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My detinition of FIMPs for this talk

WIMPs are weak scale: o« ~0.01

FIMPs have coupling to SM o < 104
(often 10-8 - 10-20to get LLPs)



How to get LLPs at the LHC

LLPs require [ < 10713 GeV to have a visible displacement

How to get LLPs?
(@) small coupling
(b) compressed parameter space
(c) Muti-body decay

Case (a) can be described in an EFT via large suppression
scale and (c) by higher-dim operator (i.e. higher powers of
suppression scale) respectively.



Motivation for FIMPs (like WIMPs)
comes mainly from Dark Matter

Older picture: Thermal freeze-out
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Coupling (here | mean of A" to SM determines the " thermal relic density”. If coupling is
foo small, the [eftover deunsity 1s too high to explatn DM, This gives a lower bound on
possible couplings for any given model.




Motivation for FIMPs (like WIMPs)
comes mainly from Dark Matter

Modern picture: For the same model, size of coupling
determines the mechanism of achieving the right relic density.

Direct annihilation to SM > No LLPs

LLPs due to spectrum

Co-annihilation (e.g. with “staus”) .
compression

LLPs due to
compression and/or

Conversion-driven freezout (aka co-scattering) >

Thermal Freeze-out

small coupling

LLPs due to

Freeze-in > ,
small coupling




All LLPs but different strategies to search

Case (a) Small coupling:
Have to worry about why this FIMP was motivated.

» If DM, there are two mechanisms of freeze-in: (a) decay
of mediator or (b) 2->2 scattering.

» In case of decay, there is a mediator with higher
coupling to SM; have to rely on producing the mediator.

» It scattering (e.g. Higgs portal, Z') then answer is more
difficult because precise measurements needed



All LLPs but different strategies to search

Case (b) Compression: It charged, use (possibly disappearing)
tracks. If neutral, main problem is softness of decay products:
use ISR.

Case (c) Multi-body decay: If charged, use (possibly
disappearing) tracks. If neutral, multi body decay usually
makes possible to use displaced vertex or emerging jets or
displaced leptons
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1.

Known Gaps

Compression is particularly problematic because soft +
displaced is double trouble

Intermediate lifetimes (1-10mm) are complicated for
models with third generation

Models with decays to b/T harder to distinguish because
DV searches require higher number of tracks from one
vertex (to remove SM b/c/T background)

Models with decays to taus have not been explored at all
(other than vanilla stau co-annihilation by freeze-out)



Goal of this talk

Introduce a collider friendly freeze-in model
(straightforward generalisation to 3rd gen)

. Give an overview of models with similar (identical?)
signatures but different motivations

. Some thoughts about how to pick benchmark models
when trying to do 3rd generation and LLPs together



ldea of Freeze-in

1. Start with zero DM density

2. DM is produced later by either
(a) Scattering SM SM to DM DM or
(o) Decay of a very scarce new particle that freezes out in
the normal way



The minimal Freeze-in model
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The minimal Freeze-in model
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Operator still 4D, no UV completion necessary

1. 1£Z is lighter than X, need precise Higgs width measurement (impossible precision)
2. £ Z s heavier than X, cross section s foo small. Not visible



The minimal Freeze-in model

Oue new field
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The minimal Freeze-in model
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1. EDMs?
2. Completion by axions? (Work tn progress +++)
3. Can you gef the right DM density? (Work tn progress )



Next-tfo-
The minimal Freeze-in model

yXsmY Z
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Two new frelds
one coupffmg
SM, field FIMe
Connector

(has to carry SM charge)

X Y /
Fermion Fermion Scalar Belanger et al (2019)
Fermion Scalar Fermion ala co-annihilation/ co-scattering
Scalar (Higgs)  Fermion Fermion co-annthilation/ co-scattering with

Briimmer ef al (2018)



The minimal Freeze-in model

Belanger et al. JHEP 1902 (2019) 186
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LLP signatures for this model

----- neutral displaced W BSM
— Charged dilepton M lepton

~— any charge B quark

photon

W anything
disappearing displaced

track lepton
S I
e We studied cases
S (1) F carries charged [epton Q wos.
(2) F carries quark (u/d) Q wos.

displaced displaced

dijet

Proten Ao possible: RH neutrino-like Q.uos
but this (s same as mvisible

Not pictured:
out of time decays

displaced
conversion
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HSCP limit
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Full results for leptonic model
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Displaced Vertex (DV) search
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.052012

Displaced Vertex search
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Full results for hadronic model
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Comments on things to be studied further

1. On theory side, straight-forward to extend to tau/b/top.

2. Known problems with displaced tau/lb — extra
secondary (tertiary?) vertices

3. Displaced tops possibly easier because jets/leptons from
W will give DV and DL signatures. But harder to do re-
interpretation because efficiencies only on truth-level
particles.

4. Need to have symmetric ee/pu(/TT) regions for full
coverage of model.



Summary of minimal Freeze-in model

1.

It is possible to have freeze-in with visible collider
signature

Freeze-in mechanism requires small couplings + a
connector particle with SM Quantum numbers

. Connector can be produced via standard production

mechanisms, decay is suppressed due to small coupling
hence particle is long-livea

Combination of searches needed to cover parameter
space. (possible litetimes from Tmm - several km)



Goal of this talk

Introduce a collider friendly freeze-in model @

(straightforward generalisation to 3rd gen)

. Give an overview of models with similar (identical?)
signatures but different motivations

. Some thoughts about how to pick benchmark models
when trying to do 3rd generation and LLPs together



Next-tfo-
The minimal Freeze-in model

yXsmY Z
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one coupffmg
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Connector

(has to carry SM charge)

X Y /
Fermion Fermion Scalar Belanger et al (2019)
Fermion Scalar Fermion co-anmihilation/ co-scattering
Scalar (Higgs)  Fermion Fermion co-annthilation/ co-scattering with

Briimmer ef al (2018)



Conversion driven freeze-out
Garny et al. Phys. Rev. D 96, 103521 (2017)
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The minimal Freeze-in model
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Next-tfo- not really
The minimal Freeze-in model

Brimmer, Bharucha, Desai; JHEP 1811 (2018) 195

One SU(2) x U(1) singlet y + one SU(2) N-plet v

7, stabilises the lightest state
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Collider searches: Quintuplet model
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Direct Detection constraints
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* Look at parameters that gives right relic density

e Low mixing angle gives low DD cross section; however, not a
problem at the LHC because production is primarily Drell-Yan!



Limits on mixing angle
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Combination of all searches
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Comments on Feebly Interacting, DM-motivated LLPs

1. Models currently fall mainly into two categories: models
with Yukawa-like couplings (aka t-channel models) and

models mediated by small mixing with SM bosons (aka s-
channel models)

2. FIMPs + s-channel = cannot be produced at LHC;
SM > mediator > SM will be seen first.

3. FIMPs + Yukawa = LLP connector with SM charges. Good,
almost similar to prompt, coverage (with caveats) for 1st/
2nd gen couplings. Possibly good coverage of top.



Comments on Feebly Interacting, DM-motivated LLPs

4. T-channel FIMP models often fall into HCSP region
with robust limits (irrespective of flavour)

5. Couplings to b/T problematic for current searches

because of low multiplicity of tracks coming out of
secondary vertex.

6. Not really FIMPy, but same models in co-annihilation

regime also predict soft + displaced decay products
which are not well covered.



Goal of this talk

Introduce a collider friendly freeze-in model @

(straightforward generalisation to 3rd gen)

. Give an overview of models with similar (identical?)
signatures but different motivations

v

. Some thoughts about how to pick benchmark models
when trying to do 3rd generation and LLPs together
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Providing efticiencies
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Problem with benchmark for DL search?
The decay stop > b | necessarily gives displaced b-jets

Leptons from B decay and will populate signal and control
regions. Was this taken into account? (I think not because
impossible to replicate the nice agreement when not using
truth leptons)

. geﬁeratf -el‘ectro wifh -n < 2.5
I | generator electron with vO <4 cm
I | generator electron with vz < 30 cm
7 generator electron with pT > 25 CMS.GeV
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Better to use a cleaner benchmark ~t-> dl/sl ?



How to provide data for reinterpretation?

Use a simplified model that has only one, unambiguous
source of signal*

Use more than one simplitied model, each with different
topology (also useful to know about unconscious

assumptions)

. Tell us what happens it there is extra prompt stuff in the
event (e.g. isolation cuts, jet or lepton vetoes)

Provide signal cutflow for your simplified model for more
than one mass benchmark

. As far as possible, provide efficiencies in terms of objects
rather than generator-level particles™.

* May fail when doing 3rd generation



