Long-lived particles and co-annihilating dark matter with tau-lepton

Kazuki Sakurai (University of Warsaw)

In collaboration with:

Valentin Khoze (Durham U.) and Alexis Plascencia (Case Western Reserve U.)

[arxiv:1702.00750] [JHEP 06(2017)041]

21.11.2019 @ Edinburgh

Dark Matter

- All evidence for the existence of Dark Matter is purely gravitational.
- The particle physics nature of DM is unknown.
- — is our main 'new physics' challenge.
- The energy density of the DM is precisely measured:

$$\Omega_{\rm DM} h^2 \simeq 0.12$$

• The thermal freeze-out is attractive scenario for particle dark matter.

WIMP miracle

something to do with hierarchy problem?

No DM signature is found anywhere.

Why?

Collider (LHC):

Co-annihilation

- χ : Dark Matter (DM): → singlet
- η : Co-Annihilation Partner (CAP): \rightarrow coloured or weakly charged

$$\mathcal{L} \supset g_{\rm DM} \cdot \chi \, \eta \, ({\rm SM})$$

$$\begin{array}{c} \chi \\ g_{\rm DM} \\ \eta \end{array} \quad SM \qquad \mathbb{Z}_2 \left\{ \begin{array}{c} \eta \to -\eta \\ \chi \to -\chi \end{array} \right. \end{array}$$

$$W_{e,\mu}^{\pm} \xrightarrow{C,\mu} 1$$
For small gpm, $\Delta m = m_{\eta} - m_{\chi}$
These two processes are enough to keep χ in the thermal bath
$$\chi_{S} \xrightarrow{g_{DM}} SM$$

$$\psi^{\pm} \xrightarrow{S} W$$

$$\psi^{\pm} \xrightarrow{S} W$$

$$\psi^{\pm} \xrightarrow{g_{DM}} SM$$

$$(unsuppressed)$$

$$W_{W^{\pm}}^{\pm} \xrightarrow{\eta} (\chi \chi \rightarrow \tau^{+} \tau^{-})$$

$$+ g_{\chi} \overline{g}_{\eta} \cdot \sigma(\chi \eta \rightarrow SM \text{ particles})$$

$$2 + \overline{g}_{\eta}^{2} \cdot \sigma(\eta \eta \rightarrow SM \text{ particles})$$

$$\frac{2}{\overline{g}_{\eta}} = g_{\eta} \left(\frac{m_{\eta}}{m_{\chi}}\right)^{3/2} \exp\left(-\frac{\Delta m}{T}\right)$$
Boltzmann factor of η :
$$We want this to be order 1$$

$$M_{W^{\pm}}^{\pm} \xrightarrow{q_{DM}} SM$$

$$\frac{\Delta m}{m_{\chi}} \ll \frac{1}{25}$$

 $\mathsf{g}_{\chi} \sim \mathsf{g}_{\eta} \sim \mathcal{O}(1)$

mass degeneracy is required

Experimental Signatures

$$\mathcal{L} \supset g_{\rm DM} \cdot \chi \eta \,({\rm SM})$$

- For small g_{DM}, the interaction between DM and SM becomes very weak.
- The sensitivities for direct and indirect detections are very low.
- The production rate for direct DM production at the LHC is also very small.
- Since CAP is charged under the SM gauge group, the production rate for CAP is unsuppressed at the LHC.

Collider Signature

- Once CAP is produced, it will decay into DM + SM with $\mathcal{L} \supset g_{_{\mathrm{DM}}} \cdot \chi \eta \,(\mathrm{SM})$
- Since co-annihilation requires small mass difference ($\Delta m/m_{\chi} << 4\%$), the SM particles from the decay is very soft.
- In this case, the LHC search relies on the mono-jet channel and sensitivity is very weak in general.

• If DM is exclusively coupled to the tau-lepton and $\Delta m < m_{\tau}$, the decay is further suppressed and CAP becomes long-lived.

Long-Lived Signatures

slide taken from Shinpei Yamamoto @ LHCP 2014

Simplified Models (SMS)

- A standard signature to search for dark matter at colliders is the mono-X (or multi-jets) plus missing energy.
- These searches are being exploited and interpreted in terms of simplified dark matter models with mediators.

Dark Matter + mediator + Standard Model particles

- [A growing number of the analyses are also dedicated to the direct search of the mediators which can decay back to the SM.]
- We consider instead an alternative DM scenario characterised by simplified models without mediators.

Dark Matter + co-annihilation partner + Standard Model particles

• Our dark sector includes a co-annihilation partner (CAP) particle instead of a mediator (in addition to the cosmologically stable DM).

SMS for long-lived coannihilationing DM with tau

Model-1a			
Component	Field	Charge	Interaction
DM	Majorana fermion (χ)	Y = 0	$\phi^*(\gamma \sigma_{\mathbf{r}}) + \mathbf{h} \mathbf{c}$
CAP	Complex scalar (ϕ)	Y = -1	$ \phi (\chi r_R) + \text{n.c.} $

fermonic DM, scalar CAP e.g. neutralino-stau (SUSY)

Model-2			
Component	Field	Charge	Interaction
DM	Real scalar (S)	Y = 0	$S(\overline{\Psi}P_R\tau) + h.c.$
CAP	Dirac fermion (Ψ)	Y = -1	

scalar DM, fermonic CAP

e.g. dilaton, KK-tau (extra-dim)

Model-3			
Component	Field	Charge	Interaction
DM	Vector (V_{μ})	Y = 0	$V_{\mu}(\overline{\Psi}\gamma^{\mu}P_{R}\tau) + \text{h.c.}$
CAP	Dirac fermion (Ψ)	Y = -1	

vector DM, fermonic CAP e.g. KK-photon, KK-tau (UED)

3 free parameters:

$$m_{\chi}, \ \Delta m, \ g_{\rm dm}$$

$$\eta^{\pm} \underbrace{\begin{array}{c} \chi \\ g_{\rm DM} \\ \tau^{\pm} \end{array}}_{\tau^{\pm}} \chi$$

 $\chi = \{\chi, S, V_{\mu}\}$ $\eta = \{\phi, \Psi\}$

[v/c << 1 at the present Universe]

indirect detection not promising(?)

Indirect Detection

The DM can be converted into a slightly off-shell CAP by emitting a soft tau, the CAP then co-annihilates with another DM into a pair of SM particles.

This channel is not chiral suppressed and turns out to be the dominant annihilation channel.

Blue points correspond to the parameter region of interest; $\Delta m/m_{\chi} << 4\%$.

Indirect Detection

Direct Detection

• The anapole operator for direct detection is generated at 1-loop.

$$\mathcal{A}\,\bar{\chi}\gamma_{\mu}\gamma_{5}\chi\partial^{\nu}F_{\mu\nu}$$

 $m_{\rm DM} \simeq 500 \,{\rm GeV}$ and $\Delta M/m_{\tau} < 1$, $\mathcal{A}/g_{\rm DM}^2 \sim 8 \cdot 10^{-7} \,[\mu_N \cdot {\rm fm}]$

LUX $A > 2 \times 10^{-5} [\mu_N \text{ fm}]$

• The current limit is more than one order of magnitude smaller.

Direct Production at LHC

• Drell-Yann pair production of coannihilation partner

 We study Dirac fermion and complex scalar as coannihilation partners

Recasting HSCP analysis

- In order to constrain the long-lived coaanihilating DM simplified models, we recast the heavy stable charged particle (HSCP) analysis by CMS (8TeV, 18.8 fb⁻¹) [1305.0491].
- We used the recipe provided by CMS [1502.02522] for recasting the HSCP analysis and used the efficiency maps provided in the paper.

Gauge-invariant and renormalizable, no problems of unitarity

25

Majorana DM Scalar CAP

e.g. neutralino-stau in SUSY

Now on the (gDM, mDM) plane:

Model 2

3.0r

2.5

[A^{2.0}] 1.5 7*M* [GeV] 1.0

1.0

0.5

0.0

200

400

600

800

Scalar DM

Scalar DM, Fermion CAP

 $\Omega_{DM}h^2 > 0.12$

1000

1200

1400

e.g. dilaton, KK-tau

 $g_{\rm DM}\!=\!0.1$

R Scalar Dirac ferm

> DM **CAP** $(Y = 1 \ L_{\tau} = 1)$ S Ψ

 $S(\overline{\Psi} \tau_R) \subset \mathcal{L}$

Gauge-invariant and renormalizable, no problems of unitarity

Model 3

Vector DM, Fermion CAP e.g. KK-photon, KK-tau

Vector Dirac ferm DM CAP (Y = 1 L_{τ} = 1) A_{μ} Ψ

$$A_{\mu}\left(\overline{\Psi}\,\tau_{R}\right) \subset \mathcal{L}$$

NOT gauge-invariant, requires UVcompletion, e.g. Extra-Dimensions

Model 3

Vector DM, Fermion CAP e.g. KK-photon, KK-tau

future e+e- collider

Prospects for CLIC

Example: Linear colliders can study compressed spectrum in SUSY

- Stau and neutralino, lightest supersymmetric states
- ΔM < 10 GeV can be tested, virtual γ γ becomes relevant background

fermonic DM, scalar CAP

scalar DM, fermonic CAP

vector DM, fermonic CAP

Conclusion

• We presented co-annihilating dark matter simplified models with long-lived signatures. There are 3-parameters: $m_{\chi}, \ \Delta m, \ g_{\rm DM}$

Interaction

 $S(\overline{\Psi}P_R\tau) + \text{h.c.}$

Model-1a			
Component	Field	Charge	Interaction
DM	Majorana fermion (χ)	Y = 0	$\phi^*(\chi_{TD}) + hc$
CAP	Complex scalar (ϕ)	Y = -1	$\varphi(\chi T_R) + \text{ i.e.}$

Model-2

Charge

Y = 0

Y = -1

Field

Real scalar (S)

Dirac fermion (Ψ)

Component

DM

CAP

fermonic DM, scalar CAP e.g. neutralino-stau (SUSY)

scalar DM, fermonic CAP

e.g. dilaton, KK-tau (extra-dim)

Model-3			
Component	Field	Charge	Interaction
DM	Vector (V_{μ})	Y = 0	$V_{\mu}(\overline{\Psi}\gamma^{\mu}P_{R} au) + \text{h.c.}$
CAP	Dirac fermion (Ψ)	Y = -1	

vector DM, fermonic CAP e.g. KK-photon, KK-tau (UED)

- In this class of models, direct detection is 1-loop suppressed, indirect detection is velocity suppressed (for Model-1 and 2). The collider has the best chance of detecting it, but it needs $\Delta m < m_{\tau}$ to have long-lived signature.
- These models can be used by ATLAS and CMS to present their results.