                              |
| 2/19  | ATLAS      | 1902.03094          | dark scalar                            | displaced jet (low EM-fraction)                                     |
| 2/19  | ATLAS      | 1902.01636          | gluino/squark R-hadron, chargino, stau | high-ionization (pixel) and delayed arrival (HCal, MS)              |
| 12/18 | ATLAS      | 1812.03673          | multi-charged particle                 | high-ionization (pixel, HCal, MS)                                   |
| 11/18 | CMS        | 1811.07991          | gluino/stop R-hadron                   | displaced jet (ID DV)                                               |
| 11/18 | ATLAS      | 1811.07370          | dark scalar, singlino                  | displaced jet (MS DV)                                               |
| 11/18 | ATLAS      | 1811.02542          | dark vector                            | Z(II) + displaced jet (low EM-fraction)                             |
| 10/18 | CMS        | 1810.10069          | dark pion                              | emerging jets                                                       |
| 8/18  | ATLAS      | 1808.06358          | gluino R-hadron                        | high-ionization (pixel)                                             |
| 9/18  | CMS        | 1808.03078          | neutralino, gluino, stop R-hadron      | displaced jet (2 ID DVs)                                            |
| 8/18  | ATLAS      | 1808.03057          | dark vector, neutralino                | dimuon MS DV                                                        |
| 6/18  | ATLAS      | 1806.07355          | dark scalar                            | V + displaced jet (b-tagging)                                       |
| 4/18  | CMS        | 1804.07321          | chargino                               | disappearing track                                                  |

# Indirect Detection

#### [1810.10069]

# **Emerging Jets**

- Search for heavy mediator between SM and hidden sector with QCD-like confining force
- Dark quark showers and hadronizes in the hidden sector before gradually decaying back to the SM
  - Many displaced vertices (+ MET)
- Strategy
  - Conventional trigger: H<sub>T</sub> ≯ 90 GeV
  - Exploit large impact parameter of signal tracks
  - Define 8 sets of emerging jet tagging criteria
    - 7 SRs and 2 VRs (non-Displaced Di-Jet





John Stupak - University of Oklahoma

SRs

VRs

Set number

SM QCD-enhanced

# **Emerging Jets**

- Dominant background: QCD multi-jet events with long-lived B mesons or track mis-measurement
  - Separate light- and heavy-flavor enhanced  $\gamma$ +jet samples used to determine mistag rates  $\varepsilon_{\text{light}}(N_{\text{track}})$  and  $\varepsilon_b(N_{\text{track}})$  for each emerging jet definition
  - CR defined for each SR/VR (same requirements, except N-1 emerging jet tags)
    - Heavy flavor fraction  $f_b$  determined with fit to b-tag discriminant templates
    - Apply mistag rates to jets in CR:  $\varepsilon_f = \varepsilon_b f_b + \varepsilon_{\text{light}} (1 f_b)$



| Set number | Expected                   | Observed |
|------------|----------------------------|----------|
| 1          | $168 \pm 15 \pm 5$         | 131      |
| 2          | $31.8 \pm 5.0 \pm 1.4$     | 47       |
| 3          | $19.4 \pm ~7.0 \pm ~5.5$   | 20       |
| 4          | $22.5 \pm \ 2.5 \pm \ 1.5$ | 16       |
| 5          | $13.9 \pm 1.9 \pm 0.6$     | 14       |
| 6          | $9.4\pm2.0\pm0.3$          | 11       |
| 7          | $4.40 \pm 0.84 \pm 0.28$   | 2        |

[1810.10069]



p

p

- Search for RPV stop  $\rightarrow$  qµ decays
  - First LLP result to analyze 2018 data
- Selects events with displaced ID vertex and displaced muon (ID+MS)
  - Conventional triggers: µ and calorimeter-based MET

q

q

 $\lambda'_{23k}$ 

# ATLAS Large Radius Tracking

- Standard ATLAS track reconstruction efficiency falls steeply for R<sub>prod</sub> > 10 mm (not so for CMS)
- Large Radius Tracking (LRT) largely recovers this inefficiency
  - Computationally intensive → select O(few %) of data for this special processing with signaturespecific filters
- Run DV reconstruction algorithm on the combined standard + large-radius track collection



|                                | Standard      | Large radius |
|--------------------------------|---------------|--------------|
| $\frac{1}{1} Maximum d_0 (mm)$ | 10            | 300          |
| Maximum $z_0 \pmod{m}$         | 250           | 1500         |
| Maximum $ \eta $               | 2.7           | 5            |
| Maximum shared silicon modules | 1             | 2            |
| Minimum unshared silicon hits  | 6             | 5            |
| Minimum silicon hits           | 7             | 7            |
| Seed extension                 | Combinatorial | Sequential   |



#### • LRT filter:

#### • MS $\mu$ w/ $p_T$ > 60 GeV OR MET > 180 GeV

| Selection level | Muon selection                                                                        | Displaced vertex selection                                                                                                |
|-----------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Preselection    | $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5,$                                           | $r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm},$                                                             |
|                 | $\begin{vmatrix} 2 & \min <  a_0  < 500 & \min, \\  z_0  < 500 & \min, \end{vmatrix}$ | $\operatorname{min}( r_{\rm DV} - r_{\rm PV} ) > 4 \operatorname{min}, \chi / N_{\rm DoF} < 5,$<br>Pass material map veto |
| Full selection  | Pass cosmic-muon, fake-muon,                                                          | $n_{\mathrm{Tracks}}^{\mathrm{DV}} \ge 3,$                                                                                |
|                 | and heavy-flavor vetoes                                                               | $m_{ m DV} > 20~{ m GeV}$                                                                                                 |

#### • LRT filter:

#### MS $\mu$ w/ $p_T$ > 60 GeV OR MET > 180 GeV



#### • LRT filter:

#### MS µ w/ p<sub>T</sub> > 60 GeV OR MET > 180 GeV

| Selection level | Muon selection                              | Displaced vertex selection                                                            |                                            |
|-----------------|---------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|
| Preselection    | $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5,$ | $r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm},$                         |                                            |
|                 | $2 \text{ mm} <  d_0  < 300 \text{ mm},$    | $\min( \vec{r}_{\rm DV} - \vec{r}_{\rm PV} ) > 4 \text{ mm}, \chi^2/N_{\rm DoF} < 5,$ |                                            |
|                 | $ z_0  < 500 \text{ mm}$                    | Pass material map veto                                                                |                                            |
| Full selection  | Pass cosmic-muon, fake-muon,                | $n_{\mathrm{Tracks}}^{\mathrm{DV}} \geq 3,$                                           | <ul> <li>random track crossings</li> </ul> |
|                 | and heavy-flavor vetoes                     | $m_{\rm DV} > 20 { m ~GeV}$                                                           |                                            |
|                 |                                             |                                                                                       | material interactions                      |

#### • LRT filter:

#### MS μ w/ p<sub>T</sub> > 60 GeV OR MET > 180 GeV

#### 2 orthogonal channels

| Selection level                                          | Muon selection                           | Displaced vertex selection                                                            |  |
|----------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|--|
| Preselection $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5,$ |                                          | $r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm},$                         |  |
|                                                          | $2 \text{ mm} <  d_0  < 300 \text{ mm},$ | $\min( \vec{r}_{\rm DV} - \vec{r}_{\rm PV} ) > 4 \text{ mm}, \chi^2/N_{\rm DoF} < 5,$ |  |
|                                                          | $ z_0  < 500 \text{ mm}$                 | Pass material map veto                                                                |  |
| Full selection                                           | Pass cosmic-muon, fake-muon,             | $n_{\mathrm{Tracks}}^{\mathrm{DV}} \geq 3,$                                           |  |
|                                                          | and heavy-flavor vetoes                  | $m_{\rm DV} > 20~{ m GeV}$                                                            |  |

| Selection level | $E_{ m T}^{ m miss}$ Trigger SR                          | Muon Trigger SR                                 |
|-----------------|----------------------------------------------------------|-------------------------------------------------|
| Preselection    | Selected by $E_{\rm T}^{\rm miss}$ trigger,              | Selected by muon trigger,                       |
|                 | Cluster-based $E_{\rm T}^{\rm miss}$ > 180 GeV,          | Cluster-based $E_{\rm T}^{\rm miss}$ < 180 GeV, |
|                 | Selected PV, preselected muon,                           | Selected PV, preselected muon,                  |
|                 |                                                          | Highest- $p_{\rm T}$ muon matches trigger muon  |
| Full selection  | $\geq$ 1 full-selection muon, $\geq$ 1 full-selection DV |                                                 |

#### • LRT filter:

#### MS μ w/ p<sub>T</sub> > 60 GeV OR MET > 180 GeV

#### 2 orthogonal channels

| Selection level                                          | Muon selection                           | Displaced vertex selection                                                             |  |
|----------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|--|
| Preselection $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5,$ |                                          | $r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm},$                          |  |
|                                                          | $2 \text{ mm} <  d_0  < 300 \text{ mm},$ | $ \min( \vec{r}_{\rm DV} - \vec{r}_{\rm PV} ) > 4 \text{ mm}, \chi^2/N_{\rm DoF} < 5,$ |  |
|                                                          | $ z_0  < 500 \text{ mm}$                 | Pass material map veto                                                                 |  |
| Full selection                                           | Pass cosmic-muon, fake-muon,             | $n_{	ext{Tracks}}^{	ext{DV}} \geq 3,$                                                  |  |
|                                                          | and heavy-flavor vetoes                  | $m_{\rm DV} > 20~{ m GeV}$                                                             |  |

| Selection level                                             | $E_{ m T}^{ m miss}$ Trigger SR                                                                | Muon Trigger SR                                |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|
| Preselection                                                | Selected by $E_{\rm T}^{\rm miss}$ trigger,                                                    | Selected by muon trigger,                      |
|                                                             | Cluster-based $E_{\rm T}^{\rm miss}$ > 180 GeV, Cluster-based $E_{\rm T}^{\rm miss}$ < 180 GeV |                                                |
|                                                             | Selected PV, preselected muon,                                                                 | Selected PV, preselected muon,                 |
|                                                             |                                                                                                | Highest- $p_{\rm T}$ muon matches trigger muon |
| Full selection $\geq 1$ full-selection muon, $\geq 1$ full- |                                                                                                | nuon, $\geq 1$ full-selection DV               |

#### • LRT filter:

#### MS $\mu$ w/ $p_T$ > 60 GeV OR MET > 180 GeV

#### 2 orthogonal channels

| Selection level | Muon selection                                                                          | Displaced vertex selection                                                                                                                       | Selection level | E <sup>miss</sup> Trigger SR                                                                   | Muon Trigger SR                                                                            |
|-----------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Preselection    | $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5,$<br>$2 \text{ mm} <  d_0  < 300 \text{ mm},$ | $r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm}, min( \vec{r}_{\rm DV} - \vec{r}_{\rm PV} ) > 4 \text{ mm}, \chi^2/N_{\rm DoF} < 5,$ | Preselection    | Selected by $E_{\rm T}^{\rm miss}$ trigger,<br>Cluster-based $E_{\rm m}^{\rm miss} > 180$ GeV. | Selected by muon trigger,<br>Cluster-based $E_{\pi}^{\text{miss}} < 180$ GeV.              |
| Full selection  | $ z_0  < 500 \text{ mm}$<br>Pass cosmic-muon, fake-muon,                                | Pass material map veto $n_{\text{Tracks}}^{\text{DV}} \ge 3,$                                                                                    |                 | Selected PV, preselected muon,                                                                 | Selected PV, preselected muon,<br>Highest- <i>p</i> <sub>T</sub> muon matches trigger muon |
|                 | and heavy-flavor vetoes                                                                 | $  \qquad m_{\rm DV} > 20 \ {\rm GeV}$                                                                                                           | Full selection  | $\geq$ 1 full-selection r                                                                      | $\frac{1}{\text{nuon}, \geq 1 \text{ full-selection DV}}$                                  |

Background sources of displaced muons and vertices are uncorrelated

#### preselected events

| DV control region  | DV validation region                  | DV signal region |
|--------------------|---------------------------------------|------------------|
| no preselected DVs | preselected DV(s),<br>no selected DVs | selected DV(s)   |

#### • LRT filter:

#### MS $\mu$ w/ $p_T$ > 60 GeV OR MET > 180 GeV

#### 2 orthogonal channels

| Selection level | Muon selection                                                                       | Displaced vertex selection                                                                                                                              | Selection level | E <sup>miss</sup> Trigger SR                    | Muon Trigger SR                                 |
|-----------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------|-------------------------------------------------|
| Preselection    | $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5,$<br>2 mm < $ d_{\rm c}  < 300 \text{ mm}$ | $ r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm},$<br>$ \min( \vec{r}_{\rm mu} - \vec{r}_{\rm mu} ) > 4 \text{ mm} \sqrt{2}/N_{\rm mu} < 5$ | Preselection    | Selected by $E_{\rm T}^{\rm miss}$ trigger,     | Selected by muon trigger,                       |
|                 | z  < 500  mm,                                                                        | $\operatorname{Imm}( IDV IPV ) > 4 \operatorname{Imm}, \chi  IVDOF < 0,$ $\operatorname{Pass material map voto}$                                        |                 | Cluster-based $E_{\rm T}^{\rm miss}$ > 180 GeV, | Cluster-based $E_{\rm T}^{\rm miss}$ < 180 GeV, |
|                 | $ z_0  < 500$ mm                                                                     |                                                                                                                                                         |                 | Selected PV, preselected muon,                  | Selected PV, preselected muon,                  |
| Full selection  | Pass cosmic-muon, fake-muon,<br>and heavy-flavor vetoes                              | $n_{\text{Tracks}}^{DV} \ge 3,$<br>$m_{\text{DV}} \ge 20 \text{ GeV}$                                                                                   |                 |                                                 | Highest- $p_{\rm T}$ muon matches trigger muon  |
|                 |                                                                                      |                                                                                                                                                         | Full selection  | $\geq$ 1 full-selection r                       | nuon, $\geq 1$ full-selection DV                |

Background sources of displaced muons and vertices are uncorrelated

# fails cosmic vetofails cosmic vetofails cosmic vetofails cosmic vetopasses full<br/>muon selectionpasses full<br/>muon selectionfails HF muon vetofails HF muon vetofails HF muon vetofails HF muon vetofails HF muon veto

#### preselected events

#### • LRT filter:

#### MS $\mu$ w/ $p_T$ > 60 GeV OR MET > 180 GeV

#### 2 orthogonal channels

| Selection level | Muon selection                                                                     | Displaced vertex selection                                                                                                                                                             | Selection level | E <sup>miss</sup> Trigger SR                             | Muon Trigger SR                                                                |
|-----------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------|--------------------------------------------------------------------------------|
| Preselection    | $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5, 2 \text{ mm} <  d_0  < 300 \text{ mm},$ | $\begin{vmatrix} r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm}, \\ \min( \vec{r}_{\rm DV} - \vec{r}_{\rm PV} ) > 4 \text{ mm}, \ \chi^2 / N_{\rm DoF} < 5, \end{vmatrix}$ | Preselection    | Selected by $E_{\rm T}^{\rm miss}$ trigger,              | Selected by muon trigger,<br>Cluster based $E^{\text{miss}} < 180 \text{ GeV}$ |
|                 | $ z_0  < 500 \text{ mm}$                                                           | Pass material map veto                                                                                                                                                                 |                 | Selected PV, preselected muon,                           | Selected PV, preselected muon,                                                 |
| Full selection  | Pass cosmic-muon, fake-muon,<br>and heavy-flavor vetoes                            | $n_{\text{Tracks}}^{D_{V}} \ge 3,$<br>$m_{\text{DV}} > 20 \text{ GeV}$                                                                                                                 |                 |                                                          | Highest- $p_{\rm T}$ muon matches trigger muon                                 |
|                 |                                                                                    |                                                                                                                                                                                        | Full selection  | $\geq$ 1 full-selection muon, $\geq$ 1 full-selection DV |                                                                                |

Background sources of displaced muons and vertices are uncorrelated



#### preselected events

11/20/19

measure transfer factors in DV CR

#### • LRT filter:

#### MS $\mu$ w/ $p_T$ > 60 GeV OR MET > 180 GeV

#### 2 orthogonal channels

| Selection level | Muon selection                                                                                            | Displaced vertex selection                                                                                                                                                       | Selection level | E <sub>T</sub> <sup>miss</sup> Trigger SR                                                      | Muon Trigger SR                                                                  |
|-----------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Preselection    | $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5, 2 \text{ mm} <  d_0  < 300 \text{ mm},  z_0  < 500 \text{ mm}$ | $r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm},$<br>$\min( \vec{r}_{\rm DV} - \vec{r}_{\rm PV} ) > 4 \text{ mm}, \chi^2/N_{\rm DoF} < 5,$<br>Pass material map veto | Preselection    | Selected by $E_{\rm T}^{\rm miss}$ trigger,<br>Cluster-based $E_{\rm T}^{\rm miss}$ > 180 GeV, | Selected by muon trigger,<br>Cluster-based $E_{\rm T}^{\rm miss}$ < 180 GeV,     |
| Full selection  | Pass cosmic-muon, fake-muon,<br>and heavy-flavor vetoes                                                   | $n_{\text{Tracks}}^{\text{DV}} \ge 3,$ $m_{\text{DV}} > 20 \text{ GeV}$                                                                                                          |                 | Selected PV, preselected muon,                                                                 | Selected PV, preselected muon,<br>Highest- $p_{\rm T}$ muon matches trigger muon |
|                 |                                                                                                           |                                                                                                                                                                                  | Full selection  | $\geq$ 1 full-selection muon, $\geq$ 1 full-selection DV                                       |                                                                                  |

Background sources of displaced muons and vertices are uncorrelated



#### preselected events

11/20/19

#### • LRT filter:

#### MS $\mu$ w/ $p_T$ > 60 GeV OR MET > 180 GeV

#### 2 orthogonal channels

| Selection level | Muon selection                              | Displaced vertex selection                                                                                                                      | Selection level | E <sup>miss</sup> Trigger SR                    | Muon Trigger SR                                          |  |
|-----------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------|----------------------------------------------------------|--|
| Preselection    | $p_{\rm T} > 25 \text{ GeV},  \eta  < 2.5,$ | $r_{\rm DV} < 300 \text{ mm},  z_{\rm DV}  < 300 \text{ mm},$<br>$min( \vec{x}_{\rm mm} _{\rm N}^2/N) < 5$                                      | Preselection    | Selected by $E_{\rm T}^{\rm miss}$ trigger,     | Selected by muon trigger,                                |  |
|                 | $ z_0  < 500 \text{ mm}$                    | $\operatorname{Him}( ^{7}_{\mathrm{DV}} - ^{7}_{\mathrm{PV}} ) > 4 \operatorname{Him}, \chi /  ^{7}_{\mathrm{DoF}} < 5,$ Pass material map veto |                 | Cluster-based $E_{\rm T}^{\rm miss}$ > 180 GeV, | Cluster-based $E_{\rm T}^{\rm miss}$ < 180 GeV,          |  |
| Thell and at an |                                             |                                                                                                                                                 |                 | Selected PV, preselected muon,                  | Selected PV, preselected muon,                           |  |
| Full selection  | and heavy-flavor vetoes                     | $n_{\text{Tracks}} \ge 3,$<br>$m_{\text{DV}} > 20 \text{ GeV}$                                                                                  |                 |                                                 | Highest- $p_{\rm T}$ muon matches trigger muon           |  |
|                 |                                             |                                                                                                                                                 | Full selection  | $\geq$ 1 full-selection r                       | $\geq$ 1 full-selection muon, $\geq$ 1 full-selection DV |  |

Background sources of displaced muons and vertices are uncorrelated



#### preselected events

11/20/19



good agreement between observations and expected background

|                        | N <sub>exp</sub>                         | Nobs |
|------------------------|------------------------------------------|------|
| MET-triggered channel  | $0.34 \pm 0.16$ (stat) $\pm 0.16$ (syst) | 0    |
| Muon-triggered channel | $1.88 \pm 0.20$ (stat) $\pm 0.28$ (syst) | 1    |



### Displaced Jet (Low EM-Fraction)

- Search for LLP decays in the HCal
  - Low EMCal/HCal energy ratio (EM fraction)
  - No associated tracker activity
  - Narrow energy deposits
- Main backgrounds:
  - Jets composed of mostly neutral hadrons
  - Beam-induced background (BIB)
    - Muons (traveling parallel to the beam) undergo hard bremsstrahlung in HCAL



### Displaced Jet (Low EM-Fraction)

- Search for LLP decays in the HCal
  - Low EMCal/HCal energy ratio (EM fraction)
  - No associated tracker activity
  - Narrow energy deposits
- Main backgrounds:
  - Jets composed of mostly neutral hadrons
  - Beam-induced background (BIB)
    - Muons (traveling parallel to the beam) undergo hard bremsstrahlung in HCAL





#### John Stupak - University of Oklahoma

#### dedicated L1 and HLT trigger

### Displaced Jet (Low EM-Fraction)

- Search for LLP decays in the HCal
  - Low EMCal/HCal energy ratio (EM fraction)
  - No associated tracker activity
  - Narrow energy deposits
- Main backgrounds:
  - Jets composed of mostly neutral hadrons
  - Beam-induced background (BIB)
    - Muons (traveling parallel to the beam) undergo hard bremsstrahlung in HCAL

dedicated L1 and HLT trigger

multilayer perceptron (estimate LLP decay position)



dedicated L1 and

HLT trigger

multilayer perceptron (estimate LLP decay position)

### Displaced Jet (Low EM-Fraction)

- Search for LLP decays in the HCal
  - Low EMCal/HCal energy ratio (EM fraction)
  - No associated tracker activity
  - Narrow energy deposits
- Main backgrounds:

11/20/19

- Jets composed of mostly neutral hadrons
- Beam-induced background (BIB)
  - Muons (traveling parallel to the beam) undergo hard bremsstrahlung in HCAL



dedicated L1 and

HLT trigger

multilayer perceptron (estimate LLP decay position)

### Displaced Jet (Low EM-Fraction)

- Search for LLP decays in the HCal
  - Low EMCal/HCal energy ratio (EM fraction)
  - No associated tracker activity
  - Narrow energy deposits
- Main backgrounds:
  - Jets composed of mostly neutral hadrons
  - Beam-induced background (BIB)
    - Muons (traveling parallel to the beam) undergo hard bremsstrahlung in HCAL





### Displaced Jet (Low EM-Fraction)

ABCD method used to estimate residual QCD background:



### Displaced Jet (Low EM-Fraction)

ABCD method used to estimate residual QCD background:



### Displaced Jet (Low EM-Fraction)

#### H(125)

#### H(600)




## Displaced Jet (Timing)

- Search for delayed jets (due to slow/heavy LLP and indirect path)
  - Few ns for TeV scale LLP with L  $\approx$  1 m
  - First search to use ECal timing to identify delayed jets
- Backgrounds

$$t_{\rm jet} = {\rm median}\left(t_{\rm crystal}^i\right)$$

- ECal time resolution tails (inter-calibration uncertainty, crystaldependent scintillator rise time variations, run-by-run shifts associated with readout electronics)
- Electronic noise
- Direct APD hits (~11 ns faster than scintillation light)
- In-time PU (spread in collision time, varying flight paths)
- Out-of-time PU
- Satellite bunches (RF buckets separated by 2.5 ns)
- Beam halo
- Cosmic muons

```
11/20/19
```



```
\begin{split} E_{\rm ECAL} &> 20\,{\rm GeV} \\ N_{\rm ECAL}^{\rm cell} &> 25 \\ {\rm HEF} &> 0.2 \text{ and } E_{\rm HCAL} > 50\,{\rm GeV} \\ t_{\rm jet}^{\rm RMS}/t_{\rm jet} &< 0.4 \text{ and } t_{\rm jet}^{\rm RMS} < 2.5\,{\rm ns} \\ {\rm PV}_{\rm track}^{\rm fraction} &< 0.08 \\ E_{\rm ECAL}^{\rm CSC}/E_{\rm ECAL} &< 0.8 \\ t_{\rm jet} &> 3\,{\rm ns} \\ \hline Event \ level \ selection \\ {\rm At \ least \ one \ signal \ jet} \\ p_{\rm T}^{\rm miss} &> 300\,{\rm GeV} ~~ {\rm trigger} \\ {\rm Quality \ filters} \\ {\rm max}(\Delta\phi_{\rm PC}) &< \pi/2 \\ {\rm max}(\Delta\phi_{\rm RPC}) &< \pi/2 \end{split}
```

## Displaced Jet (Timing)

- Search for delayed jets (due to slow/heavy LLP and indirect path)
  - Few ns for TeV scale LLP with L  $\approx$  1 m
  - First search to use ECal timing to identify delayed jets
- Backgrounds

$$t_{\rm jet} = {\rm median}\left(t_{\rm crystal}^i\right)$$

- ECal time resolution tails (inter-calibration uncertainty, crystaldependent scintillator rise time variations, run-by-run shifts associated with readout electronics)
- Electronic noise
- Direct APD hits (~11 ns faster than scintillation light)
- In-time PU (spread in collision time, varying flight paths)
- Out-of-time PU
- Satellite bunches (RF buckets separated by 2.5 ns)
- Beam halo
- Cosmic muons

11/20/19



```
 \begin{split} & E_{\rm ECAL} > 20 \, {\rm GeV} \\ & N_{\rm ECAL}^{\rm cell} > 25 \\ & {\rm HEF} > 0.2 \, {\rm and} \, E_{\rm HCAL} > 50 \, {\rm GeV} \\ & t_{\rm jet}^{\rm RMS} / t_{\rm jet} < 0.4 \, {\rm and} \, t_{\rm jet}^{\rm RMS} < 2.5 \, {\rm ns} \\ & {\rm PV}_{\rm track}^{\rm fraction} < 0.08 \\ & E_{\rm ECAL}^{\rm CSC} / E_{\rm ECAL} < 0.8 \\ & t_{\rm jet} > 3 \, {\rm ns} \\ & Event \, level \, selection \\ & {\rm At} \, least \, {\rm one} \, signal \, {\rm jet} \\ & p_{\rm T}^{\rm miss} > 300 \, {\rm GeV} ~ {\color{red}{\textcircled{}}} {\rm trigger} \\ & {\rm Quality} \, {\rm filters} \\ & {\rm max}(\Delta \phi_{\rm DT}) < \pi/2 \\ & {\rm max}(\Delta \phi_{\rm RPC}) < \pi/2 \end{split}
```

## Displaced Jet (Timing)

- Search for delayed jets (due to slow/heavy LLP and indirect path)
  - Few ns for TeV scale LLP with L  $\approx$  1 m
  - First search to use ECal timing to identify delayed jets
- Backgrounds

$$t_{\rm jet} = {\rm median}\left(t_{\rm crystal}^i\right)$$

(μ<sup>200</sup> δ) λ<sup>150</sup>

100

50

- ECal time resolution tails (inter-calibration uncertainty, crystaldependent scintillator rise time variations, run-by-run shifts associated with readout electronics)
- Electronic noise
- Direct APD hits (~11 ns faster than scintillation light)
- In-time PU (spread in collision time, varying flight paths)
- Out-of-time PU
- Satellite bunches (RF buckets separated by 2.5 ns)
- Beam halo

11/20/19

Cosmic muons

$$\begin{aligned} & \int_{-50}^{6} \int_{-100}^{6} \int_{-100}^{6}$$

## Displaced Jet (Timing)

- Search for delayed jets (due to slow/heavy LLP and indirect path)
  - Few ns for TeV scale LLP with L  $\approx$  1 m
  - First search to use ECal timing to identify delayed jets
- Backgrounds

$$t_{\rm jet} = {\rm median}\left(t_{\rm crystal}^i\right)$$

- ECal time resolution tails (inter-calibration uncertainty, crystaldependent scintillator rise time variations, run-by-run shifts associated with readout electronics)
- Electronic noise
- Direct APD hits (~11 ns faster than scintillation light)
- In-time PU (spread in collision time, varying flight paths)
- Out-of-time PU
- Satellite bunches (RF buckets separated by 2.5 ns)
- Beam halo
- Cosmic muons



```
\begin{split} E_{\rm ECAL} &> 20\,{\rm GeV} \\ N_{\rm ECAL}^{\rm cell} &> 25 \\ {\rm HEF} &> 0.2 \text{ and } E_{\rm HCAL} > 50\,{\rm GeV} \\ t_{\rm jet}^{\rm RMS}/t_{\rm jet} &< 0.4 \text{ and } t_{\rm jet}^{\rm RMS} < 2.5\,{\rm ns} \\ {\rm PV}_{\rm track}^{\rm fraction} &< 0.08 \\ E_{\rm ECAL}^{\rm CSC}/E_{\rm ECAL} < 0.8 \\ t_{\rm jet} &> 3\,{\rm ns} \\ Event \ level \ selection \\ {\rm At \ least \ one \ signal \ jet} \\ p_{\rm T}^{\rm miss} &> 300\,{\rm GeV} ~~ {\rm trigger} \\ {\rm Quality \ filters} \\ {\rm max}(\Delta\phi_{\rm DT}) < \pi/2 \\ {\rm max}(\Delta\phi_{\rm RPC}) < \pi/2 \end{split}
```

## Displaced Jet (Timing)

- Search for delayed jets (due to slow/heavy LLP and indirect path)
  - Few ns for TeV scale LLP with L  $\approx$  1 m
  - First search to use ECal timing to identify delayed jets
- Backgrounds

$$t_{\rm jet} = {\rm median}\left(t_{\rm crystal}^i\right)$$

- ECal time resolution tails (inter-calibration uncertainty, crystaldependent scintillator rise time variations, run-by-run shifts associated with readout electronics)
- Electronic noise
- Direct APD hits (~11 ns faster than scintillation light)
- In-time PU (spread in collision time, varying flight paths)
- Out-of-time PU
- Satellite bunches (RF buckets separated by 2.5 ns)
- Beam halo
- Cosmic muons

 $(\tilde{g})^{200}_{150}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100}_{100$ 

```
E_{\text{ECAL}} > 20 \text{ GeV}
N_{\text{ECAL}}^{\text{cell}} > 25
\text{HEF} > 0.2 \text{ and } E_{\text{HCAL}} > 50 \text{ GeV}
t_{\text{jet}}^{\text{RMS}}/t_{\text{jet}} < 0.4 \text{ and } t_{\text{jet}}^{\text{RMS}} < 2.5 \text{ ns}
PV_{\text{track}}^{\text{fraction}} < 0.08
E_{\text{ECAL}}^{\text{CSC}}/E_{\text{ECAL}} < 0.8
t_{\text{jet}} > 3 \text{ ns}
Event \ level \ selection
At least one signal jet
p_{\text{T}}^{\text{miss}} > 300 \text{ GeV} \quad \text{trigger}
Quality filters
\max(\Delta\phi_{\text{DT}}) < \pi/2
\max(\Delta\phi_{\text{RPC}}) < \pi/2
```

Trackei

**ECAL** 

0

HEF > 0.2 and  $E_{\text{HCAL}} > 50 \text{ GeV}$ 

 $t_{\text{jet}}^{\text{RMS}}/t_{\text{jet}} < 0.4 \text{ and } t_{\text{jet}}^{\text{RMS}} < 2.5 \text{ ns}$ 

Event level selection

 $p_{\rm T}^{\rm miss} > 300 \,{\rm GeV}$   $\blacksquare$  trigger

50

**HCAL** 

150

x (cm)

100

## Displaced Jet (Timing)

- Search for delayed jets (due to slow/heavy LLP and indirect path)
  - Few ns for TeV scale LLP with L  $\approx$  1 m
  - First search to use ECal timing to identify delayed jets
- Backgrounds

$$t_{\rm jet} = {\rm median}\left(t_{\rm crystal}^i\right)$$

(μ) 200 κ) 150

100

50

-50

-100

-150

-200 -150 -100 -50

 $E_{\rm ECAL} > 20 \,{\rm GeV}$ 

 $PV_{track}^{fraction} < 0.08$ 

 $E_{\rm ECAL}^{\rm CSC}/E_{\rm ECAL} < 0.8$ 

At least one signal jet

 $N_{\rm ECAL}^{\rm cell} > 25$ 

 $t_{\rm iet} > 3 \, \rm ns$ 

Quality filters

 $\max(\Delta\phi_{\rm DT}) < \pi/2$ 

 $\max(\Delta \phi_{\text{RPC}}) < \pi/2$ 

- ECal time resolution tails (inter-calibration uncertainty, crystaldependent scintillator rise time variations, run-by-run shifts associated with readout electronics)
- Electronic noise
- Direct APD hits (~11 ns faster than scintillation light)
- In-time PU (spread in collision time, varying flight paths)
- Out-of-time PU
- Satellite bunches (RF buckets separated by 2.5 ns)
- Beam halo —

11/20/19

Cosmic muons

19

## Displaced Jet (Timing

- Search for delayed jets (due to slow/heavy LLP and indirect path)
  - Few ns for TeV scale LLP with  $L \approx 1 \text{ m}$
  - First search to use ECal timing to identify delayed jets
- Backgrounds

$$t_{\rm jet} = {\rm median}\left(t_{\rm crystal}^i\right)$$

(μ)<sup>200</sup> δ<sup>150</sup>

100

50

-50

-100

-150

-200 -150 -100 -50 0

- ECal time resolution tails (inter-calibration uncertainty, crystaldependent scintillator rise time variations, run-by-run shifts associated with readout electronics)
- Electronic noise
- Direct APD hits (~11 ns faster than scintillation light)
- In-time PU (spread in collision time, varying flight paths)
- Out-of-time PU
- Satellite bunches (RF buckets separated by 2.5 ns)
- Beam halo

11/20/19

Cosmic muons

```
x (cm)
E_{\rm ECAL} > 20 \,{\rm GeV}
N_{\rm ECAL}^{\rm cell} > 25
HEF > 0.2 and E_{\text{HCAL}} > 50 \text{ GeV}
t_{\text{jet}}^{\text{RMS}}/t_{\text{jet}} < 0.4 \text{ and } t_{\text{jet}}^{\text{RMS}} < 2.5 \text{ ns}
PV_{track}^{fraction} < 0.08
E_{\rm ECAL}^{\rm CSC}/E_{\rm ECAL} < 0.8
t_{\rm iet} > 3 \, \rm ns
             Event level selection
At least one signal jet
p_{\rm T}^{\rm miss} > 300 \,{\rm GeV} \blacksquare trigger
Quality filters
\max(\Delta \phi_{\rm DT}) < \pi/2
\max(\Delta \phi_{\text{RPC}}) < \pi/2
```

Trackei

**ECAL** 

50

100

**HCAL** 

150

```
John Stupak - University of Oklahoma
```

## Displaced Jet (Timing)

### Background predictions from ABCD method (3x)

| 1                                                 |
|---------------------------------------------------|
| $_{0.02}^{0.06}$ (stat) $_{-0.01}^{+0.05}$ (syst) |
| 0.09 (ctat) + 0.02 (cust)                         |
| $_{0.05}$ (stat) $_{-0.02}$ (syst)                |
| $^{1.8}_{1.0}$ (stat) $^{+1.8}_{-1.0}$ (syst)     |
|                                                   |





#### 11/20/19

## Displaced Jet (Timing)

### Background predictions from ABCD method (3x)



CMS

10<sup>2</sup>

10

#### John Stupak - University of

137 fb<sup>-1</sup> (13 TeV)

12

t (ne'

10<sup>5</sup>

 $C\tau_0$  (mm)

Observation

Cosmic ray muon background Core and satellite bunch background

Beam halo muon background GMSB  $m_{\pi} = 2400 \text{ GeV}, c\tau_0 = 1 \text{ m}$ 

GMSB  $m_{\pi} = 2400 \text{ GeV}, c_{\tau_0} = 10 \text{ m}$ 

#### [1909.06166]

# Delayed/Non-Pointing Photon

- Search for LLP decays to a photon
- Similar few ns delay (up to ~10)
  - Utilizes dedicated out-of-time photon reconstruction
  - Exploits non-normal ECal incidence angle
     → elliptical shower
- Trigger:
  - 2016 conventional γγ (p<sub>T</sub> > 42, 25 GeV)
  - 2017  $\gamma\gamma$  OR dedicated  $\gamma$  (p<sub>T</sub> > 60 GeV, elliptical shower) + H<sub>T</sub> > 350 GeV
- Offline:
  - $\geq$  3 jets plus:
    - 2016: 2 displaced photons
    - 2017: 2 displaced photons OR 1 displaced photon + H<sub>T</sub>



11/20/19

#### [1909.06166]

## Delayed/Non-Pointing Photon

41.5 fb<sup>-1</sup> (13 TeV)

2017y

20

t, (ns)

Data  $[p_{T}^{miss} < 100 \text{ GeV}]$ 

Data  $[p_{\tau}^{miss} \ge 100 \text{ GeV}]$ 

ct: 2 m [ $p_{\tau}^{miss} \ge 100 \text{ GeV}$ ]

 $(Scaled \times 0.056)$ 

GMSB A: 200 TeV

Dominant backgrounds:  $\gamma$ +jet and QCD

- Jet and photon requirements ~eliminate non-collision backgrounds
- Background predicted with ABCD method







22

### [1905.09787]

# Dilepton DV

- Search for LL Heavy Neutral Lepton (HNL) with small mixing with muon neutrino
- Utilizes LRT and same DV reconstruction algorithm as the displaced jet search
  - LRT filter: 1 prompt and 1 displaced muon
- SR requires DV with:
  - Exactly 2 OS tracks
    - Tight\* muon
    - Tight\* electron or muon
  - *m* > 4 GeV
  - 4 < *R* < 300 mm

\*minus usual requirement on number of pixel hits





# Dilepton DV

- Backgrounds
  - Material intersections and metastable states studied in CR
    - Found to be negligible for  $m_{DV} > 4 \text{ GeV}$
  - Random track crossing background modeled with ABCD method
    - N<sub>l</sub> in DV vs. SS/OS DV tracks



$$N_A = N_B \frac{N_C}{N_D}$$

| leptons in DV | same-charge DV | opposite-charge DV opposite-charge DV estimated |
|---------------|----------------|-------------------------------------------------|
| 2             | B 0            | 0 (signal region) A < 2.3 at 90% CL             |
| 0             | D 169254       | 168037 C                                        |

#### [1905.09787]

### Dilepton DV

### LL exclusion (decay lengths $\approx$ 1-30 mm)



### Direct Detection

#### [1905.10130]

### Magnetic Monopole

- Monopoles are extremely highly-ionizing particles
  - Produce many high-threshold hits in TRT
  - Stop in ECal, after leaving a pencil-shaped energy deposit
- Dedicated trigger: Based on number and fraction of high-threshold (HT) hits in TRT RoI (w/ HCal energy veto)
- Offline selection: EM cluster seed with  $E_T > 18$  GeV
- Background modeling: ABCD method
  - Fraction of nearby HT TRT hits
  - EM cluster energy dispersion





John Stupak - University of Oklahoma

### 0 events observed

### Heavy Stable Charged Particle

- Search for several varieties of heavy stable charged particles (HSCP:) squark/gluino R-hadron, chargino, stau
  - Slow, muon-like particle
- Earlier searches from ATLAS and CMS show intriguing trend



Admittedly, a bit of cherry picking here

### Heavy Stable Charged Particle

- Conventional triggers: muon and calorimeter-based MET
- Pixel detector:  $dE/dx \rightarrow \beta\gamma$ 
  - Calibration via low-momentum p, π<sup>±</sup>, K<sup>±</sup>
  - Resolution  $\approx 14\%$
- HCal + MS: time of flight  $\rightarrow \beta$ 
  - Calibration via high-momentum  $\mu$
  - HCal resolution ≈ 0.07
  - Combined resolution ≈ 0.02



| Signal region    | Trigger                              | Candidate | Candidates | Final requirements |                     |                  |                         |               |
|------------------|--------------------------------------|-----------|------------|--------------------|---------------------|------------------|-------------------------|---------------|
|                  |                                      | selection | per event  | $ \eta $           | $p \; [\text{GeV}]$ | $\beta_{ m ToF}$ | $(\beta\gamma)_{dE/dx}$ | Mass          |
| SR-Rhad-MSagno   | $E_{\rm T}^{\rm miss}$               | ID+CALO   | $\geq 1$   | $\leq 1.65$        | $\geq 200$          | $\leq 0.75$      | $\leq 1.0$              | IOF & $dE/dx$ |
| SR-Rhad-FullDet  | $E_{\rm T}^{\rm miss}/\mu$           | LOOSE     | $\geq 1$   | $\leq 1.65$        | $\geq 200$          | $\leq 0.75$      | $\leq 1.3$              | ToF & $dE/dx$ |
| SR-Rhad-FullDet  | $E_{\mathrm{T}}^{\mathrm{miss}}/\mu$ | ID+CALO   | $\geq 1$   | $\leq 1.65$        | $\geq 200$          | $\leq 0.75$      | $\leq 1.0$              | ToF & $dE/dx$ |
| SR-2Cand-FullDet | $E_{\rm T}^{\rm miss}/\mu$           | LOOSE     | = 2        | $\leq 2.00$        | $\geq 100$          | $\leq 0.95$      | -                       | ToF           |
| SR-1Cand-FullDet | $E_{\rm T}^{\rm miss}/\mu$           | TIGHT     | = 1        | $\leq 1.65$        | $\geq 200$          | $\leq 0.80$      | -                       | ToF           |

#### ID+calo does not use MS information



### Heavy Stable Charged Particle

- Background modeling
  - Probability distribution functions derived for momentum,  $\beta_{ToF}$ , and  $(\beta\gamma)_{dE/dx}$  in data sidebands
    - Randomly sampled to determine  $m_{ToF}$  (and  $m_{dE/dx}$ ) shape
  - Normalized to data in low mass CR



### Something to keep an eye on

## **Disappearing Track**

- Search for charged particles which decay within the tracker  $\rightarrow$  "disappearing" track
  - Motivated by anomaly mediated SUSY breaking:
    - Small chargino/neutralino mass gap: chargino  $\rightarrow$  neutralino + soft  $\pi^{\pm}$
- Trigger: exploit ISR to create MET
  - Dedicated: MET > 75 GeV + isolated track with  $p_T > 50$  GeV
  - Conventional: Higher MET threshold w/o track requirement
- Offline event selection:
  - MET > 100 GeV
  - Jet w/ p<sub>T</sub> > 110 GeV
    - Back to back with MET
  - Δφ<sub>max</sub>(j<sub>i</sub>, j<sub>k</sub>) < 2.5</li>



#### [1804.07321]

### **Disappearing Track**

- Disappearing track selection:
  - ≥7 consecutive hits in innermost tracker layers (13 total)
  - ≥3 missing hits in outer tracker layers
  - Isolated from calorimeter deposits
  - Tight impact parameter requirements (combinatorial fakes)
- Dominant backgrounds:
  - Tracks from *e* (*τ*<sub>h</sub>) which undergo hard bremsstrahlung (material interaction)
  - Fake tracks naturally no corresponding calorimeter deposit
  - Both backgrounds estimated using fully data-driven methods



| Run period | Estimated r       | Observed events   |                   |                 |
|------------|-------------------|-------------------|-------------------|-----------------|
|            | Leptons           | Spurious tracks   | Total             | Observed events |
| 2015       | $0.1\pm0.1$       | $0^{+0.1}_{-0}$   | $0.1\pm0.1$       | 1               |
| 2016A      | $2.0\pm0.4\pm0.1$ | $0.4\pm0.2\pm0.4$ | $2.4\pm0.5\pm0.4$ | 2               |
| 2016B      | $3.1\pm0.6\pm0.2$ | $0.9\pm0.4\pm0.9$ | $4.0\pm0.7\pm0.9$ | 4               |
| Total      | $5.2\pm0.8\pm0.3$ | $1.3\pm0.4\pm1.0$ | $6.5\pm0.9\pm1.0$ | 7               |

11/20/19

# Summary of Results

### Summary of Results



#### John Stupak - University of Oklahoma

11/20/19

### Gluino R-Hadron



John Stupak - University of Oklahoma

### $H \rightarrow XX \rightarrow 4b$



John Stupak - University of Oklahoma

# Future Prospects

# Disappearing Track

- ATLAS disappearing track reconstruction requires hits on all 4 pixel layers, vetoes hits in SCT
- In pure Higgsino scenario, chargino proper lifetime is just 7 mm  $\leq c\tau \leq 14$  mm
  - Use 3-hit "tracklets"
    - Fake rate increases drastically
      - Reconstruct soft ( $p_T \gtrsim 300 \text{ MeV}$ )  $\pi^{\pm}$  with dedicated algorithm in RoI around tracklet
      - Require consistency with 2 track DV
    - Ready for Run 2 data reprocessing (imminent)



# Disappearing Track

- For HL-LHC, ATLAS tracker will be replaced
  - 5 pixel layers
  - 4 double-sided silicon strip layers
  - |η|< 4</li>
- Compared to Run 2 PU, tracklet fake rate will increase by factor ~200
  - Totally dominates the background



### [CMS PAS FTR-18-018]

# L1 Trigger

- Triggering for H(125) $\rightarrow$ XX $\rightarrow$ 4j signal with X proper lifetimes c $\tau = O(10 \text{ mm})$  is a significant challenge
- CMS plans to have L1 track trigger for HL-LHC
  - Baseline design could be extended to reconstruct tracks with impact parameters in few cm range
  - Track jet clustering can be done in firmware, enabling displaced jet tagging at L1!



### Conclusion

- Many recent/ongoing searches for LLPs at the LHC
  - Interest only likely to grow as conventional searches continue to come up null, and data doubling time increases
- A wide variety of LLP signatures currently covered at the LHC
  - But certainly plenty of gaps and/or room for improvement



# Backup

### Stop R-Hadron



John Stupak - University of Oklahoma

## Chargino



11/20/19

### Monopole



John Stupak - University of Oklahoma

### LLP Schematic



### Heavy Stable Charged Particle



|                  | Lower mas                    | s requirements              |                                          |                |       |              |
|------------------|------------------------------|-----------------------------|------------------------------------------|----------------|-------|--------------|
| Selection        | $m_{\rm ToF}^{\rm min}$ [GeV | $] m_{dE/dx}^{\min} $ [GeV] | $N_{\rm est.} \pm \sigma_{N_{\rm est.}}$ | $N_{\rm obs.}$ | $p_0$ | Significance |
| SR-Rhad-MSagno   | 350                          | 300                         | $8.0{\pm}3.0$                            | 8              | 0.5   |              |
|                  | 550                          | 450                         | $1.8 {\pm} 0.6$                          | 4              | 0.056 | 1.59         |
|                  | 700                          | 600                         | $0.7 {\pm} 0.3$                          | 2              | 0.11  | 1.24         |
|                  | 850                          | 750                         | $0.4{\pm}0.1$                            | 2              | 0.028 | 1.92         |
|                  | 350                          | 300                         | $11\pm 2$                                | 14             | 0.22  | 0.77         |
| CP-Phod-EullDot  | 550                          | 450                         | $2.8 {\pm} 0.7$                          | 6              | 0.081 | 1.40         |
| SK-KNAQ-FUIIDet  | 700                          | 600                         | $1.4{\pm}0.4$                            | 2              | 0.28  | 0.57         |
|                  | 850                          | 750                         | $0.95 {\pm} 0.2$                         | 2              | 0.18  | 0.93         |
|                  | 175                          |                             | $240 \pm 20$                             | 227            | 0.5   |              |
| CP-1Cond-EullDot | 375                          |                             | $17\pm2$                                 | 16             | 0.5   |              |
| SK-ICand-FullDet | 600                          |                             | $2.2 \pm 0.2$                            | 1              | 0.5   |              |
|                  | 825                          |                             | $0.48 {\pm} 0.07$                        | 0              | 0.5   |              |
| SR-2Cand-FullDet | 150                          |                             | $1.5 \pm 0.3$                            | 0              | 0.5   |              |
|                  | 350                          |                             | $0.06 {\pm} 0.01$                        | 0              | 0.5   |              |
|                  | 575                          |                             | $0.007 {\pm} 0.002$                      | 0              | 0.5   |              |
|                  | 800                          |                             | $0.0017 \pm 0.0009$                      | 0              | 0.5   |              |


### [1810.10069]

16.1 fb<sup>-1</sup> (13 TeV)

## **Emerging Jets**



b quark fraction

2.8

0.6

2.9

5.0

0.9

1.6

1.0

|     | CMS | Simulat | <i>tion</i> (m | eV)  | (13 TeV) |                                     |                          |   |      |   |
|-----|-----|---------|----------------|------|----------|-------------------------------------|--------------------------|---|------|---|
| 000 | 3   | 3       | 3              | 3    | 3        | 3                                   | 3                        |   | 0.4  |   |
| 500 | 3   | 3       | 3              | 3    | 3        | 3                                   | 3                        | - | 0.35 |   |
| 300 | 3   | 3       | 3              | 3    | 3        | 3                                   | 7                        |   | 0.2  |   |
| 225 | 6   | 6       | 6              | 6    | 7        | 7                                   | 7                        |   | 0.3  |   |
| 150 | 5   | 5       | 6              | 6    | 7        | 7                                   | 7                        | - | 0.25 |   |
| 100 | 6   | 6       | 6              | 7    | 7        | 7                                   | 7                        |   | 0.2  | _ |
| 60  | 5   | 5       | 5              | 7    | 7        | 7                                   | 7                        |   | 0.2  |   |
| 45  | 5   | 5       | 5              | 7    | 7        | 7                                   | 7                        | - | 0.15 |   |
| 25  | 5   | 5       | 5              | 7    | 7        | 7                                   | 7                        |   | 0.1  |   |
| 5   | 5   | 7       | 7              | 7    | 7        | 7                                   | 7                        |   | 0.1  |   |
| 2   | _ 1 | 1       | 4              | 4    | 4        | 4                                   | 4                        | - | 0.05 |   |
| 1   | 1   | 1       | 4              | 4    | 4        | 4                                   | 4                        |   | 0    |   |
|     | 400 | 600     | 800            | 1000 | 1250     | 1500<br>М <sub>Х<sub>DK</sub></sub> | <sup>2000</sup><br>[GeV] |   | U    |   |

|                                  |         |       |       |       | -     |      |                           |       | -02 -1 | -         | . 🗱                     |
|----------------------------------|---------|-------|-------|-------|-------|------|---------------------------|-------|--------|-----------|-------------------------|
|                                  | 60      | 5     | 5     | 5     | 7     | 7    | 7                         | 7     | 0.2 🔍  | -         |                         |
| ╺┎╴┊                             | 45      | 5     | 5     | 5     | 7     | 7    | 7                         | 7     | 0.15   | 0         |                         |
|                                  | 25      | 5     | 5     | 5     | 7     | 7    | 7                         | 7     | -01    |           |                         |
|                                  | 5       | 5     | 7     | 7     | 7     | 7    | 7                         | 7     | 0.1    | Unc.<br>P |                         |
|                                  | 2       | _ 1   | 1     | 4     | 4     | 4    | 4                         | 4     | 0.05   | <br>-4    |                         |
| 0.7 0.8 0.9 1<br>α <sub>2D</sub> | 1       | 1     | 1     | 4     | 4     | 4    | 4                         | 4     | 0      |           | 1000 1200 1400 1000 100 |
| 10                               |         | 400   | 600   | 800   | 1000  | 1250 | 1500<br>m <sub>X DR</sub> | [GeV] | U      |           |                         |
| Source of unc                    | ertaint | y (%) |       |       |       | -    |                           |       |        |           |                         |
| fraction                         | non-b   | quar  | k con | nposi | ition |      |                           |       |        |           |                         |
| 3                                |         |       | 1.4   | -     |       | -    |                           |       |        |           | 1                       |
| 6                                |         |       | 4.4   |       |       |      |                           |       |        |           |                         |
| 9                                |         | 2     | 28.3  |       |       |      |                           |       |        |           | \ /                     |
| )                                |         |       | 4.4   |       |       |      |                           |       |        |           |                         |
| 9                                |         |       | 4.0   |       |       |      |                           |       |        |           |                         |
| 6                                |         |       | 2.1   |       |       |      |                           |       |        |           |                         |
| )                                |         |       | 6.3   |       |       |      |                           |       |        |           |                         |

| Cotnumbor  | Exported                   | Observed | Signal                       | Model parameters   |                          |                                  |  |
|------------|----------------------------|----------|------------------------------|--------------------|--------------------------|----------------------------------|--|
| Set number | Expected                   | Observed | Sigilai                      | $m_{X_{DK}}$ [GeV] | $m_{\pi_{\rm DK}}$ [GeV] | $c 	au_{\pi_{\mathrm{DK}}}$ [mm] |  |
| 1          | $168 \pm 15 \pm 5$         | 131      | $36.7 \pm 4.0$               | 600                | 5                        | 1                                |  |
| 2          | $31.8 \pm 5.0 \pm 1.4$     | 47       | $(14.6 \pm 2.6) \times 10^2$ | 400                | 1                        | 60                               |  |
| 3          | $19.4 \pm ~7.0 \pm ~5.5$   | 20       | $15.6 \pm 1.6$               | 1250               | 1                        | 150                              |  |
| 4          | $22.5 \pm \ 2.5 \pm \ 1.5$ | 16       | $15.1\pm~2.0$                | 1000               | 1                        | 2                                |  |
| 5          | $13.9 \pm 1.9 \pm 0.6$     | 14       | $35.3 \pm 4.0$               | 1000               | 2                        | 150                              |  |
| 6          | $9.4\pm2.0\pm0.3$          | 11       | $20.7 \pm  2.5$              | 1000               | 10                       | 300                              |  |
| 7          | $4.40 \pm 0.84 \pm 0.28$   | 2        | $5.61\pm0.64$                | 1250               | 5                        | 225                              |  |



16.1 fb<sup>-1</sup> (13 TeV)

| Source                | Uncertainty (%) |
|-----------------------|-----------------|
| Track modeling        | <1-3            |
| MC event count        | 2 - 17          |
| Integrated luminosity | 2.5             |
| Pileup                | <1-5            |
| Trigger               | 6 – 12          |
| JES                   | <1-9            |
| PDF                   | <1-4            |

11/20/19

Set number

1 2

3 4

5

6

7

## Delayed/Non-Pointing Photon



### optimized ABCD boundaries:

| <br>C' | ····          | [         | $\Lambda \leq 300  \text{TeV}$ | V                  | $\Lambda > 300  { m TeV}$ |              |                    |  |
|--------|---------------|-----------|--------------------------------|--------------------|---------------------------|--------------|--------------------|--|
|        | <i>ct</i> (m) | 2016      | $2017\gamma$                   | $2017\gamma\gamma$ | 2016                      | $2017\gamma$ | $2017\gamma\gamma$ |  |
|        | (0, 0.1)      | 0,250     | 0.5,300                        | 0.5 , 150          | 0,250                     | 0.5,300      | 0.5,200            |  |
|        | (0.1 , 100)   | 1.5 , 100 | 1.5 , 200                      | 1.5 , 150          | 1.5 , 150                 | 1.5 , 300    | 1.5 , 200          |  |

| Systematic uncertainty                          | Sig/Bkg | Bins    | 2016 | 2017 | Correlation  |
|-------------------------------------------------|---------|---------|------|------|--------------|
| Integrated luminosity                           | Sig     | A,B,C,D | 2.5% | 2.3% | Uncorrelated |
| Photon energy scale                             | Sig     | A,B,C,D | 1%   | 2%   | Correlated   |
| Photon energy resolution                        | Sig     | A,B,C,D | 1%   | 1%   | Correlated   |
| Jet energy scale                                | Sig     | A,B,C,D | 1.5% | 2%   | Correlated   |
| Jet energy resolution                           | Sig     | A,B,C,D | 1.5% | 1.5% | Uncorrelated |
| Photon time bias                                | Sig     | A,B,C,D | 1.5% | 1%   | Correlated   |
| Photon time resolution                          | Sig     | A,B,C,D | 0.5% | 0.5% | Correlated   |
| Trigger efficiency                              | Sig     | A,B,C,D | 2%   | <1%  | Uncorrelated |
| Photon identification                           | Sig     | A,B,C,D | 2%   | 3%   | Correlated   |
| Closure in bin C ( $c\tau \leq 0.1 \text{ m}$ ) | Bkg     | С       | 2%   | 3.5% | Correlated   |
| Closure in bin C ( $c\tau > 0.1$ m)             | Bkg     | С       | 90%  | 90%  | Correlated   |

|                                       | $2017\gamma$ category                      |                    |             |               |               |  |  |  |  |
|---------------------------------------|--------------------------------------------|--------------------|-------------|---------------|---------------|--|--|--|--|
| Bin bound                             | lary<br><sup>niss</sup> (CN)1              | А                  | В           | С             | D             |  |  |  |  |
| $[\iota_{\gamma}$ (IIS), $p_{\gamma}$ | <u>[ (Gev)]</u><br>N <sup>data</sup>       | 458 372            | 281         | 41            | 67 655        |  |  |  |  |
| (0.5, 300)                            | $N_{\rm bkg}^{\rm post-fit}$               | $458370\pm660$     | $281\pm15$  | $41.4\pm2.4$  | $67660\pm280$ |  |  |  |  |
|                                       | N <sup>post-fit</sup> <sub>bkg(no C)</sub> | $460369\pm660$     | $281\pm16$  | $41.5\pm2.7$  | $67660\pm280$ |  |  |  |  |
|                                       | Ndata                                      | 524652             | 1364        | 1             | 332           |  |  |  |  |
| (1.5, 200)                            | $N_{ m bkg}^{ m post-fit}$                 | $524650\pm710$     | $1364\pm36$ | $0.9\pm0.8$   | $330\pm20$    |  |  |  |  |
|                                       | N <sup>post-fit</sup><br>bkg(no C)         | $524650\pm700$     | $1364\pm35$ | $0.9\pm1.0$   | $330\pm20$    |  |  |  |  |
|                                       | $N_{\rm obs}^{\rm data}$                   | 525 694            | 322         | 0             | 333           |  |  |  |  |
| (1.5, 300)                            | $N_{\rm bkg}^{\rm post-fit}$               | $525690\pm700$     | $322\pm17$  | $0.19\pm0.21$ | $330\pm20$    |  |  |  |  |
|                                       | N <sup>post-fit</sup><br>bkg(no C)         | $525690\pm700$     | $322\pm17$  | $0.20\pm0.24$ | $330\pm20$    |  |  |  |  |
|                                       |                                            | $2017\gamma\gamma$ | category    |               |               |  |  |  |  |
|                                       | $N_{\rm obs}^{\rm data}$                   | 21 640             | 362         | 56            | 3201          |  |  |  |  |
| (0.5, 150)                            | $N_{\rm bkg}^{\rm post-fit}$               | $21640\pm140$      | $364\pm17$  | $54.0\pm3.0$  | $3200\pm60$   |  |  |  |  |
|                                       | N <sup>post-fit</sup> <sub>bkg(no C)</sub> | $21640\pm140$      | $362\pm18$  | $53.6\pm3.3$  | $3200\pm60$   |  |  |  |  |
|                                       | Ndata                                      | 21 863             | 139         | 24            | 3233          |  |  |  |  |
| (0.5, 200)                            | $N_{\rm bkg}^{\rm post-fit}$               | $21860\pm140$      | $142\pm11$  | $21.1\pm1.7$  | $3240\pm60$   |  |  |  |  |
|                                       | N <sub>bkg(no C)</sub>                     | $21860\pm140$      | $139\pm11$  | $20.6\pm1.8$  | $3230\pm60$   |  |  |  |  |
|                                       | Ndata                                      | 24 824             | 418         | 0             | 17            |  |  |  |  |
| (1.5, 150)                            | $N_{\rm bkg}^{\rm post-fit}$               | $24820\pm150$      | $420\pm20$  | $0.25\pm0.28$ | $16.7\pm4.4$  |  |  |  |  |
|                                       | N <sup>post-fit</sup><br>bkg(no C)         | $24820\pm150$      | $420\pm20$  | $0.29\pm0.36$ | $17.0\pm4.4$  |  |  |  |  |
|                                       | $N_{\rm obs}^{\rm data}$                   | 25 079             | 163         | 0             | 17            |  |  |  |  |
| (1.5, 200)                            | $N_{ m bkg}^{ m post-fit}$                 | $25080\pm150$      | $163\pm12$  | $0.11\pm0.12$ | $16.9\pm4.4$  |  |  |  |  |
|                                       | N <sup>post-fit</sup><br>bkg(no C)         | $25080\pm150$      | $163\pm12$  | $0.11\pm0.14$ | $17.0\pm4.4$  |  |  |  |  |

### [1804.07321]

## Disappearing Track



## Displaced Jet (Timing)



# Displaced Jet (ID DV)



## [ATLAS-CONF-2019-006] Displaced Jet (ID DV)



[1902.03094]

## Displaced Jet (Low-EM Fraction)



2/15/19

# Dilepton DV





John Stupak - University of Oklahoma

[1910.06926]

[1909.01246]

## Displaced Lepton Jet



56

## ATLAS Detector



## ABCD

- Info from Will Buttinger: <u>https://</u> <u>twiki.cern.ch/twiki/bin/view/Main/</u> <u>ABCDMethod</u>
  - Including info on likelihood-based approach (which can account for signal contamination)
    - Simultaneous signal and background fit
      - Signal normalization controlled by µ
      - Background constrained to obey ABCD relation (within uncertainty)



(c) Possible validation regions 2

(d) Possible validation regions 3

Figure 10: Illustrations of the nominal signal and control regions, and possible validation and accompanying control regions. The ability to define the validation regions depends on the discreteness of the observables defining the plane.