Guillermo Hamity Taus and Triggers

Thursday 21st Nov 2019

Guillermo Hamity, Sinead Farrington, Andreas Sogaard, Victoria Parrish, Estifa'a Zaid

guillermo.hamity@cern.ch

Setting the scene

20

Jan'15 Jul'15 Jan'16 Jul'16 Jan'17 Jul'17 Jan'18 Jul'18

Month in Year

- Not much content public for Run-III Ο
- Run-III is in deep R&D so developing 0 and changing very quickly (talk is probably already outdated!)

Setting the scene

•

Month in Year

Overview

• ATLAS Trigger

- Run-II TDAQ and Trigger Menu
- What Run-III will bring (limited)
- Tau Leptons
 - Reconstruction/Identification
 - Triggers
 - Calibration
- Tau Analysis for LLPs (considerations)

Trigger and Data Acquisition (TDAQ)

ATLAS Trigger Overview

ATLAS Detector 140M Readout channels

TDAQ two stage process:

- Level-1 trigger (hardware) 100 kHz (240 GB/s) in Run-II
 - _ L1Calo _ _
 - <u>L1Muon</u>
- High-Level trigger (software) 1 kHz (2.4 GB/s)

Level-1

L1-Calorimeter trigger is seeded by analogue signals from ~7K trigger towers $(\phi \times \eta = 0.1 \times 0.1)$ Seed Clustering and Jet/Energy processors

- Clustering Processor
 - Used for L1 objects (ele,gam,taus) 0
 - **Rol** from 2x2 trigger towers in EM-Cal Ο
 - Surrounded by Isolation and Hadronic 0 regions
- Jet/Energy processor
 - **Rol** as 4 × 4 or 8 × 8 trigger tower clusters Ο
 - Used to seed jet triggers and calculate the Ο global Σ E used in miss ET triggers.

L1-Muon trigger seeded by triggering chambers in Muon Spectrometer

L1Topological trigger introduced in RunII

- Combines kinematics and geometric information driven by physics-based signatures
 - Ele, gamma, tau, jets, MET Ο

Level-1

L1-Calorimeter trigger is seeded by analogue signals from ~K trigger towers ($\phi \times \eta = 0.1 \times 0.1$) Seed Clustering and Jet/Energy processors

- Clustering Processor
 - Used for L1 objects (ele,gam,taus)
 - **Rol** from 2x2 trigger towers in EM-Cal
 - Surrounded by Isolation and Hadronic regions
- Jet/Energy processor
 - **Rol** as 4 × 4 or 8 × 8 trigger tower clusters
 - Used to seed jet triggers and calculate the global ∑ E used in miss ET triggers.

L1-Muon trigger seeded by triggering chambers in Muon Spectrometer

L1Topological trigger introduced in RunII

- Combines kinematics and geometric information driven by physics-based signatures
 - Ele, gamma, tau, jets, MET

<u>L1Topo</u> (Some numbers) **Input**: lists of trigger objects (TOBs)

120 e, 120 т, 32µ, 64 jets, MET

Inputs limited by bandwidth

E.g. EM objects (ele,gamma,tau) Energy (8 bits): 0.5 or 1 GeV resolution Isolation (5 bits): EM and HAD around 2x2 tower core Position ($6\eta + 6\varphi$ bits), 0.1 granularity ($\eta \times \varphi$): $|\eta| < 2.5$

Algorithms

(list not exhaustive)

Sorting by E or E_T <u>ATL-DAQ-PROC-2017-002.pdf</u>

Type	Name	Details
Angular Separation	$\Delta \phi$	$\Delta \phi(\text{TOB}_1, \text{TOB}_2)$
	$\Delta \eta$	$\Delta \eta (\mathrm{TOB}_1, \mathrm{TOB}_2)$
	ΔR	$\sqrt{\Delta\phi^2 + \Delta\eta^2}$
Invariant Mass	M	$\sqrt{E_{\rm T}^1 E_{\rm T}^2 (\cosh \Delta \eta - \cos \Delta \phi)}$
Transverse Mass	$M_{\rm T}$	$\sqrt{E_{\rm T} E_{\rm T}^{\rm miss} (1 - \cos \Delta \phi)}$
Interaction hardness	H_{T}	$\Sigma p_{\rm T}({\rm jets})$

Level-1 Calo Upgrade (Simplified)

L1Topo also receives additional processing upgrade: Run2 : 120 e, 120 t, 32µ 64 jets, MET Run3 *Expected*: 144-288 e, 144-288 t, 32µ, 192-336 jets

precision (ET, η,ϕ)~ 0.5 GeV, 0.1, 0.1 precision (ET, η,ϕ)~ 100-200 MeV, 0.025, 0.1

High-Level Trigger

• High-Level Triggers algorithms mimic offline reconstruction methods (0.35s)

LHC

40 MHz

LEVEL 1 (Hardware)

100 kHz

TORAGE

- Avoiding pre-scales requires
 - Higher pT thresholds of L1/HLT objects
 - Combining multiple triggers

- This is very dependant on run conditions
- Triggers have variations, e.g., different working points, isolation requirements etc.
- Nominal object triggers and not an exhaustive list

Trigger	Typical offline selection	Lavel 1 (CaV)	HIT (Call)	Rate (kHz)	Rate (Hz)
		Level-1 (Gev)	HLI (Gev)	$L = 1.7 \times 10$	34 cm ⁻² s ⁻¹
	Single isolated μ , $p_{\rm T} > 27 {\rm GeV}$	20	26 (i)	15	180
	Single isolated tight $e, p_T > 27$ GeV	22 (i)	26 (i)	28	180
Single leptons	Single μ , $p_{\rm T} > 52 \text{ GeV}$	20	50	15	61
ongre reprons	Single $e, p_{\rm T} > 61 \text{ GeV}$	22 (i)	60	28	18
	Single τ , $p_{\rm T} > 170 {\rm GeV}$	100	160	1.2	47
	Two μ , each $p_{\rm T} > 15 {\rm GeV}$	2×10	2 × 14	1.8	26
	Two μ , $p_T > 23, 9$ GeV	20	22, 8	15	42
	Two very loose e , each $p_{\rm T} > 18 \text{ GeV}$	2 × 15 (i)	2 × 17	1.7	12
T 1	One e & one μ , $p_T > 8$, 25 GeV	20 (µ)	7,24	15	5
Iwo leptons	One <i>e</i> & one μ , $p_{\rm T} > 18, 15 {\rm GeV}$	15, 10	17, 14	2.0	4
	One e & one μ , $p_T > 27, 9$ GeV	22 (e, i)	26, 8	28	3
	Two τ , $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets, topo)	35, 25	5	61
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.1	10
	One τ & one isolated e , $p_{\rm T} > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4	15
	Three loose $e, p_T > 25, 13, 13 \text{ GeV}$	$20, 2 \times 10$	$24, 2 \times 12$	1.3	< 0.1
	Three μ , each $p_{\rm T} > 7 {\rm GeV}$	3×6	3×6	0.2	6
Three leptons	Three μ , $p_{\rm T} > 21$, 2 × 5 GeV	20	$20, 2 \times 4$	15	8
	Two μ & one loose $e, p_T > 2 \times 11, 13$ GeV	$2 \times 10 (\mu)$	2 × 10, 12	1.8	0.3
	Two loose e & one μ , $p_T > 2 \times 13$, 11 GeV	$2 \times 8, 10$	2 × 12, 10	1.7	0.1
One photon	One loose γ , $p_{\rm T} > 145$ GeV	22 (i)	140	28	43
	Two loose γ , $p_{\rm T} > 55, 55$ GeV	2×20	50, 50	2.6	6
Two photons	Two medium γ , $p_{\rm T} > 40$, 30 GeV	2×20	35, 25	2.6	17
	Two tight γ , $p_{\rm T} > 25$, 25 GeV	2 × 15 (i)	2×20 (i)	1.7	14
	Jet $(R = 0.4), p_T > 435 \text{ GeV}$	100	420	3.3	33
Single jet	Jet $(R = 1.0), p_T > 480 \text{ GeV}$	100	460	3.3	24
- 975 CD	Jet $(R = 1.0)$, $p_T > 450$ GeV, $m_{jet} > 50$ GeV	100	$420, m_{jet} > 40$	3.3	29
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5	110
•	Four jets, each $p_T > 125$ GeV	3 × 50	4 × 115	0.5	16
	Five jets, each $p_{\rm T} > 95 {\rm GeV}$	4×15	5 × 85	5	10
Multi-jets	Six jets, each $p_{\rm T} > 80 {\rm GeV}$	4×15	6 × 70	5	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4×15	$6 \times 55, \eta < 2.4$	5	15
	One $b \ (\epsilon = 40\%), p_T > 235 \text{ GeV}$	100	225	3.3	15
	Two b ($\epsilon = 60\%$), $p_{\rm T} > 185$, 70 GeV	100	175,60	3.3	12
b-jets	One b ($\epsilon = 40\%$) & three jets, each $p_T > 85$ GeV	4×15	4 × 75	5	15
100	Two b ($\epsilon = 70\%$) & one jet, $p_T > 65, 65, 160 \text{ GeV}$	2 × 30, 85	2 × 55, 150	1.2	15
	Two b ($\epsilon = 60\%$) & two jets, each $p_{\rm T} > 65$ GeV	$4 \times 15, \eta < 2.5$	4 × 55	3.2	13
	Two μ , $p_{\rm T} > 11, 6 {\rm GeV}$	11,6	11, 6 (di-µ)	2.5	47
D Dharing	Two μ , $p_{\rm T} > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.6	48
B-Physics	Two μ , $p_{\rm T} > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.6	5
	Two μ , $p_{\rm T}$ > 6, 6 GeV, 7 < m(μ , μ) < 12 GeV	2 × 6 (Y, topo)	$2 \times 6(\Upsilon)$	1.4	10
Total Rate				85	1550

Trigger Selection

Level-1 Peak HLT Peak

<u>Electrons</u>

- Single:
 - Isolated Tight ~27 GeV
 - No isolation ~61GeV
- Di-Electron: ~18GeV
- 3 loose ele: 25, 13, 13 GeV

Trigger	Typical offline selection		THE COLD	Rate (kHz)	Rate (Hz
00		Level-1 (GeV)	HLT (GeV)	$L = 1.7 \times 10$	34 cm ⁻² s ⁻¹
	Single isolated μ , $p_{\rm T} > 27 \text{ GeV}$	20	26 (i)	15	180
	Single isolated tight $e, p_T > 27$ GeV	22 (i)	26 (i)	28	180
Single leptons	Single μ , $p_{\rm T} > 52 \text{ GeV}$	20	50	15	61
	Single $e, p_{\rm T} > 61 \text{ GeV}$	22 (i)	60	28	18
	Single τ , $p_{\rm T} > 170 {\rm GeV}$	100	160	1.2	47
	Two μ , each $p_{\rm T} > 15 {\rm GeV}$	2×10	2 × 14	1.8	26
-	Two μ , $p_{\rm T} > 23, 9 {\rm GeV}$	20	22, 8	15	42
	Two very loose e , each $p_{\rm T} > 18 \text{ GeV}$	2 × 15 (i)	2 × 17	1.7	12
T 1	One e & one μ , $p_T > 8$, 25 GeV	20 (µ)	7,24	15	5
Iwo leptons	One <i>e</i> & one μ , $p_{\rm T} > 18, 15 {\rm GeV}$	15, 10	17, 14	2.0	4
	One e & one μ , $p_T > 27, 9$ GeV	22 (e, i)	26, 8	28	3
	Two τ , $p_{\rm T} > 40$, 30 GeV	20 (i), 12 (i) (+jets, topo)	35, 25	5	61
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.1	10
	One τ & one isolated e , $p_{\rm T} > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4	15
>	Three loose $e, p_T > 25, 13, 13 \text{ GeV}$	20, 2 × 10	24, 2 × 12	1.3	< 0.1
	Three μ , each $p_{\rm T} > 7 \text{ GeV}$	3×6	3×6	0.2	6
Three leptons	Three μ , $p_{\rm T} > 21$, 2 × 5 GeV	20	$20, 2 \times 4$	15	8
	Two μ & one loose $e, p_T > 2 \times 11, 13$ GeV	$2 \times 10 (\mu)$	2 × 10, 12	1.8	0.3
	Two loose e & one μ , $p_T > 2 \times 13$, 11 GeV	2 × 8, 10	2 × 12, 10	1.7	0.1
One photon	One loose γ , $p_{\rm T} > 145$ GeV	22 (i)	140	28	43
	Two loose γ , $p_{\rm T} > 55, 55 {\rm GeV}$	2×20	50, 50	2.6	6
Two photons	Two medium γ , $p_{\rm T} > 40$, 30 GeV	2×20	35, 25	2.6	17
	Two tight γ , $p_{\rm T} > 25$, 25 GeV	2 × 15 (i)	2 × 20 (i)	1.7	14
	Jet $(R = 0.4), p_{\rm T} > 435 {\rm GeV}$	100	420	3.3	33
Single jet	Jet $(R = 1.0), p_T > 480 \text{ GeV}$	100	460	3.3	24
5 50730 CD -	Jet $(R = 1.0)$, $p_T > 450$ GeV, $m_{jet} > 50$ GeV	100	420, $m_{jet} > 40$	3.3	29
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5	110
	Four jets, each $p_{\rm T} > 125 \text{ GeV}$	3 × 50	4 × 115	0.5	16
Madel inte	Five jets, each $p_{\rm T} > 95 {\rm GeV}$	4×15	5 × 85	5	10
Multi-Jets	Six jets, each $p_{\rm T} > 80 \text{ GeV}$	4×15	6 × 70	5	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4×15	$6 \times 55, \eta < 2.4$	5	15
	One <i>b</i> ($\epsilon = 40\%$), $p_T > 235$ GeV	100	225	3.3	15
	Two b ($\epsilon = 60\%$), $p_T > 185$, 70 GeV	100	175,60	3.3	12
b-jets	One $b \ (\epsilon = 40\%)$ & three jets, each $p_{\rm T} > 85 \text{ GeV}$	4×15	4 × 75	5	15
	Two b ($\epsilon = 70\%$) & one jet, $p_T > 65, 65, 160 \text{ GeV}$	2 × 30, 85	2 × 55, 150	1.2	15
	Two b ($\epsilon = 60\%$) & two jets, each $p_T > 65 \text{ GeV}$	$4 \times 15, \eta < 2.5$	4 × 55	3.2	13
	Two μ , $p_{\rm T}$ > 11, 6 GeV	11,6	11, 6 (di-µ)	2.5	47
P Dhusios	Two μ , $p_{\rm T} > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.6	48
D-F HYSICS	Two μ , $p_{\rm T} > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.6	5
	Two μ , $p_{\rm T} > 6$, 6 GeV, 7 < m(μ , μ) < 12 GeV	2×6 (\Upsilon, topo)	$2 \times 6(\Upsilon)$	1.4	10
Total Rate				85	1550

Trigger Selection

Level-1 Peak HLT Peak

<u>Electrons</u>

- Single:
 - Isolated Tight ~27 GeV
 - No isolation ~61GeV
- Di-Electron: ~18GeV
- 3 loose ele: 25, 13, 13 GeV

<u>Muons</u>

- Single: ~27 GeV
- Di-Mu: ~23, 9 GeV

Trigger	Typical offline selection	Trigger Selection		Level-1 Peak	HLT Pea
nigger	Jpreas on and Section	Level-1 (GeV)	HLT (GeV)	$L = 1.7 \times 10$	34 cm ⁻² s ⁻¹
	Single isolated $\mu_{\rm DT} > 27 {\rm GeV}$	20	26 (i)	15	180
	Single isolated tight $e_{DT} > 27$ GeV	22 (i)	26 (i)	28	180
Single lentons	Single μ $p_T > 52$ GeV	20	50	15	61
Single leptons	Single $e_{n_T} > 61 \text{ GeV}$	22 (i)	60	28	18
-	Single τ , $p_T > 07$ GeV	100	160	12	47
		2::10	2.414	1.2	26
	Two μ , each $p_{\rm T} > 15$ GeV	2×10	2 X 14	1.8	20
	Two μ , $p_T > 25$, 9 GeV	20	22, 0	1.5	42
	Two very loose e , each $p_T > 18$ GeV	2 × 13 (1)	2 X 1/	1.7	12
Two leptons	One <i>e</i> & one μ , $p_T > 8, 25 \text{ GeV}$	20 (µ)	1, 24	15	2
Two reptons	One e & one μ , $p_{\rm T} > 18, 15 {\rm GeV}$	15, 10	17, 14	2.0	4
	The e at one μ , $p_T > 27, 9$ GeV	22 (e, l)	20, 8	20	3
	$1 \text{Wo} \tau$, $p_{\text{T}} > 40$, 30 GeV	20(1), 12(1)(+jets, topo)	35, 25 25, 14 (i)	21	01
	One τ & one isolated μ , $p_T > 50, 15 \text{ GeV}$	12 (i), 10 (+jets)	25, 14 (1)	2.1	10
	One τ & one isolated \tilde{e} , $p_{\rm T} > 50$, 18 Gev	12 (I), 13 (I) (+jets)	23, 17 (1)	4	15
	Three loose $e, p_T > 25, 13, 13 \text{ GeV}$	20, 2 × 10	24, 2 × 12	1.3	< 0.1
	Three μ , each $p_{\rm T} > 7 \text{ GeV}$	3×6	3×6	0.2	6
Three leptons	Three μ , $p_{\rm T} > 21$, 2 × 5 GeV	20	20, 2 × 4	15	8
	Two μ & one loose $e, p_T > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu)$	2 × 10, 12	1.8	0.3
	Two loose e & one μ , $p_{\rm T} > 2 \times 13$, 11 GeV	2 × 8, 10	2 × 12, 10	1.7	0.1
One photon	One loose γ , $p_{\rm T} > 145 {\rm GeV}$	22 (i)	140	28	43
	Two loose γ , $p_{\rm T} > 55, 55$ GeV	2×20	50, 50	2.6	6
Two photons	Two medium γ , $p_{\rm T} > 40$, 30 GeV	2×20	35, 25	2.6	17
	Two tight γ , $p_{\rm T} > 25$, 25 GeV	2 × 15 (i)	2×20 (i)	1.7	14
	Jet $(R = 0.4), p_T > 435 \text{ GeV}$	100	420	3.3	33
Single jet	Jet $(R = 1.0), p_T > 480 \text{ GeV}$	100	460	3.3	24
- 59520 - 205 -	Jet $(R = 1.0)$, $p_T > 450$ GeV, $m_{jet} > 50$ GeV	100	$420, m_{jet} > 40$	3.3	29
E ^{miss} T	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5	110
	Four jets, each $p_{\rm T} > 125 {\rm GeV}$	3×50	4 × 115	0.5	16
Multi into	Five jets, each $p_{\rm T} > 95 {\rm GeV}$	4×15	5 × 85	5	10
viuiti-jets	Six jets, each $p_{\rm T} > 80$ GeV	4×15	6 × 70	5	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4×15	$6 \times 55, \eta < 2.4$	5	15
	One <i>b</i> ($\epsilon = 40\%$), $p_T > 235$ GeV	100	225	3.3	15
	Two b ($\epsilon = 60\%$), $p_T > 185, 70 \text{ GeV}$	100	175,60	3.3	12
b-jets	One $b \ (\epsilon = 40\%)$ & three jets, each $p_T > 85 \text{ GeV}$	4×15	4 × 75	5	15
100	Two b ($\epsilon = 70\%$) & one jet, $p_T > 65, 65, 160 \text{ GeV}$	2 × 30, 85	2 × 55, 150	1.2	15
	Two b ($\epsilon = 60\%$) & two jets, each $p_{\rm T} > 65$ GeV	$4 \times 15, \eta < 2.5$	4 × 55	3.2	13
	Two μ , $p_{\rm T} > 11, 6 {\rm GeV}$	11,6	11, 6 (di- μ)	2.5	47
	Two μ , $p_{T} > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, topo)$	$2 \times 6 (J/\psi)$	1.6	48
B-Physics	Two μ , $p_{T} > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.6	5
	Two μ , $p_{\rm T} > 6$, 6 GeV, 7 < m(μ , μ) < 12 GeV	2 × 6 (Y, topo)	2×6(Y)	1.4	10
Total Rate				85	1550

	<u>Electrons</u>	Two leptons	0
	 Single: 		
	 Isolated Tight ~27 GeV 		
	 No isolation ~61GeV Di-Electron: ~18GeV 2 loose ele: 25, 12, 12 GeV 	Three leptons	T T T
	• 5 100se ele. 25, 15, 15 dev	One photon >	0
		Two photons	I I I
	 Single: ~27 GeV Di-Mu: ~23 9 GeV 	Single jet	J
	• DI-Mu. 23, 5 Gev	$E_{\rm T}^{\rm miss}$	I
	<u>Photons</u>	Multi-jets	F F S
	 Single: ~145 GeV Di-Gam: ~55, 55 GeV 	<i>b</i> –jets	С Т С Т
		B-Physics	1 1 1 1
		I The ID of	

Tuiggon	Traigal offine selection	Trigger Selection		Level-1 Peak	HLT Peak
inggei	Jpren on the section	Level-1 (GeV)	HLT (GeV)	$L = 1.7 \times 10$	34 cm ⁻² s ⁻¹
	Single isolated $\mu_{\rm DT} > 27 {\rm GeV}$	20	26 (i)	15	180
	Single isolated tight $e_{DT} > 27 \text{ GeV}$	22 (i)	26 (i)	28	180
Single lentons	Single $\mu_{DT} > 52 \text{ GeV}$	22(1)	50	15	61
Single leptons	Single ρ , $\rho_1 > 52$ GeV	22 (i)	60	28	18
-	Single τ , $p_T > 0.7$ GeV	100	160	1.2	47
	Two u and my > 15 GaV	2×10	2 × 14	1.2	26
	Two μ , each $p_T > 15$ GeV	2×10	2 X 14	1.0	42
	Two very loose a each $p_T > 18$ GeV	20 2 × 15 (i)	22, 0	1.7	42
	Two very loose e , each $p_T > 18$ GeV	2 × 13 (1)	7.24	1.7	5
Two leptons	One e & one μ , $p_T > 0, 25 \text{ GeV}$	20 (μ) 15 10	17.14	20	3
The reports	One e & one μ , $p_T > 10, 15$ GeV	22 (e, i)	26.8	2.0	3
	Two τ $p_T > 40, 30 \text{ GeV}$	20(i) 12(i) (+jets topo)	35.25	5	61
	One τ & one isolated μ , $p_T > 30, 15$ GeV	12 (i), 12 (i) (+jets, topo)	25, 14 (i)	21	10
	One τ & one isolated $e, p_T > 30, 18 \text{ GeV}$	12 (i), 15 (i) (+jets)	25, 17 (i)	4	15
	Three loose e_{1} $p_{T} > 25$ 13 13 GeV	20.2 × 10	24.2×12	13	< 0.1
	Three μ each $p_T > 7$ GeV	3×6	3×6	0.2	6
Three leptons	Three μ , each $p_1 > 7$ GeV	20	20.2×4	15	8
rinee reprotes	Two μ & one loose $e_{DT} > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu)$	2 × 10, 12	1.8	0.3
	Two loose e & one μ , $p_T > 2 \times 13$, 11 GeV	2 × 8, 10	2 × 12, 10	1.7	0.1
One photon >	One loose γ , $p_T > 145$ GeV	22 (i)	140	28	43
	Two loose $\gamma_{ent} > 55,55$ GeV	2 × 20	50.50	26	6
Two photons	Two medium γ , $p_T > 40, 30 \text{ GeV}$	2 × 20	35, 25	2.6	17
The photons	Two tight γ , $p_T > 25, 25$ GeV	2 × 15 (i)	2×20 (i)	1.7	14
	Let $(R = 0.4)$ $p_T > 435 \text{ GeV}$	100	420	33	33
Single jet	Let $(R = 1.0)$, $p_T > 480$ GeV	100	420	33	24
bingre jet	Jet $(R = 1.0)$, $p_T > 450$ GeV, $m_{int} > 50$ GeV	100	$420, m_{int} > 40$	3.3	29
Emiss	$E_{\pi}^{\text{miss}} > 200 \text{ GeV}$	50	110	5	110
-1	Four jets, each $n_T > 125$ GeV	3 × 50	4 × 115	0.5	16
	Five jets, each $p_T > 95$ GeV	4×15	5 × 85	5	10
Multi-jets	Six jets, each $p_T > 80 \text{ GeV}$	4×15	6 × 70	5	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4×15	$6 \times 55, \eta < 2.4$	5	15
	One $h(\epsilon = 40\%)$, $p_T > 235$ GeV	100	225	3.3	15
	Two b ($\epsilon = 60\%$), $p_T > 185, 70$ GeV	100	175,60	3.3	12
b-iets	One $b \ (\epsilon = 40\%)$ & three jets, each $p_T > 85 \text{ GeV}$	4×15	4 × 75	5	15
	Two b ($\epsilon = 70\%$) & one jet, $p_T > 65, 65, 160 \text{ GeV}$	2 × 30, 85	2 × 55, 150	1.2	15
	Two $b \ (\epsilon = 60\%)$ & two jets, each $p_{\rm T} > 65 \text{ GeV}$	$4 \times 15, \eta < 2.5$	4 × 55	3.2	13
	Two μ , $p_{\rm T} > 11, 6 {\rm GeV}$	11.6	11, 6 (di- μ)	2.5	47
	Two μ , $p_T > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, topo)$	$2 \times 6 (J/\psi)$	1.6	48
B-Physics	Two μ , $p_T > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.6	5
	Two μ , $p_{\rm T} > 6$, 6 GeV, 7 < m(μ , μ) < 12 GeV	2 × 6 (Y, topo)	2×6(Y)	1.4	10
Total Rate				85	1550

<u>Jets</u>

- Single: 435 GeV
- 4 Jets: 125 GeV

<u>b-Jets</u>

- Dependant on working point
 - 2 b's: 185, 70 GeV

<u>MET:</u> 200 GeV

Trigger	Typical offline selection	L L (CAV)	III T (C-1)	Rate (kHz)	Rate (Hz
	Contract and Access and Access and	Level-1 (Gev)	HLI (Gev)	$L = 1.7 \times 10$	34 cm ⁻² s ⁻¹
	Single isolated μ , $p_{\rm T} > 27 \text{ GeV}$	20	26 (i)	15	180
	Single isolated tight $e, p_T > 27$ GeV	22 (i)	26 (i)	28	180
Single leptons	Single μ , $p_{\rm T} > 52 {\rm GeV}$	20	50	15	61
	Single $e, p_{\rm T} > 61 {\rm GeV}$	22 (i)	60	28	18
	Single τ , $p_{\rm T} > 170 {\rm GeV}$	100	160	1.2	47
	Two μ , each $p_{\rm T} > 15$ GeV	2×10	2 × 14	1.8	26
	Two μ , $p_T > 23, 9$ GeV	20	22, 8	15	42
	Two very loose e , each $p_{\rm T} > 18 \text{ GeV}$	2 × 15 (i)	2 × 17	1.7	12
T	One e & one μ , $p_T > 8$, 25 GeV	20 (µ)	7,24	15	5
Two leptons	One <i>e</i> & one μ , $p_{\rm T} > 18, 15 {\rm GeV}$	15, 10	17, 14	2.0	4
	One e & one μ , $p_T > 27, 9$ GeV	22 (e, i)	26, 8	28	3
	Two τ , $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets, topo)	35, 25	5	61
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.1	10
	One τ & one isolated e , $p_{\rm T} > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4	15
\rightarrow	Three loose $e, p_{\rm T} > 25, 13, 13 {\rm GeV}$	20, 2 × 10	$24, 2 \times 12$	1.3	< 0.1
	Three μ , each $p_{\rm T} > 7 {\rm GeV}$	3×6	3×6	0.2	6
Three leptons	Three μ , $p_{\rm T} > 21$, 2 × 5 GeV	20	$20, 2 \times 4$	15	8
	Two μ & one loose $e, p_T > 2 \times 11, 13$ GeV	$2 \times 10 (\mu)$	2×10, 12	1.8	0.3
	Two loose e & one μ , $p_T > 2 \times 13$, 11 GeV	2 × 8, 10	2 × 12, 10	1.7	0.1
One photon >	One loose γ , $p_{\rm T} > 145$ GeV	22 (i)	140	28	43
	Two loose γ , $p_{\rm T} > 55, 55$ GeV	2×20	50, 50	2.6	6
Two photons	Two medium γ , $p_{\rm T} > 40$, 30 GeV	2×20	35, 25	2.6	17
	Two tight γ , $p_T > 25$, 25 GeV	2 × 15 (i)	2×20 (i)	1.7	14
	Jet $(R = 0.4), p_T > 435 \text{ GeV}$	100	420	3.3	33
Single jet	Jet $(R = 1.0), p_{\rm T} > 480 {\rm GeV}$	100	460	3.3	24
	Jet $(R = 1.0)$, $p_T > 450$ GeV, $m_{jet} > 50$ GeV	100	420, $m_{jet} > 40$	3.3	29
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5	110
	Four jets, each $p_{\rm T} > 125$ GeV	3 × 50	4 × 115	0.5	16
Market Later	Five jets, each $p_{\rm T} > 95 {\rm GeV}$	4×15	5 × 85	5	10
Multi-Jets	Six jets, each $p_{\rm T} > 80 {\rm GeV}$	4×15	6 × 70	5	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4×15	$6 \times 55, \eta < 2.4$	5	15
	One $b \ (\epsilon = 40\%), p_{\rm T} > 235 {\rm GeV}$	100	225	3.3	15
	Two $b \ (\epsilon = 60\%), \ p_{\rm T} > 185, \ 70 \ {\rm GeV}$	100	175,60	3.3	12
b-jets	One b ($\epsilon = 40\%$) & three jets, each $p_T > 85$ GeV	4×15	4 × 75	5	15
	Two b ($\epsilon = 70\%$) & one jet, $p_T > 65, 65, 160 \text{ GeV}$	2 × 30, 85	2 × 55, 150	1.2	15
	Two b ($\epsilon = 60\%$) & two jets, each $p_T > 65$ GeV	$4 \times 15, \eta < 2.5$	4 × 55	3.2	13
	Two μ , $p_{\rm T} > 11, 6 {\rm GeV}$	11,6	11, 6 (di-µ)	2.5	47
P. Dhusias	Two μ , $p_{\rm T} > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.6	48
D-P'nysics	Two μ , $p_{\rm T} > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.6	5
	Two μ , $p_{\rm T} > 6$, 6 GeV, 7 < m(μ , μ) < 12 GeV	2×6 (\Upsilon, topo)	$2 \times 6(\Upsilon)$	1.4	10
Total Rate				85	1550

Trigger Selection

Level-1 Peak HLT Peak

<u>Jets</u>	
•	Single: 435 GeV
•	4 Jets: 125GeV
<u>b-Jet</u>	<u>s</u>
•	Dependant on working point
	 2 b's: 185, 70 GeV
<u>MET:</u>	200 GeV

Will discuss tau triggers later

Trigger	Traigal offing calentian	Trigger Selection		Level-1 Peak	HLT Peak
	The section	Level-1 (GeV)	HLT (GeV)	$L = 1.7 \times 10^{-10}$	54 cm ⁻² s ⁻¹
	Single isolated μ , $p_T > 27$ GeV	20	26 (i)	15	180
	Single isolated tight $e, p_T > 27$ GeV	22 (i)	26 (i)	28	180
Single leptons	Single μ , $p_T > 52$ GeV	20	50	15	61
	Single $e, p_T > 61 \text{ GeV}$	22 (i)	60	28	18
	Single τ , $p_{\rm T} > 170 {\rm GeV}$	100	160	1.2	47
	Two μ each $p_T > 15$ GeV	2 × 10	2 × 14	1.8	26
	Two μ , $p_T > 23.9$ GeV	20	22.8	15	42
	Two very loose e, each $p_T > 18$ GeV	2 × 15 (i)	2 × 17	1.7	12
	One e & one μ , $p_T > 8, 25$ GeV	20(4)	7.24	15	5
wo leptons	One <i>e</i> & one μ , $p_{\rm T} > 18, 15 {\rm GeV}$	15, 10	17, 14	2.0	4
	One e & one μ , $p_T > 27, 9$ GeV	22 (e, i)	26, 8	28	3
	Two τ , $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets, topo)	35, 25	5	61
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.1	10
	One τ & one isolated e , $p_{\rm T} > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4	15
	Three loose $e, p_T > 25, 13, 13 \text{ GeV}$	20, 2 × 10	24, 2 × 12	1.3	< 0.1
	Three μ , each $p_{\rm T} > 7 {\rm GeV}$	3×6	3×6	0.2	6
Three leptons	Three μ , $p_{\rm T} > 21$, 2 × 5 GeV	20	$20, 2 \times 4$	15	8
and the second second	Two μ & one loose $e, p_T > 2 \times 11, 13$ GeV	$2 \times 10 (\mu)$	2 × 10, 12	1.8	0.3
	Two loose e & one μ , $p_T > 2 \times 13$, 11 GeV	$2 \times 8, 10$	2 × 12, 10	1.7	0.1
One photon >	One loose γ , $p_{\rm T} > 145$ GeV	22 (i)	140	28	43
	Two loose γ , $p_{\rm T} > 55, 55 {\rm GeV}$	2×20	50, 50	2.6	6
Two photons	Two medium γ , $p_{\rm T} > 40$, 30 GeV	2×20	35, 25	2.6	17
	Two tight γ , $p_{\rm T} > 25$, 25 GeV	2 × 15 (i)	2 × 20 (i)	1.7	14
	Jet $(R = 0.4)$, $p_T > 435 \text{ GeV}$	100	420	3.3	33
Single jet	Jet $(R = 1.0), p_T > 480 \text{ GeV}$	100	460	3.3	24
5. T. C.	Jet $(R = 1.0)$, $p_T > 450$ GeV, $m_{jet} > 50$ GeV	100	$420, m_{jet} > 40$	3.3	29
ET	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5	110
	Four jets, each $p_{\rm T} > 125 {\rm GeV}$	3 × 50	4 × 115	0.5	16
fulti into	Five jets, each $p_{\rm T} > 95 {\rm GeV}$	4×15	5 × 85	5	10
viulti-jets	Six jets, each $p_{\rm T} > 80 {\rm GeV}$	4×15	6×70	5	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4×15	$6 \times 55, \eta < 2.4$	5	15
	One <i>b</i> ($\epsilon = 40\%$), $p_{\rm T} > 235$ GeV	100	225	3.3	15
	Two b ($\epsilon = 60\%$), $p_{\rm T} > 185$, 70 GeV	100	175,60	3.3	12
-jets	One $b \ (\epsilon = 40\%)$ & three jets, each $p_T > 85 \text{ GeV}$	4×15	4 × 75	5	15
36.20	Two <i>b</i> (ϵ = 70%) & one jet, $p_{\rm T} > 65, 65, 160 {\rm GeV}$	2 × 30, 85	2 × 55, 150	1.2	15
	Two b ($\epsilon = 60\%$) & two jets, each $p_T > 65 \text{ GeV}$	$4 \times 15, \eta < 2.5$	4 × 55	3.2	13
	Two μ , $p_{\rm T} > 11, 6 {\rm GeV}$	11,6	11, 6 (di- μ)	2.5	47
	Two μ , $p_{\rm T} > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.6	48
S-Physics	Two μ , $p_{T} > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.6	5
	Two μ , $p_{T} > 6$, 6 GeV, 7 < m(μ , μ) < 12 GeV	2 × 6 (Y, topo)	$2 \times 6(\Upsilon)$	1.4	10
Total Pate				85	1550

		Trigger Se	Level-1 Peak	HLT Peal	
Trigger	Typical offline selection	Level-1 (GeV)	HLT (GeV)	$\frac{\text{Rate (kHz)}}{L = 1.7 \times 10}$	Rate (Hz ³⁴ cm ⁻² s ⁻¹
	Single isolated μ , $p_{\rm T} > 27$ GeV	20	26 (i)	15	180
	Single isolated tight $e, p_T > 27$ GeV	22 (i)	26 (i)	28	180
Single leptons	Single μ , $p_{\rm T} > 52 \text{ GeV}$	20	50	15	61
	Single $e, p_{\rm T} > 61 \text{ GeV}$	22 (i)	60	28	18
	Single τ , $p_{\rm T} > 170 {\rm GeV}$	100	160	1.2	47
	Two μ , each $p_{\rm T} > 15 \text{ GeV}$	2×10	2 × 14	1.8	26
	Two μ , $p_{\rm T} > 23$, 9 GeV	20	22, 8	15	42
			2 × 17	1.7	12
			7,24	15	5
			17 14	2.0	1 4

LLP searches

Many searches use nominal triggers, others have specific triggersDiLepton:

- Displaced electrons triggered with photon triggers
 - \circ ~ 1 gamma (~150-200 GeV) or 2 gamma (~50 GeV)
- Displaced muons (muon trigger without ID tracks) ~80 GeV

DV: MET (200GeV), Photon (target ele), Muon (no ID hits), multi-jets (different multiplicities)

0, 0 GeV, $l < m(\mu, \mu) < 12$ GeV

CalRatio: Specifically designed for signature (next slide)

VH or HNL? Can trigger on associated leptons directly

Total Rate

THE COLD	Kate (KHZ)	Rate (HZ)		
HLI (GeV)	$L = 1.7 \times 10$	$10^{34} \text{ cm}^{-2} \text{s}^{-1}$		
26 (i)	15	180		
26 (i)	28	180		
50	15	61		
60	28	18		
160	1.2	47		
2 × 14	1.8	26		
22, 8	15	42		
2 × 17	1.7	12		
7,24	15	5		
17, 14	2.0	4		
26, 8	28	3		
35, 25	5	61		
25, 14 (i)	2.1	10		
25, 17 (i)	4	15		
$24, 2 \times 12$	1.3	< 0.1		
3×6	0.2	6		
$20, 2 \times 4$	15	8		
$2 \times 10, 12$	1.8	0.3		
2 × 12, 10	1.7	0.1		
140	28	43		
50, 50	2.6	6		
35, 25	2.6	17		
2×20 (i)	1.7	14		
420	3.3	33		
460	3.3	24		
420, $m_{jet} > 40$	3.3	29		
110	5	110		
4×115	0.5	16		
5 × 85	5	10		
6 × 70	5	4		
$6 \times 55, \eta < 2.4$	5	15		
225	3.3	15		
175,60	3.3	12		
4 × 75	5	15		
2 × 55, 150	1.2	15		
4 × 55	3.2	13		
11, 6 (di- μ)	2.5	47		
$2 \times 6 (J/\psi)$	1.6	48		
$2 \times 6 (B)$	1.6	5		
$2 \times 6 (\Upsilon)$	1.4	10		
	85	1550		

HLT for LLPs (CalRatio Trigger)

- Dedicated neutral LLP trigger used in <u>displaced jets</u> decaying inside hadronic calorimeter
- Displaced jets have collimated showers
 - L1Tau Seed, threshold of 60 GeV (2015/16)
 - L1Topo is used to drop threshold to 30GeV by requiring L1EM veto in direction of L1TAU
 - Recovers efficiency for lower mass points
 - HLT checks for small EM/Had energy deposit

Dataset name	L1 seed (bunch crossing type)	HLT	L	Usage
L1Tau dataset	L1TAU60 (paired)	CalRatio trigger	33.0 fb ⁻¹	$m_{\Phi} \in [400, 1000]$ GeV limits
L1Topo dataset	LLP-NOMATCH (paired)	CalRatio trigger	10.8 fb ⁻¹	$m_{\Phi} \in [125, 200]$ GeV limits
Cosmics dataset	L1TAU30 (empty)	CalRatio trigger	-	background estimation
BIB dataset	L1TAU60 (paired)	(Noiso) $\cap \neg$ (CalRatio)	33.0 fb ⁻¹	BDT training, bkg estim.

Table 1: Summary of the data samples used for the analysis.

Tau Reconstruction & Identification

Why Tau Leptons

Standard Model of Elementary Particles

Privileged role in third generation

- 3Gen fermions are massive, motivates search for physics with mass dependent couplings
- In susy, stop couplings solve hierarchy problem, avoids fine tuning
- Taus are favoured w.r.t bkg rejection over top/bottom (e.g., H->tautau observed)

Tau Leptons

• Prompt tau leptons decay ~80µm (before

Leptonic decays not distinguishable from prompt leptons

Reconstructed Taus in ATLAS are hadronic decays

Modes dep on hadron multiplicity: 1-prong: π^{+/-} + Nπ⁰ 3-prong: 3π^{+/-}+ Nπ⁰

Associated neutrinos lost as missing energy

Tau Reconstruction/Identification (ATLAS)

 Tau reconstruction seed from TopoCluster Jets (robust against multiple interaction background, a.k.a., pileup)

Resulting tau candidates primarily <mark>faked by QCD jets</mark>

<u>Handles to control BKG</u> Tau Candidates have collimated energy and tracking Define core/isolation regions related tracking/calo variables

Tau Track Classification

- Tau Vertex highest $\Sigma p_T^{\text{track} (\Delta R < 0.2, \text{ pt} > 0.5 \text{ GeV})}$ vertex) Tau Tracks are within $\Delta R < 0.4$ of vertex Tau vertex
- **BDT** used to classify tracks as
 - o pT, d0, z0, nPix, nSCT
 - Classify into isolation and TauTracks -> used to define 1/3 -prong

<u>Track classifier leading cause of tau inefficiency:</u> misclassified tracks, incorrect vertex matching, very high-pT effects (merged tracks and missing pixel hits) TauVertex vs PrimaryVertex Efficiency

reconstructed number of tracks

Tau Track Classification

- Tau Vertex highest $\Sigma p_T^{\text{track} (\Delta R < 0.2, \text{ pt} > 0.5 \text{ GeV})}$ vertex) Tau Tracks are within $\Delta R < 0.4$ of vertex Tau vertex
- **BDT** used to classify tracks as
 - o pT, d0, z0, nPix, nSCT
 - Classify into isolation and TauTracks -> used to define 1/3 -prong

very high-pT effects (merged tracks and missing pixel hits)

TauVertex vs PrimaryVertex Efficiency

- BDT trained with calorimeter and tracking input variables separately for 1- and 3-track taus (track momenta/position, and lifetime information)
- Trained on Z/gamma samples (for prompt taus) E.g., <u>Central Fraction</u>

• BDT trained with calorimeter and tracking input variables separately for 1- and 3-track taus (track momenta/position, and lifetime information)

E.g., R_{track} pT-weighted sum of track in core regions to radius to jet seed

Variable	Offline	
	1-track	3-track
$f_{ m cent}$	•	•
$f_{ m track}$	•	•
$R_{ m track}$	•	•
$S_{ m lead\ track}$	•	
$N_{ m track}^{ m iso}$	•	
$\Delta R_{ m Max}$		•
$S_{\mathrm{T}}^{\mathrm{flight}}$		•
$m_{ m track}$		•
$m_{\pi^0+\mathrm{track}}$	•	•
N_{π^0}	•	•
$p_{\rm T}^{\pi^0+{\rm track}}/p_{\rm T}$	•	

• BDT trained with calorimeter and tracking input variables separately for 1- and 3-track taus (track momenta/position, and lifetime information)

E.g., S_T^{flight} Distance of secondary vertex wrt TV divided by uncertainty (multi-prong)

Variable	Offline	
	1-track	3-track
$f_{ m cent}$	•	•
f_{track}	•	•
$R_{ m track}$	•	•
$S_{ m lead\ track}$	•	
$N_{ m track}^{ m iso}$	•	
$\Delta R_{ m Max}$		•
$S_{\mathrm{T}}^{\mathrm{flight}}$		•
$m_{ m track}$		•
$m_{\pi^0+\mathrm{track}}$	•	•
N_{π^0}	•	•
$p_{\rm T}^{\pi^0+{\rm track}}/p_{\rm T}$	•	•

- Tau identification provided at analysis level for particular working points, i.e., sig/bkg efficiency
- Total efficiency of tau candidates = identification reconstruction efficiency
 - Approx flat 60% for 1-prong for loose identification, 45-60% for 3-prong

- Efficiencies are robust against additional interactions per-crossing (pileup)
 - Topoclusters are pileup robust*
 - BDT variables include varage pileup energy subtractions

* ATLAS looking move away from Topocluster Jets to ParticleFlowObjects in future for increased performance at high luminosities

Tau Identification (RNN)

Tracks

Input

Shared dense

Shared dense

LSTM

LSTM

Single-valued

output

1-prong

40

20

12

5.3

Background rejection BDT

3-prong

400

150

61

11.2

Signal efficiency

1-prong 3-prong

45%

60%

75%

95%

60%

75%

85%

95%

Working point

Tight

Loose

0.9

0.8 True $\tau_{had-vis}$ efficiency

Medium

Very loose

Clusters

Input

Shared dense

Shared dense

LSTM

LSTM

Concatenate

Dense

Dense

Dense

RNN

- Runs after the track selection algorithm Ο
- Inputs: tau candidates with 1 or 3 tracks 0
- Trained separately for 1- and 3-prong taus 0
- Rejection improvement of ~35% over BDT version

RNN (1-prong) BDT (1-prong) Working points (1-prong)

RNN (3-prong) ----- BDT (3-prong)

0.1

Working points (3-prong)

0.2 0.3 0.4 0.5

en le coloradora de la co

0.6

07

- Tracks (up to 10 tracks, pT ordered) : pT, d0, z0 sin θ , $\Delta \phi$, $\Delta \eta$, track quality
- Clusters (up to 6, ET-ordered): ET, $\Delta \phi$, $\Delta \eta$, cluster moments
- High-level ID variables: invariant masses, secondary Ο vertex information. etc.

			Observable	1-prong	3-prong
S High-I ID varianse Inp Inse Den Den Den	level ables ut se se	Track inputs	seed jet p_{T}^{track} $\Delta \eta^{track}$ $\Delta \phi^{track}$ $ d_{0}^{track} $ $ z_{0}^{track}\sin\theta $ $N_{IBL hits}$ $N_{Pixel hits}$ $N_{SCT hits}$	•	•
ate C. [Deutsch	Cluster inputs	$p_{T}^{jet seed}$ $E_{T}^{cluster}$ $\Delta \eta^{cluster}$ $\Delta \phi^{cluster}$ $\lambda_{cluster}$ $\langle \lambda_{cluster}^{2} \rangle$ $\langle r_{cluster}^{2} \rangle$	•	•
Background 1-prong 70 35 21 9.9	3-prong 700 240 90 16	High-level inputs	$p_{\rm T}^{\rm uncalibrated} \\ p_{\rm T}^{-1} \\ f_{\rm leadtrack} \\ \Delta R_{\rm max} \\ S_{\rm leadtrack} \\ S_{\rm flight}^{\rm flight} \\ f_{\rm rack}^{\rm ftrack} \\ p_{\rm T}^{\rm EM+track} / p_{\rm T} \\ m^{\rm EM+track} \\ m^{\rm track} \\ m^{\rm track} $	•	•

10⁴

 10^{3}

 10^{2}

10

Tau Identification (Online) Details

1. Calo Only Preselection

- Candidates reconstructed purely from calo info (EM isolation requirements < 60GeV)
- Topo-clusters calibrated (LC) and summed vectorially (jet seed)
- LC around (ΔR<0.2) barycenter defines tau energy
- TES calibration applied, similar to offline

2. Track Preselection

- 2 stage FTF selection
- Tau Core and Isolation Tracks are identified with MVA approach (like offline)

3. Offline-like Preselection

- Precision tracking on selected tracks to improve accuracy.
- Use tracks + calo info
- Calo variables calculated for RNN
- Cut on RNN/BDT score to finalise trigger selection
- 3 ID WSs with dependant on prong
- Track multiplicity requirements loosened at ~200 GeV, selection WP loosened at ~400 GeV (jet-like trigger)

Efficiency

BDT variables ATLAS-CONF-2017-061

Variable	Description	1-prong	multi-prong
fcent	Central energy fraction	•	•
$f_{\text{leadtrack}}^{-1}$	Leading track momentum fraction	•	•
Rtrack	Track radius	•	•
Sleadtrack	Leading track impact parameter significance	•	
$f_{\rm iso}^{\rm track}$	Fraction of $p_{\rm T}$ from tracks in the isolation region	•	
ΔR_{Max}	Maximum ΔR		•
$S_{\rm T}^{\rm flight}$	Transverse flight path significance		•
mtrack	Track mass		•
$f_{\rm EM}^{\rm track-HAD}$	Fraction of EM energy from charged pions	•	•
$f_{\rm track}^{\rm EM}$	Ratio of EM energy to track momentum	•	•
mEM+track	Track-plus-EM-system mass	•	•
$p_{\rm T}^{\rm EM+track}/p_{\rm T}$	Ratio of track-plus-EM-system to $p_{\rm T}$	•	•

Online Taus, the cost

- Mangable rates for tau triggers difficult due to high rates at L1
- For Single Tau trigger requires high threshold
- Tau+X triggers can offer reduced tau pT, at the cost of additional associated jets
- Di-Tau Topological selection available without associated jets using angular separation requirement

		Trigger selection		Trigger rate at	
Trigger	Typical offline selection			$1.2 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	
		L1	HLT	L1 [kHz]	HLT [Hz]
τ	$p_{\rm T}^{\tau} > 170 \text{ GeV}$	60	160	5.2	15
2τ	$p_{\rm T}^{\tau} > 40, 30 \text{ GeV}, p_{\rm T}^{\rm jet} > 80 \text{ GeV}$	20i,12i,25	35,25,-	6.7	35
$\tau + e$	isolated $e, p_{\rm T}^e > 18$ GeV, 15i 12i 2		17i.25	3.4	9
	$p_{\rm T}^{\tau} > 30 \text{ GeV}, p_{\rm T}^{\rm Jet} > 80 \text{ GeV}$	101,121,20	171,20,	5.1	
$\tau + \mu$	isolated μ , $p_{\rm T}^{\mu} > 15$ GeV,	10.12i.25	14i.25	1.7	7
	$p_{\rm T}^{\tau} > 30 \text{ GeV}, p_{\rm T}^{\rm jet} > 80 \text{ GeV}$	10,121,20	1 11,20,		,
τ + $E_{\mathrm{T}}^{\mathrm{miss}}$	$p_{\rm T}^{\tau} > 40 \text{ GeV}, E_{\rm T}^{\rm miss} > 150 \text{ GeV},$	20i.45.20	35.70-	1.8	8
	$p_{\rm T}^{\rm jet} > 70 {\rm GeV}$	201, 10,20	55,70,	1.0	Ū
27 with	$p_{\rm T}^{\tau} > 40, 30 \text{ GeV}, \Delta R(\tau, \tau) < 2.6$	20i,12i,2.9	35,25,-	5.9	39
L1Topo	$p_{\rm T}^{\tau} > 40, 30 \text{ GeV}, \Delta R(\tau, \tau) < 2.6,$	20i 12i 2 9 25	35 25	3.8	24
Епоро	$p_{\rm T}^{\rm jet} > 80 {\rm GeV}$	201,121,2.9	,23, ,	2.0	- '

Inst. luminosity [1033 cm-2s-1]

32

Online Taus, the cost

- Most of CPU time on tracking stages
- Potential room for improvement, FTF will need retune in Run-3 (can it deal with pileup)
- Displaced Taus?
 - Tau seed from track in first stage
 - \circ However this stage is wide scan (| Δ z|<225 mm)
 - Spurious sources of tracks will tend to kickstart TauID, but a 0-prong mode could be used to recver efficiency?
 - Can we optimize procedure for displaced tau?

ATLAS-CONF-2017-061

HLT tau trigger step	Mean [ms]	RMS [ms]
Calo-only preselection:		
Topo-clustering	7	3
$\tau_{\rm had-vis}$ reconstruction	1	0
Track preselection:		
First stage fast tracking	32	16
Second stage fast tracking	27	14
$\tau_{\rm had-vis}$ reconstruction	1	0
Offline-like selection:		
Precision tracking	21	12
$\tau_{had-vis}$ reconstruction and BDT	1	0

Tau Particle Flow and Calibration

Tau Particle Flow (TPF)

- Identify the detector signature of individual tau decay products (charged and neutral pions) in order to:
 - Identify the decay mode (1p0n, 1p1n, 1pXn, 3p0n, 3pXn)
 - Better reconstruct the momentum (use tracking information!)

TPF How To

- 1. Track/Cluster matching to identify $\pi^{+/-}$ and energy rescaling
- 2. MVA π^0 identification (reject bkg π^0) and 1p mode separation —
- 3. BDT re-cover the most likely migrations

1512.05955.pdf

Tau Particle Flow

- Resulting decay mode classification
 - Improves energy resolution and propagated into Ο energy scale measurements (discussed later)
 - Vital for precision measurements and useful for Ο polarisation information

36

Tau Energy Calibration

- TopoCluster energy calibrated with Local Calibration (LC)
- ATLAS Calorimeter uses sampling layers,
 - Energy loss assumptions different for EM/Had objects
- Two Approaches
 - 1. Baseline Calo-Based
 - Tau Energy is calibrated starting from LC Jet
 - a. Detector response/resolution corrected to visible tau energy in simulation
 - b. Taking into account pileup dependance (<mu>, eta, prong) $\overline{\left(E_{\text{LC}} E_{\text{pileup}}\right)/E_{\text{true}}^{\text{vis}}}$
- 2. Boosted Regression Tree
 - a. Use TauParticleFlow flow
 - b. Reconstruct individual neutral and charged hadrons
 - c. Gives improved resolution

Interpolation approach applied for analysis/uncertainties

Tau Energy Calibration (In-situ correction)

- Additional correction from data-driven difference in Z mass shape
- Evaluated in Z->μτ. Applied for taus < 70 GeV.

Tau Energy Uncertainties

- Detector: Material, Calorimeter Noise
- Model: Generator, Showering, Hadronisation
- In-situ: Mass shape correction in Z->τμ (taus <70GeV)

Leading uncertainties in systematic dominated tau searches, e.g., A/H->ττ (BSM)

LLP Searches with Taus (What to consider)

Taus from LLPs

- LLPs decaying to 3rd gen. fermions well-motivated but poorly constrained
- e.g, displaced e/μ searches for leptonic τ decays (low-BR).

Analysis Goals

- Target hadronic taus (model independent)
 - \blacksquare semi-leptonic or
 - fully hadronic (triggers...)
 - associated objects (WH,H->aa , HNL, ...)

Taus from LLPs

- Targeting hadronic tau has several challenges which are being addressed internally
- Tau-ID
 - MVA tracking particular bottle-neck feeding ID,
 - Classification trained for prompt
 - Tracks not suitable for large decay radius
 - RNN/BDT identification trained for prompt taus
- Calibration? TPF?
- Trigger
 - Tracking at HLT not optimised for displaced taus
 - Tau triggers suffer from large background
 - Single tau triggers have hefty kinematic thresholds (up to 200 GeV)
 - Di-Tau triggers come with topological requirements
 - Including associated/prompt triggers? Next slide
- Both need novel approaches

Displaced Tau ID?

- Bottleneck for displaced tau in ID is dependent on track classification from nominal tracks
- One approach might be to use <u>Large Radius</u> <u>Tracking</u>, under investigation

	Standard	Large radius
Maximum d_0 (mm)	10	300
Maximum $z_0 \ (mm)$	250	1500
Maximum $ \eta $	2.7	5
Maximum shared silicon modules	1	2
Minimum unshared silicon hits	6	5
Minimum silicon hits	7	7
Seed extension	$\operatorname{Combinatorial}$	Sequential

Larger d0 track collection could be used to inform track classifier and RNN ID. Possibly a decay radius dependant performance.

Alternatively could consider a calorimeter only approach

<u>Tau Trigger</u>

- Not so dependent of tracking at trigger level due to limited resources
- 0-prong mode exists and is optimised in RNN to recover some efficiency for prompt
- Possibility to tune triggers to be robust for displaced taus in Run-III

Alternatives to Displaced Tau Triggers

- Could consider case where 1stau is prompt, other stau long-lived
- Trigger on prompt e/mu/tau, probe displaced object
- Triggering on prompt lepton interpretable for WH->aa->4tau or HNL

• For pair produced tau from LLP, e.g., use displaced muon trigger for semi-leptonic mode

Taus from LLPs

Assuming novel Tau-ID and Trigger, what techniques might we need to use? In a close to prompt regime, might not be Zero BKG

• Background sources?

• Different rates of tau-fakes from

q/g-jets

 QCD and W+jets backgrounds estimated with data driven methods

Fake-factor method in A/H->ττ Invert tau-quality criteria to build templates in orthogonal regions

Or will searches be dominated by Cosmics or Beam-Induced BKG?

What about interpretability?

A/H-> $\tau\tau$ set limits using m_{τ} variable, was able to reinterpret result in Z'

But probably single bin fit stats, so is this relevant?

Charged Higgs uses BDT as final discriminant, else low mass analysis insensitive

Summary

- Tau Reconstruction/Identification/Calibration/Triggering capabilities in Run 2 are cornerstone to prompt tau analysis in Run-II.
- Currently working on how to adapt techniques useful for tau anlysis to LLPs
 - LLP->taus underdeveloped area, with a lot of work that can be done!
- Several triggers are specifically designed for LLP signatures
 - Fully hadronic trigger is challenging due to large backgrounds and non-optimal training for LLPs
 - Need to assess if there will be something to gain from additional granularity and Topo from L1 at Run-3
 - Analysis will likely use a tapestry of triggers: MET, lepton (prompt/displaced), hadronic tau, jets
- Tau identification for LLPs suffers from prompt RNN/BDT training
 - Possible gains from large radius tracking and dedicated long-lived training samples
- Many other considerations: LLP tau calibration, models/triggers to use, object multiplicities, final discriminants, etc.

- Tau tracks (TT): tracks from the direct tau decay
- Conversion tracks (CT): tracks from conversions, hadronic interactions, "long" living particles (barcode > 200k)
 - Important due to neutral pions
- Isolation tracks (IT): tracks with barcode < 10k which are no TT → mainly tracks from underlying event
- Fake tracks (FT): not truth matched tracks, tracks with low matching probability (<0.5), tracks with barcode between 10k and 200k